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Abstract. The purpose of this work is to develop a mathematical model of the dynamics of turning 
a thin-walled cylindrical shell. This model uses a finite number of degrees of freedom and takes 
into account the variability of dynamic compliance. It is then possible to obtain estimates of the 
boundaries of stability of the continuous cutting process. The model is based on the theory of 
shells with application of Galerkin’s method in conjunction with the expansion of the 
displacement field in beam and trigonometric functions. On the basis of the developed model, an 
algorithm designed for constructing boundaries of stability of turning of the thin-walled 
cylindrical parts is presented and compared to experimental results. A strategy to define matter 
removal sequences is proposed. 
Keywords: cylindrical shell, chatter, turning, self-oscillations. 

1. Introduction

Investigating the stability of the cutting process has been the subject of studies for many years 
now. The first works appeared at the beginning of the 50s and explained the basic mechanism of 
occurrence of self-oscillations in the machining process “over the trace on the previously cut 
surface”. Currently, this effect is considered the main cause of chatter vibrations. This regenerative 
mechanism of excitation of oscillations is widely used in the method of analysis of the stability of 
the stationary cutting process. This method is based on the analysis of the characteristic equation 
with the further construction of the stability diagram [1, 2]. Most of the works devoted to the study 
of the stability of the process of turning use as an object a cylindrical full workpiece [3, 4] or 
beams [5, 6]. However, in [7], the author conducted an experiment of turning thin-walled 
cylindrical part and showed the presence of areas that were vibrating during the process. More 
recently a stability study of turning aluminum tubes, finite element modeled, for a variety of 
processing conditions was carried out [8, 9]. A time domain simulation of the turning process is 
presented in [10] where the influence of damping on emergence of unstable cutting process was 
shown. All these works show the influence of damping on the occurrence of vibrations during 
cutting. Another feature of the turning of thin-walled cylindrical parts is a strong change in the 
dynamic stiffness and in the natural frequencies of the workpiece during the pass. 

In this paper, the turning of a thin-walled cylindrical shell using an analytical approach to 
model the dynamics is studied. This analytical approach is based on the Kirhgoff-Love shell 
theory. The assumption of the middle surface inextensibility is used [11]. The system of 
differential equations of dynamics of the shell, expressed in terms of the axial, circumferential and 
radial components of displacement, was conducted by using variational principles. The research 
of solutions of this system is performed by Fourier expansion of the components of displacement 
along the circumferential direction and beam functions in axial direction [12-14] and uses the 
Galerkin’s method [15-17]. The obtained analytical model allows estimating the boundaries of 
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stability zones for the continuous cutting process. It takes into account the continuous changing 
of dynamics due to matter removal and motion of the tool over a flexible part. An experimental 
validation is presented and a strategy to optimize the turning process is proposed. 

In Section 2, we present the analytical model that contains a finite number of degrees of 
freedom. In Section 3 we present the way we use to estimate the stability of the process and in 
Section 4 we describe the design of the experiment uses for validation. The experiment was chosen 
in order to have an increase in compliance of workpiece while the tool progresses until chatter 
occurs. A presentation of the obtained results and a discussion are given in Section 5. Finally, a 
way to optimize to sequence of tool passes is proposed in Section 6. The conclusions take place 
in Section 7. 

2. Analytical simulation of the turning process

A cylindrical thin-walled shell (Fig. 1) is considered. The shell is in rotation around its axis at 
a constant angular velocity Ω. The shell is loaded with a moving force, the cutting force, which 
has, with respect to the shell, an angular velocity –Ω. The left edge of the shell is fixed, the right 
one is free. The geometric parameters of the shell are ܮ,	ܴ,	ℎ, which account for length, radius and 
thickness, respectively. 

The following coordinates systems (see Fig. 1) are used: ܈܇܆ mobile system of coordinates, 
linked to the rotating part; ܆෱܇෱܈෰ fixed system of coordinates, connected to the frame of the machine 
tool. 

Fig. 1. Schema of the model 

2.1. Basic system of equations of the thin-walled shell 

The system of differential equations of dynamics of the shell, expressed in terms of the 
components ݔ)ݑ, ߮, ,ݔ)ݒ ,(ݐ ߮, ,ݔ)ݓ ,(ݐ ߮,  ,on axial, circumferential and radial displacement ,(ݐ
can be represented as the follows [18]: 

ቐܮଵଵᇱ ݑ + ଵଶᇱܮ ݒ + ଵଷᇱܮ ݓ = ݑ௛߲௧ଶߩଵିܤ − ଶଵᇱܮ,௨݌ ݑ + ଶଶᇱܮ ݒ + ଶଷᇱܮ ݓ = ݒ௛߲௧ଶߩଵିܤ − ௩݌ + Δ݌௩ஐ,ܮଷଵᇱ ݑ + ଷଶᇱܮ ݒ + ଷଷᇱܮ ݓ = ݓ௛߲௧ଶߩଵିܤ− + ௪݌ + Δ݌௪ஐ. (1)

The expression of the differential operators ܮ௜௝ᇱ  are: 

ଵଵᇱܮ = ߲௫ଶ + 1 − 2ܴଶߤ ߲ఝଶ,					ܮଶଶᇱ = 1 − 2ߤ ߲௫ଶ + 1ܴଶ ߲ఝଶ + ℎଶ12ܴସ ߲ఝଶ,					ܮଷଷᇱ = 1ܴଶ + ℎଶ12ܴସ ߲ఝସ,ܮଵଶᇱ = 1 + 2ܴߤ ߲௫߲ఝ,						ܮଶଷᇱ = 1ܴଶ ߲ఝ − ℎଶ12ܴସ ߲ఝଷ,					ܮଵଷᇱ = ߤܴ ߲௫,ܮଶଵᇱ = ଵଶᇱܮ ଷଵᇱܮ					, = ଵଷᇱܮ ଷଶᇱܮ					, = ଶଷᇱܮ , (2)
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where ∗߲ = ߲ ߲∗⁄  denotes the partial derivative with respect to ∗ ௨݌ , ௩݌ , ௪݌ ,  represent the 
components of the surface forces acting on the shell in the axial, circumferential and radial 
directions, respectively. 

