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Abstract

Network flow computing based on macroscopic traffic flow models for large and dense networks involves a large number of
parameters and variables, and significant computational efforts. We aim at reducing these and introduce a modelling framework
at two-dimensional scale in order to model traffic flow of transportation systems of large-scale networks. We present a network
flow pattern corresponding to network flows modelling with a few network sensors of traffic count locations. We manage and
evaluate traffics on wide and dense networks with a minimum of available measurements and data, through modelling of global
behaviours based on local behaviours. We find that the traffic at this scale is governed by multidimensional hyperbolic conservations
laws. Godunov-type method has been proposed to compute the network flow flux across computational domains. We validate the
approach by dealing with an example for the simplified road network of the city of Paris as a case study of the proposed model,
and provide an example of road network modelling with a two-dimensional dynamical traffic flow pattern.
c© 2015 The Authors. Published by Elsevier B. V.
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1. Introduction and Motivation

We often observe phenomena of congestion and mobile jams in areas where users’ transport demand is very im-
portant with respect to the supply of existing networks, especially at peak hours. To ensure greater safety and reduce
the risk of traffic incidents, a new trend has emerged in the field of transportation networks modelling for traffic man-
agement of large-scale networks. That is the two-dimensional modelling of network flows. It aims at managing and
evaluating traffic on wide and dense networks with a minimum of available measurements and traffic data, through
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modelling of global behaviour based on local behaviours. The technique allows aggregating the network links as a
continuous medium, where road traffic flows as a fluid on a surface. This modelling approach intends to reduce the
large number of parameters, the unknown variables and the significant computational efforts involved in macroscopic
flow models for large and dense urban networks. The approach aims to be suitable for network modelling with scarse
traffic data. It considers the area of the large network as a continuum anisotropic media where vehicles behave like
a two-dimensional fluid with four preferred directions of propagation (Saumtally, 2013; Wong, 1998, and references
therein). Roads and vehicles are both aggregated, and the anisotropy of the network is due to the directions of propaga-
tion of vehicular flows in any position of the network. Few researches on this approach for network flows management
and control have been performed, mainly in the statical case (Wong, 1998; Prez and Benitez, 2010; Saumtally, 2013)
and recently based on the existence and the concept of a network fundamental diagram (Keyvan-Ekbatani et al., 2012,
2015b,a).

The outline of the paper is the following. First we recall the definition of the terms ”dense urban network” and
”continuum anisotropic network” and give examples of cities which road network may be considered as dense, con-
tinuum and anisotropic. With intersection model of (Costeseque and Lebacque, 2012) we describe cars-flow at any
point of an urban network, and express a non-negativity of flows. We describe at the same time, in details, existing
movements, in any network point. We build thereafter multidimensional hyperbolic conservation laws that describes
the dynamic of vehicles in all the computational domains. A Godunov-like scheme is deduced, which allows easy
numerical calculation of the two-dimensional model.

2. Two-dimensional Anisotropic continuum network

2.1. Anisotropy of network

Definition 2.1.
In traffic theory, a network is said anisotropic when there are many possible interactions within a cutoff location.

One derives from local interactions global interactions which may be predetermined in a network. In the paper
we reduce the local interactions in four different preferred directions of propagation of vehicles-flow in any location.
Let us denote by U the area of a urban road network. U is supposed be a bounded and open subspace of the
Euclidean space R2, since any city has a frontier and then its urban road network is limited by its frontier too. Clearly
U ⊂ R2 and meas(U ) < +∞, with meas the Lebesgue measure in two dimensions. At any point P, of coordinates
(x,y), of the network, we assume four preferred directions of movement of vehicles, depicted by the Figure 1(a).

i=1

i=2

i=3

i=4

P

(a) Considered directions
(i = 1,2,3,4) in a point P

0 e1

e2

u
v

(b) Anisotropy - global and local references

θ

ξi = ξi+2 = ηi−3 = ηi−1

i ηi = ξi+1 = ξi+3
= ηi+2

u

v

(c) A zoom on an elementary cell
and the related local basis

Fig. 1: Anisotropy - Structure of the network - Local and global basis

We assumed that U is decomposed in zones or sub-areas Um, m = 1, . . . ,M respecting the below criteria:

1. U =
P⋃

p=1
Um

2. Um is a polygonal domain of R2, which frontier is of Lebesgue measure strictly positive.
3. Each zone Um is subdivided in elementary cells or grids, providing an admissible mesh in the sense of (Eymard

et al., 2000, Definition 5.1).
4. ∀m,m′ ∈M,m , m′⇒Um∩Um′ ∈ {∅, point, polygonal segment}.
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Keeping the anisotropy property of such a large network allows, in an easy way, the dynamical modelling of the traffic
flows, ranging from dynamic assignment to control strategies.