The rotation-induced load terms are expressed as follows: Δ݌௩ఆ = ݓ௛(2Ω߲௧ߩଵିܤ − Ωଶݒ),Δ݌௪ఆ = ݒ௛(2Ω߲௧ߩଵିܤ + Ωଶݓ + ܴΩଶ),			ܤ = ℎ1ܧ − ଶߤ . (3)

As shown in [19], these components have a small impact on the dynamics of the shell, and can 
be neglected in further calculations. 

The components of the surface forces, applied to the shell, modelled by an interaction with the 
tool, are expressed as follows: 

௚݌ = ௚ܲ(ݐ, ߮, (ݔ 1ܴ ݔ)ߜ − ߮)ߜ(௉ݔ − ߮௉),				݃ ∈ ,ݑ} ,ݒ 	,{ݓ (4)

where ݔ௉, ߮௉ are the coordinates of the position of the tool, in the mobile frame, in axial and 
circumferential direction, respectively (both are time dependent); ௚ܲ(ݐ, ߮, (ݔ  refers to the 
components of the external point cutting force, ߜ is the Dirac function. 

2.2. Model of the cutting force 

In this work, a linear cutting law (cutting force model), linearized around the nominal cutting 
parameters, is used. Therefore, the force, which models the effect of the tool on the shell for each 
direction, is expressed as follows: 

௚ܲ	 ,ݐ) ߮, (ݔ = ଴௚݌ + ߯ ௚݁ℎ௪,				݃ ∈ ,ݑ} ,ݒ 	,{ݓ (5)

where ߯ is the coefficient of cutting stiffness, ݌଴௚  is the cutting force in nominal conditions,  ℎ௪ = ൫ݐ)ݓ − ܶ, ߮, (ݔ − ,ݐ)ݓ ߮,  ൯ represents dynamic perturbation of the cutting depth, due to(ݔ
vibrations, ܶ is the period of rotation and ݁௨, ݁௩, ݁௪ are the direction cosines of the force vector. 

To study the stability of the cutting process, the system is considered in a perturbed state and 
therefore the part of the cutting forces associated with the perturbation, which is used, can be 
written as follows: Δ ௚ܲ(ݐ, ߮, (ݔ = ߯ ௚݁ℎ௪,				݃ ∈ ,ݑ} ,ݒ 	.{ݓ (6)

2.3. Discretization of the system of equations  

In order to find the solution of the Eq. (1), a Fourier expansion of the components of 
displacement along the axial and circumferential coordinate is carried out, with the further use of 
the Galerkin’s method.  

The displacement field is written as follows: 
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,ݐ)ݑ ߮, (ݔ ≈ ෍൭෍ ௞௠௖ߙ Ψ௠௞௨(ݐ) ெ(ݔ)
௠ୀଵ ൱ே

௞ୀଵ cos(݇߮) +෍൭෍ ௞௠௦ߙ Ψ௠௞௨(ݐ) ெ(ݔ)
௠ୀଵ ൱ sin(݇߮)ே

௞ୀଵ ,
,ݐ)ݒ ߮, (ݔ ≈ ෍൭෍ ௞௠௖ߙ Ψ௠௞௩(ݐ) ெ(ݔ)

௠ୀଵ ൱ே
௞ୀଵ sin(݇߮) −෍൭෍ ௞௠௦ߙ Ψ௠௞௩(ݐ) ெ(ݔ)

௠ୀଵ ൱ cos(݇߮),ே
௞ୀଵݐ)ݓ, ߮, (ݔ ≈ ෍൭෍ ௞௠௖ߙ Ψ௠௞௪(ݐ) ெ(ݔ)

௠ୀଵ ൱ே
௞ୀଵ cos(݇߮) +෍൭෍ ௞௠௦ߙ Ψ௠௞௪(ݐ) ெ(ݔ)

௠ୀଵ ൱ sin(݇߮),ே
௞ୀଵ

	 (7)

where Ψ௠௞௨ Ψ௠௞௩ ,(ݔ) Ψ௠௞௪ ,(ݔ) ݇ ,are the unknown axial basic functions (ݔ) ∈ {1,… ,ܰ} is the 
number of harmonics in the circumferential direction, ݉ ∈ {1,…  is the number of harmonics {ܯ,
in the axial direction, ߙ௞௠௖ ௞௠௦ߙ ,(ݐ)  .are unknown amplitude functions of time (ݐ)

The axial basic functions are beam functions written as follows [14, 15, 20]:  ߖ௪(ݔ) = (ݔ௠ߣ)ଵcoshܥ + (ݔ௠ߣ)ଶcosܥ − ଷܥ)௠ߪ sinh(ߣ௠ݔ) + ସܥ sin(ߣ௠ݔ)).	 (8)

The parameters ߣ௠, ܥଵ, ܥଶ, ܥଷ, ܥସ are determined according to a set of boundary conditions. 
The relationship between functions Ψ௨(ݔ) = Ψ௩(ݔ) = Ψ௪(ݔ) is determined by the state of 

non-extensible middle surface, namely ߝఝ = ௫ఝߛ ,0 = 0 [11]. 
According to boundary conditions, at hand clamped-free, the function Ψ௪  will have the 

following form [14, 15, 20]: ߖ௪(ݔ) = cosh(ߣ௠ݔ) − cos(ߣ௠ݔ) − (ݔ௠ߣ)௠(sinhߪ − sin(ߣ௠ݔ)), ݉ ∈ {1,… 	.{ܯ, (9)

Note that the ߣ௠, ߪ௠ do not depend on the number of circumferential harmonics ݇. 
The final system of equations of motion of the shell is presented in the fixed coordinate system ݑ෬ ෭ݓ ,෬ݒ , , because of simplicity of representation of the point of interaction (point A, Fig. 2) between 

the tool and the shell for further analysis of stability. 
The components of displacement of the shell in the moving frame are ݓ ,ݒ ,ݑ and ݑ෬ ෭ݓ ,෬ݒ ,  are 

the components of this displacement in the fixed frame. The angle ߰௉ gives the position of the 
tool in the fixed frame. This angle is not time dependent. 

Fig. 2. Relation between the different coordinate systems 

2.4. Writing systems in matrix form 

The final system of differential equations of dynamics of the shell is written in matrix form for 
the unknown amplitude dimensionless variables ߙ௞௠௖ ௞௠௦ߙ ,(߬) (߬) depending on the time and for 
one particular circumferential harmonic ݇: ۻ௞ܙሷ ெ௞ + ۱௞ܙሶ ெ௞ + ۹௞ܙெ௞ = 	.௞ܘ (10)
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The vector of solution ܙெ௞(߬) in Eq. (10) consists of a set of vectors ܌ଵ௞் (߬), … , ெ௞்܌ (߬) for 
each axial harmonic ݉ ∈ {1,2,3, …  and one particular circumferential harmonic ݇, and these {ܯ,
vectors consist of a set of symmetric ߙ௠௞௦ (߬) and antisymmetric ߙ௠௞௖ (߬) amplitude components: ܙெ௞(߬) = ൛܌ଵ௞் (߬), … , ெ௞்܌ (߬)ൟ்,܌௠௞(߬) = ௠௞௖ߙ} (߬), ௠௞௦ߙ (߬)}்,				݉ ∈ {1,… ,{ܯ, (11)

where ߙ௠௞௖ ௠௞௦ߙ ,(߬) (߬) are unknown amplitude functions of time. 
The vector of load ܘ௞ (dimension 21×ܯ) is written: 

௞ܘ = ෤߯۾ெ௞௙ ൬ܙெ௞൫߬ − ෨ܶ൯ − 	.ெ௞(߬)൰ܙ (12)

The matrices ۻ௞ , ۹௞ ெ௞௙۾ ,  are derived via Galerkin method. Their structures and their 
components can be found in the appendix. All these matrices are dependent on the tool position 
along the axial coordinate ݔ௉. Changes in the thickness of the shell is taken into account with the 
help of the integrals Eq. (29). Also, dynamic compliance variation of the cutting process is taken 
into account by changing the position of the tool Eq. (32). 

The matrix ۱௞ is determined with help of the Rayleigh damping model: ۱௞ = ௞ۻߙ + 	.۹௞ߚ (13)

The constant of Rayleigh ߙ ߚ ,  have been determined from experimental results given in 
Table 2 In the present case we have ߙ = ߚ ,7.25 = 6.7 10-8  for ߫ଵ = 0.0007, ߫ଶ = 0.0008 and 
their corresponding frequencies ଵ݂ = 1661 Hz, ଶ݂ = 2798 Hz. 

The system of Eq. (10) describes the turning process of a thin-walled cylindrical shell whose 
interaction with the tool is defined by a cutting force concentrated on a mobile point. 

3. Stability evaluation of cutting process

The stability of the turning process is investigated, using the previous model and the procedure 
described in the book of Cheng [21]. 

The solution of Eq. (10) will be sought in the form: ܙெ௞ = ݁ఒఛܝ.	 (14)

After substituting Eq. (14) into Eq. (10), the following equation is obtained: ܝۺ = Λ۾௙ܝ,	 (15)

where: ۺ௞ = ଶߣ௞ۻ− + ۱௞ߣ + ۹௞,			Λ = ෤߯൫1 − ݁ିఒ ෨் ൯.	 (16)

At the boundaries of the stability areas, the ߣ is purely imaginary. So, the critical parameters 
of the cut are found via characteristic Eq. (15): det ቀۺ௞ − Λ௞۾௙ቁ = 0.	 (17)
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By substituting ߣ = ߨ2݅ ௖݂, the characteristic equation is divided in real and imaginary parts. 
The parameter ௖݂ represents the oscillation frequency at the limit of the zone of stability, when the 
characteristic factor ߣ becomes purely imaginary. Subsequently, the oscillation frequency ௖݂ will 
be called chatter frequency. 

It is possible to combine the eigenvalues of Eq. (17) into a vector ઩௞ = (Λ௞ଵ …Λ௞ଶெ). Each 
component of this vector leads, according to Eq. (16), to the resolution of: Λ௞௝ = ෤߯௞௝ ቀ1 − ݁ିఒ ෨்ೖೕቁ = ܽ௞௝ + ܾ݅௞௝, (18)

where Λ௞௝  is the component of the eigenvalues vector, which is determined from the solution of 
the eigenvalue problem, i.e ቂۺ௞ − Λ௞௝ ௙ቃ۾ ௝ܞ = 0,  ݆ = 1,… , .ܯ2  The coefficients ܽ௞௝  and ܾ௞௝ 
represent the real and imaginary components of Λ௞௝ . 

This leads to: Λ௞௝ = ܽ௞௝ + ܾ݅௞௝ = ෤߯௞௝൫1 − cos൫ ෨ܶ௞௝2ߨ ௖݂൯ + ݅sin( ෨ܶ௞௝2ߨ ௖݂)൯. (19)

The Eq. (19) is divided in the real part and imaginary part: 

൝ܽ௞௝ = ෤߯௞௝ ቀ1 − cos൫ ෨ܶ௞௝2ߨ ௖݂൯ቁ ,ܾ௞௝ = ෤߯௞௝sin൫ ෨ܶ௞௝2ߨ ௖݂൯. (20)

From the resulting system of Eq. (20), the stiffness of cutting is expressed [21]: 

෤߯௞௝ = − 12ܽ௞௝ ቎1 + ൭ܾ௞௝ܽ௞௝൱ଶ቏,	 (21)

and also [22]: 

tan߰௞௝ = ܾ௞௝ܽ௞௝ = sin( ෨ܶ௞௝2ߨ ௖݂)1 − cos൫ ෨ܶ௞௝2ߨ ௖݂൯ ⇒ ߰௞௝ = arctg ܾ௞௝ܽ௞௝ ,	 (22)

where ߰௞௝ is the angle phase.  
The number of oscillation per revolution [14] is given by: 

௖݂ ෨ܶ௞௭௝ = ݖ + ߨ௞௝2ߝ ݖ			, ∈ 	,ߋ (23)

where ߝ ,ݖ௞௝ ⁄ߨ2  are the integer and the fractional number of incisions on the surface, respectively. 
Taking into account Eqs. (22) and (23) leads to: 2ߨ ௖݂ ෨ܶ௞௭௝ = ௞௝ߝ + ,ݖߨ2 ݖ ∈ ௞௝ߝ				,ߋ = ߨ − 2߰௞௝. (24)

The solution of Eq. (20) is a pair of parameters ൫ ෨ܶ , ෤߯൯  for each set of frequency value ௖݂ ∈ ൫ ௖݂଴, ௖݂௙൯ and position of the tool ݔ௉, where the parameters ௖݂଴, ௖݂௙ are arbitrary constants.  
This approach gives place to the following algorithm: 
• On the first step of the algorithm, the frequency parameter ௖݂ = ௖݂଴ is fixed (the smallest
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eigenvalue of the eigenvalue problem of conservative system ۻ௞ܙሷ ெ௞ + ۹௞ܙெ௞ = 0). 

• In a second step, the eigenvalue problem is solved, namely ቂۺ௞ − Λ௞௝ ௙ቃ۾ ௝ܞ = 0 , ݆ = 1,… , from which the vector of eigenvalues ઩௞ ,ܯ2 = (Λ௞ଵ …Λ௞ଶெ) is determined.  
• Then, for each eigenvalue Λ௞௝ , using the Eqs. (21), (22) and (24), the following parameters෤߯௞௝, ߰௞௝ and ߝ௞௝ are calculated. The final step enables to calculate the period of rotation ෨ܶ௭௝. 
• The cycle is repeated for the next value of the frequency parameter ௖݂ = ௖݂଴ + ∆ ௖݂଴

(where ∆ ௖݂଴ is an arbitrary constant). 
The obtained data set enables the drawing of a multi-Dof lobe stability diagram. 

4. Experimental setup and measurements

As an illustration of the above designed approach, an experiment has been carried out, namely. 
The turning of the outer cylindrical surface of a tubular part, as can be seen on the drawing (Fig. 3), 
was conducted. The experimental set up consists of a part, fixed by a three-jaw chuck to the 
machine tool spindle, and a set of sensors. This experiment has been partly addressed in [22, 23]. 

In the framework of the experiment, several types of sensors were used. The experimental set 
up is shown in Fig. 4. For the vibration measurement of the workpiece two types of sensor are 
used: i) displacement eddy current sensors (3a, 3b, Fig. 4) and ii) accelerometers (2a, 2b, 2c, 2d, 
Fig. 4). For the measurement of the frequency of rotation of the workpiece an optical sensor was 
used (1a, Fig. 4).  

On Fig. 4, one can also see the eddy current sensor ’3a’ but, due to presence of chips inside 
the tube, it was not exploitable. The accelerometer ’2c’ was positioned on ’3a’ sensor support to 
measure the vibrations of this support. 

The pass of the tool is repeated several times until occurrence of vibrations of large amplitudes 
generating significant damage on the machined surface. The generated defects on the machined 
surface during the last tool pass are shown on Fig. 5. This occurred for a thickness of the tube 
going from 5.4 mm to 4.4 mm. 

Fig. 3. Geometry of the machined tube Fig. 4. Experimental setup 

Fig. 5. Surface of the tube after the last tool pass 

An impact test was carried out before and after the machining. The main aim of this test was 
the definition of modal characteristics of the workpiece before and after the turning process. The 



8 

Fig. 8. Spectrogram issued from the measurement of the eddy current sensor ’3b’ 

with the result of hammer test after the final pass 

respective transfer functions are presented on Fig. 6. The experimental data given in Table 1 and 
Table 2 are coming from these transfer functions. 

Fig. 6. Transfer function before and after the last tool path 

Table 1. Experimental eigenfrequencies before the passage of the tool 
Freq. experiment (Hz) 1108.4 1937.2 3384.5 

Modal Damping 0.0105 0.0076 0.00051 
Modal form 2 lobes 3 lobes Flexion 2 

Table 2. Experimental eigenfrequencies after the passage of the tool 
Freq. experiment (Hz) 1100.2 1661.1 2798 

Modal Damping 0.0077 0.00070 0.00078 
Modal form 2 lobes 3 lobes 4 lobes 

The signal of the eddy current sensor ’3b’, fixed on the machine frame, is presented on Fig. 7. 
This sensor is placed in front of the right extremity of the workpiece where the largest 
displacements are present.  

On the right side (ݐ ൐ 45	s) of the graphic (Fig. 7) the observed oscillations correspond to those 
visible on the workpiece surface on Fig. 5. On the spectrogram computed from this displacement 
signal (Fig. 8) one can see the evolution of the resonances of the tube close to the evolution of its 
eigenfrequencies. On the right of the Fig. 8 the result of the hammer test after the last tool pass is 
given (solid line from Fig. 6).  

And, as shown by the analysis of the spectrogram and FRF (Fig. 8), the dominant vibration 
component is close to a natural frequency of the workpiece. 

Fig. 7. Signal recorded using the sensor 3b 
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5. Results and discussion

As previously said, the solution of Eq. (20) is the pair of parameters ൫ ෨ܶ , ෤߯൯ for each frequency 
value ௖݂ and depends on the tool position ݔ௉. We build the stability curves for different positions 
of the tool ݔ௉, with the following notations: cutting stiffness coefficient ߢ = ߯ ߯ୣ୶୮⁄  and rotation 
frequency ௥݂௢௧ = 1 ܶ⁄ , with: ߯ – cutting stiffness of the system, [N/m]; ߯ୣ୶୮ – nominal cutting 
stiffness, obtained from experiment (here, ߯ୣ୶୮ =	 569 N/m), for the tool-workpiece set  
studied, [N/m]; 

The Fig. 9 shows the three-dimensional stability diagram of the continuous cutting process in 
the three-parameter space (ݔ௉, ,ߢ ௥݂௢௧). This graph shows that conditions of stability change, 
depending of the tool position. The number of different degrees of freedom in the system 
considered is the number of sets of lobes representing the limits of stability, highlighted by 
different colors. 

Fig. 9. Stability diagram in the parameter space (ݔ௉, ,ߢ ௥݂௢௧) 
The Fig. 10(а) represents a clipping plan of the stability diagram in the two- parameters (ߢ, ௥݂௢௧) plane, for the position of the tool ݔ௣ =  It corresponds to the loss of stability of .ܮ0.739

the quasi-static cutting process. For the considered state of the system, and the specified range of 
technological parameters, three sets of lobes are obtained, each of the sets having a different color. 
In practice, the border of the lower zone of stability is our only concern because, from the moment 
the parameters of the system reach the lower stability boundary, the continuous cutting process 
becomes unstable. The red vertical line represents the rotation frequency of the workpiece, 
corresponding to the experiment ௥݂௢௧ = 12,63  Hz. On the same line, corresponding to the 
rotational frequency of interest, there are several different sets of lobes representing a limit of the 
stability zone. The red vertical line intersects the first set of lobes in point А. To evaluate the 
stability of the quasi-static cutting process, the relative position of the point А (the intersection 
point of the rotational frequency of interest with the lowest set of lobes representing the border of 
the stability area) has to be estimated by comparing it to the limit value of the cutting stiffness 
coefficient ߢ = ߯ ߯ୣ୶୮⁄ = 1 (horizontal blue line). If the point A is above the blue line, then the 
quasi-static cutting process is stable. If it is below the blue line, the process is unstable. Fig. 10(a) 
shows that the quasi-static cutting process is located on the border of the zone of stability. One of 
the characteristics of the boundary of the stability zone of the cutting process consists in the 
oscillation frequency, called chatter frequency. It is at this frequency that the self-excited 
oscillations of the system begin, if the process parameters are within the instability area of the 
system. The chatter frequency may vary depending on the encountered stability zone and on the 
positions with respect to this zone. On the Fig. 10(b) is shown the variation of the critical stiffness 
parameter of the system depending on the chatter frequency ௖݂௛௔௧௧௘௥. 

To determine the chatter frequency, which corresponds to the oscillation frequency on the 
border of the zone of stability for the rotational frequency considered, the value of parameter ߢ 
must be known at the intersection with the boundary of the zone of stability at the relevant 
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rotational frequency (the point А, Fig. 10(а)). For the lowest limit of the stability area, which 
corresponds to the black lines in Fig. 10(a), the value of the parameter is ߢ஺ = 1 (Fig. 10(а)). Then, 
reporting this value ߢ஺ = 1 on the Fig. 10(b), the value of the chatter frequency is obtained: ௖݂௛௔௧௧௘௥ = 1930 Hz. This means that at the limit of the zone of instability self-oscillations begin 
to develop at the frequency ௖݂௛௔௧௧௘௥ = 1930 Hz. It is important to note that each set of boundaries 
of the stability area has its own chatter function, as shown on Fig. 11(a) and Fig. 11(b). 

The stability boundaries for the position of the tool ݔ௉ = 0.574	L in the plane of parameters (ߢ, ௥݂௢௧)  are presented on Fig. 11(a). There are 6 families of these boundaries in total  
(each assigned with a different color). On Fig. 11(b), for this position of the tool and this field of 
parameter ߢ, the evolution of the stiffness parameter of the system ߢ, depending on the chatter 
frequency, is plotted. The 6 sets of different limits of stability zone are clearly seen, in different 
colors (Fig. 11(а)), and each set has its own function of chatter frequency (Fig. 11(b)). Thus, each 
set of lobes has its own variation of the stiffness parameter of cutting and of the chatter frequency 
during the process. The lowest boundary of stability at given for the position of the tool  ݔ௉ =  .is the set of lobes shown in blue (Fig. 11(а)) ܮ0.574

a) Variation of the ߢ as a function
of the workpiece rotational frequency 

b) Variation of the ߢ with respect
to the chatter frequency 

Fig. 10. Clipping plane of the stability diagram in the (ߢ, ௥݂௢௧) and (ߢ, ௖݂௛௔௧) planes, 
for the tool position ݔ௣ = 	ܮ0.739

a) Variation of the ߢ as a function
of the workpiece rotational frequency 

b) Variation of the ߢ with respect
to the chatter frequency 

Fig. 11. Clipping plane of the stability diagram in the plans (ߢ, ௥݂௢௧) and (ߢ, ௖݂௛௔௧)  
for the tool position ݔ௉ =   ܮ0.574

The frequency of oscillations on the stability boundary shows some variations, depending on 
the position of the tool (Fig. 12). The values shown in this diagram correspond to the frequency 
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values, obtained by the intersection of the vertical line of the rotational frequency with the 
boundaries of stability regions for each of the positions of the tool. It was found that the 
frequencies at the boundaries of stability domains are very close to the natural frequencies of the 
shell.  

Fig. 12. Variation of the frequency of oscillations on the border of the zone 
of stability depending on the position of the tool 

During the pass of the tool, a chip has been removed, thus leading to modifications in the 
dynamic characteristics of the system, including the natural frequencies of the shell. The results 
obtained by modeling the system during the 16th pass of the tool can be compared with the 
experimental data (Fig. 13).  

During the experiment, it was observed that the system responded for some frequencies  
(Fig. 13(а)). In the range of 0-6000 Hz, there are 6 frequencies that lead to a response of the system. 

The spectrogram during the final pass of the tool is presented on Fig. 13. The frequencies, 
which lead to a response of the system when the tool passes on the shell, are shown in red and 
numbered (Fig. 13(а)). The oscillation frequencies, shown in black and numbered on the borders 
of the stability areas of the continuous cutting are obtained by calculation (Fig. 13(b)). When 
crossing the border of the stability area of the limit stiffness parameter ߢ, one of the oscillation 
frequencies becomes the chatter frequency, from which begins the process of self-excited 
oscillations. 

a) b) 
Fig. 13. Comparison between the chatter frequency of the experiment  

and the frequencies calculated using the analytical model  

The chatter frequency that dominates at the end of the pass in the experiment is 1670 Hz. The 
frequencies numbered 1, 2, 3 and 5 are close to the experimental result, with an error below 5 %, 
while the frequencies 4 and 6 are assigned with an error of 15 to 17 %. This difference shows that 
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for ܯ = 2, which is the number of axial harmonics that we use for the approximation Eq. (7) 
introduced in the Galerkin method, is much better for modes whose axial form is close to the first 
harmonic (݉ = 1) than for the modes whose axial shape is close to the second harmonic (݉ = 2). 
It is possible to improve this result if we take ܯ ൐ 2. Nevertheless, the chatter frequency, which 
is 1670 Hz and corresponds to the loss of stability, is well described by this model. 

The inferred chatter frequency variation alongside the instability zone number 153 change  
(Fig. 15), results in a discontinuous chatter frequency evaluation. This is in qualitative agreement 
on the observed stairs-like pattern in the signal spectrum, as shown on Fig 14.  

a) Computed ௖݂ for lowest critical stifness b) Spectrogram detailed for the frequency
that dominates the response 

Fig. 14. Comparison of the chatter frequency 

Fig. 15. Critical relative rigidity of the system variation during the pass 

Fig. 15 shows a sectional view of the stability diagram in three dimensions (plans - 2, Fig. 9) 
in the parameter area (ߢ,  ௉). On this diagram, one can see how the limit stiffness of the systemݔ
changes during the pass of the tool and therefore when the nominal cutting process becomes 
unstable. 

Fig. 15 shows only the lower limit of the zone of stability (for the studied rotational frequency), 
because ultimately it is the only important one for the stability analysis of the cut. As can be seen, 
the first loss of stability of the cutting process takes place when the tool is at position ݔ௣ =  .ܮ0.739
The stability diagram for this position of the tool in the parameters area (ߢ, ௥݂௢௧) is shown in  
Fig. 10. 

6. Optimizing the operations of turning

Our approach allows estimating the boundary conditions of the cutting for each pass of the 
tool, which lead the turning process to the vibrations. So, using this information, an estimation of 
the maximum cutting depth for each pass can be made, for which the cutting will take place 
without chatter. For example, in the experiment presented above, the last pass should have a 
cutting depth limit below ܣ௣୪୧୫ = 0,3 mm. Thus, in order to avoid vibrations during the turning 
process, the remaining passes and the depth of cut should be determined on the basis of this  
finding. 
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Table 3 presents a strategy of the turning without vibration to produce a part having a final 
thickness of ℎ௙௜௡௔௟ = 4,4 mm. 

The cutting depth specified is the maximum allowed for each of the passes, in order to 
determine the fastest way to get the piece with a specified wall thickness without vibration. These 
parameters are determined from the last pass to the first one. This means that the maximum cutting 
depth for each (current) pass depends on the conditions of the following passes. 

Based on the approach described above, a diagram of the turning sequence can be worked out 
(Fig. 16). 

Table 3. Technological plan of the turning without vibration 

Number of the pass Thickness before the pass ℎ௕௘௙௢௥௘, (mm) 
Thickness after the pass ℎ௔௙௧௘௥, (mm) 

Cutting depth limit ܣ௣୪୧୫, (mm) 
N-5 7,7 6,9 0,81 
N-4 6,9 6,2 0,68 
N-3 6,2 5,6 0,57 
N-2 5,6 5,1 0,47 
N-1 5,1 4,7 0,38 
N 4,7 4,4 0,3 

Fig. 16. Limit thickness sequence diagram of the turning 

This diagram is drawn along the axes ℎ௜ and ℎ௜ାଵ, which represent the current wall thickness 
and the future one, respectively. This plot can not only be used for the point values from Table 3, 
but can also be practical for intermediate values via interpolation.  

For example, for a piece with an initial thickness of ℎ௜ = 7,3 mm, a piece with a final wall 
thickness of ℎ௙௜௡௔௟ = 5,4 mm is obtained. The horizontal segment OA of the diagram shows the 
initial thickness of the piece, this segment goes through the black line at point A, and from the 
intersection point, draws a vertical segment ܤܣ, thus leading to the maximum cutting depth, which 
is ܣ௣୪୧୫ = 0,8 mm for the first pass. The segment ܦܥ = 0,65 mm illustrates the cutting depth limit 
for the second pass. For the third and final pass, the cutting depth is ܨܧ = 0,45 mm, from which 
a piece with a ℎ௙௜௡௔௟ = 5,4 mm wall thickness is obtained, illustrated by the segment ܨܩ. 

A. Gouskov and P. Lorong: joint discussion to set research goals, choice of the analysis method 
for the calculation, joint discussion of the results of calculations and experiments, carried out the 
experiments. A. Gerasimenko, M. Guskov and A. Shokhin: preparation of the experiments, carried 
out the experiments, carried out the calculation, treatment of the results of experiments and 
calculation, joint discussion of the results of calculations and experiments. 

7. Conclusions

A mathematical model of the turning was proposed and developed, with a finite number of 



14 

degrees of freedom for a reliable estimate of the limits of stability of the continuous cutting. Based 
on the proposed model, an algorithm was developed to define the limits of the stability regions of 
the turning process of a thin-walled cylindrical part. It is shown that the boundaries of the stability 
zones of the cutting process occur at oscillation frequencies close to the natural frequencies of the 
part. The importance of the use of models with several degrees of freedom is enhanced by the fact 
that, upon progression of the tool, the dynamic characteristics of the part may vary, in particular, 
the vibration modes and its Eigen frequencies, which can lead to significant changes within the 
areas of instability. Since the frequency at which the stability of the cutting process will be lost is 
not known a priori, as well as the form of vibration corresponding to this frequency, several modes 
must be taken into account. Thus, with the help of the limit thickness sequence diagram, some 
recommendations on the choice of technological parameters of the cutting were made, for the 
turning, to avoid the vibrations observed during the cutting process and to get the final result as 
rapidly as possible. 
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Appendix 

The matrices ۻ௞, ۱௞, ۹௞, ۾ெ௞௙  have an array structure with blocks: 

௞ۻ = ቌۻ௞,ଵଵᇱ ⋯ ⋮௞,ଵெᇱۻ ⋱ ௞,ெଵᇱۻ⋮ ⋯ ௞,ெெᇱۻ ቍ,			۹௞ = ቌ۹௞,ଵଵᇱ ⋯ ۹௞,ଵெᇱ⋮ ⋱ ⋮۹௞,ெଵᇱ ⋯ ۹௞,ெெᇱ ቍ, 
ெ௞௙۾ = ൦۾′ଵଵ … ⋮ଵெ′۾ ெଵ′۾⋮ … 		.ெெ൪′۾

(25)

The sub-matrices ۻ௞,௜௝ᇱ , ۹௞,௜௝ᇱ  (݅ ∈ {1,2, … ݆	;{ܯ, ∈ {1,2, …  in Eq. (25), are written as ({ܯ,
follows: 

௞,௜௝ᇱۻ = ቆ݉ଵଵ௜௝ 00 ݉ଶଶ௜௝ ቇ,					۹௞,௜௝ᇱ = ቆ݇ଵଵ௜௝ 00 ݇ଶଶ௜௝ ቇ.	 (26)

The components of the sub-matrix ۻ௞,௜௝ᇱ  are as follows: ݉ଵଵ௜௝ = ଵ݀௞,௜௝௨ି௨ߝ− + ଵ݀௞,௜௝௩ି௩ߝ + ݉ଶଶ௜௝			ଵ݀௞,௜௝௪ି௪,ߝ = ݉ଵଵ௜௝ .	 (27)

The components of the sub-matrix ۹௞,௜௝ᇱ  are as follows: ݇ଵଵ௜௝ = ଵܾ௞,௜௝௨ି௨ߝ − (Δଵߝଶ݇ଶ)݀௞,௜௝௨ି௨ + ൫ܿ௞,௜௝௩ି௨ + ܿ௞,௜௝௨ି௩൯Δଶߝଷ݇ − Δଵߝଵܾ௞,௜௝௩ି௩ + ଷ൫ܿ௞,௜௝௪ି௨ߝߤ + ܿ௞,௜௝௨ି௪൯+ (1 + ଶ݇ଶ݀௞,௜௝௩ି௩ߝ(ହߝ + ଶ݇ߝ) + ଶ݇ଷ)൫݀௞,௜௝௪ି௩ߝହߝ + ݀௞,௜௝௩ି௪൯ + ଶߝ) + ݇ଵଵ௜௝	ହ݇ସ)݀௞,௜௝௪ି௪,ߝଶߝ = ݇ଶଶ௜௝ .	 (28)

The following components are used above in Eq. (27) and (28), obtained by the Galerkin 
method: 
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݀௜௝,௞௨ି௨ = න ෨߰௜௞௨ ෨߰௝௞௨ ෤ଵݔ݀
଴ , ݀௜௝,௞௩ି௩ = න ෨߰௜௞௩ ෨߰௝௞௩ ෤ଵݔ݀

଴ , ݀௜௝,௞௪ି௪ = න ෨߰௜௞௪ ෨߰௝௞௪ ෤ଵݔ݀
଴ ,

݀௜௝,௞௪ି௩ = න ෨߰௜௞௪ ෨߰௝௞௩ ෤ଵݔ݀
଴ , ݀௜௝,௞௩ି௪ = න ෨߰௜௞௩ ෨߰௝௞௪ ෤ଵݔ݀

଴ , ܿ௜௝,௞௩ି௨ = න߲௫෤൫ ෨߰௜௞௩ ൯ ෨߰௝௞௨ ෤ଵݔ݀
଴ ,

ܿ௜௝,௞௪ି௨ = න߲௫෤൫ ෨߰௜௞௨ ൯ ෨߰௝௞௨ ෥ଵ,ݔ݀
଴ ܿ௜௝,௞௨ି௩ = න߲௫෤൫ ෨߰௜௞௨ ൯ ෨߰௝௞௩ ෤ଵݔ݀

଴ , ܿ௜௝,௞௨ି௪ = න߲௫෤൫ ෨߰௜௞௨ ൯ ෨߰௝௞௪ ෥ଵ,ݔ݀
଴ܾ௜௝,௞௨ି௨ = න߲௫෤ଶ൫ ෨߰௜௞௨ ൯ ෨߰௝௞௨ ෤,ଵݔ݀

଴ ܾ௜௝,௞௩ି௩ = න߲௫෤ଶ൫ ෨߰௜௞௩ ൯ ෨߰௝௞௩ ෤,ଵݔ݀
଴ ܾ௜௝,௞௪ି௪ = න߲௫෤ଶ൫ ෨߰௜௞௪൯ ෨߰௝௞௪݀ݔ෤ଵ

଴ ,
ܾ௜௝,௞௪ି௩ = න߲௫෤ଶ൫ ෨߰௜௞௪൯ ෨߰௝௞௩ ෤,ଵݔ݀

଴ ܾ௜௝,௞௩ି௪ = න߲௫෤ଶ൫ ෨߰௜௞௨ ൯ ෨߰௝௞௨ ෤ଵݔ݀
଴ , ݅ ∈ {1,2,… ݆				,{ܯ, ∈ {1,2, … ,{ܯ,

	(29)

where: ܿ௜௝,௞	  – denotes the scalar product of the basic functions with its first derivative, ܾ௜௝,௞	  – the 
scalar product of basic functions with its second derivative, ݀௜௝,௞	  – the scalar product of basic 
functions. 

The sub-matrice ۾′௜௝ is as follows: 

௜௝′۾ = ෤ܽ ൤ܽ௜௝ ܾ௜௝ܿ௜௝ ݀௜௝൨,			 ෤ܽ = ෤߯ߨ ෨ܴ, (30)

where: ܽ௜௝ = ൫−݁௨ ௜݂௝௪_௨ + ݁௪ ௜݂௝௪_௪൯2cosଶ൫݇߰௣൯ + ݁௩ ௜݂௝௪_௩sin൫2݇߰௣൯,ܾ௜௝ = ൫−݁௨ ௜݂௝௪_௨ + ݁௪ ௜݂௝௪_௪൯sin൫2݇߰௣൯ + ݁௩ ௜݂௝௪_௩2sinଶ൫݇߰௣൯,ܿ௜௝ = ൫−݁௨ ௜݂௝௪_௨ + ݁௪ ௜݂௝௪_௪൯sin൫2݇߰௣൯ + ݁௩ ௜݂௝௪_௩2cosଶ൫݇߰௣൯,݀௜௝ = ൫−݁௨ ௜݂௝௪_௨ + ݁௪ ௜݂௝௪_௪൯2sinଶ൫݇߰௣൯ + ݁௩ ௜݂௝௪_௩sin൫2݇߰௣൯,݅ ∈ {1,2, … ݆					,{ܯ, ∈ {1,2, … 	.{ܯ,
(31)

Here, ௜݂௝௪_௚෤  denotes the product of basic functions with a Dirac function ߜ൫ݔ෤ − :෤௣൯ݔ
௜݂௝௪_௚෤ = න߰௜௪(ݔ෤)߰௝௚෤(ݔ෤)ଵ

଴ ෤ݔ൫ߜ − ෤ݔ෤௣൯݀ݔ = ߰௜௪൫ݔ෤௣൯߰௝௚෤൫ݔ෤௣൯,			 ෤݃ = ,෤ݑ} ,෤ݒ ݅,{෥ݓ ∈ {1,2, … ݆					,{ܯ, ∈ {1,2, … 	.{ܯ, (32)
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