2.2. Dense urban area as a continuum

We are interested in large dense urban networks. That is the urban areas of dense roads network. The density of the
network in traffic, refers to the plurality of road sections of short length and their closeness’s. A continuum approach
then comes out by an aggregation of the roads network (as it is showed in (Prez and Benitez, 2010; Wong, 1998)),
which makes vehicles behave on these networks like a two-dimensional fluid. One may consider the road networks of
cities like Paris, Atlanta, Tokyo as dense road networks. According to the definition 2.1 the road networks of theses
cities may be classified as anisotropic when the traffic flow on these roads are observed from a significant height.

2.3. Considered flows functions and turning movements

Let t > 0 be the time variable, and P(x,y)∈U the position variable. The index i∈ {1,2,3,4} denotes the direction
of propagation of the traffic flow. Let us denote by q̃i(P, t) the car-flow section and ρ̃i(P, t) the car-density section
in the direction i ∈ {1,2,3,4}, at the time t and at the point P. These quantities can be considered as the flows and
densities on individual links of the network in the direction i. We denote by λi the average number of sections per unit
length (lane density) and by νi the average number of lanes per link in the direction i.

According to the plain traffic conservation laws, the flow q̃ j(P, t) in the direction j ∈ {1,2,3,4}, satisfies:

∀P(x,y),∀t, q̃ j(P, t) =
4

∑
i=1

Γi j(P, t)q̃i(P, t), (1)

(Γi j)
4
i, j=1 being the turning movement coefficients. The matrix form of this equation is

∀P(x,y),∀t, q̃(P, t) = (q̃.Γ )(P, t), (2)

where q̃ = (q̃1 q̃2 q̃3 q̃4)
T is the flow-vector of all directions. Besides, there is a relationship between the lane-traffic

states ρ̃ and q̃ and the traffic states ρ and q respectively as follows:

ρ̃ =
ρ

λν
and q̃ =

q
λν

. (3)

Remark 2.1. The functions (P, t) 7→ (Γi j(P, t))i j are matrix functions of turning movement coefficients. Clearly Γi j(P, t)
is the fraction of turning movement coming from lanes of density λi in the directions i, reaching the point P and then
going to direction j. The matrix Γ expresses the assignment of traffic in the network. We have two obvious relations:

∀i, j ∈ {1,2,3,4}, ∀P(x,y),∀t, Γi j(P, t)> 0, (4)

and

∀i ∈ {1,2,3,4}, ∀P(x,y),∀t,
4

∑
j=1

Γi j(P, t) = 1. (5)

The equation (5) is interpreted as a conservation law, meaning that cars do not appear or disappear on the lanes.

Remark 2.2. The two properties (4) and (5) show that Γ (P, t) = (Γi j(P, t))i j is a non-negative and positive stochastic
matrix.

Corollary 2.1. Let us assume that the matrix Γ (P, t) is irreducible.
Considering the remark 2.2, and by applying the Theorem of Perron-Frobenius or the theorem of Brouwer of fixed
point, we show that Γ has a real maximum positive eigenvalue equal to 1, and at left, µ(P, t) such that: q̃ = µUΓ ,
with UΓ the eigenvector at left of Γ associated to the eigenvalue 1. This eigenvector has all its components positive.
It can be viewed as yielding the dominant directional components of traffic at any point.
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2.4. Motion equation at a network point - Node model

Besides, since every car-passenger aims at maximizing its own time travel, this leads to a car-flows optimization
problem, stated as below, according to (Costeseque and Lebacque, 2012) optimization model for intersections:

max
q̃

4
∑
j=1

Φ j (q̃ j)

under constraints


∀ j ∈ {1,2,3,4}, 0 6 q̃ j 6 min(δ j,σ j),

∀ j ∈ {1,2,3,4}, q̃ j−
4
∑

i=1
q̃iΓi j = 0.

(6)

The functions Φ j are assumed increasing and strictly concave with the flow q̃ j for a system where there is no reg-
ulation at intersection which sounds with a two-dimensional continuum transportation network (see the Lebacque’s
Intersection model (Costeseque and Lebacque, 2012; Lebacque and Khoshyaran, 2013)). The (Φ j) j=1,2,3,4 are the
attributes of the intersection model.

Under the Karush-Kuhn-Tucker conditions of optimality, one easily find for each i, the implicit analytic expression
of the flow function q̃i as follows:

∀i ∈ {1,2,3,4}, q̃i = min

(
max

(
0,Φ

′−1
i

(
li−

4

∑
j=1

l jΓi j

))
,min(δi,σi)

)
, (7)

with l = (li)i=1,2,3,4 being the Lagrange multiplier vector, that is related to the last constraint listed in (6), and Φ
′−1
i

the inverse function of the attribute Φi. The Equation (7) expresses an implicit intersection charge for the link i. Let
us specify the functions δi and σi. δi(P, t) is the users’ transport demand function to direction i upstream the point
P at time t, and σi(P, t) is the network supply downstream to the same point P at the same time t. We have analytic
expressions of these variables functions stated in (8). They are depicted by the well-known flow fundamental diagram
in Figure 2 emphasize the equilibrium between the users’ transport demand and the network supply. We have:

δi = νi∆i

(
ρ̃i

νi

)
and σi = νiΩi

(
ρ̃i

νi

)
, (8)

where
ρ̃i

νi
is the lineic density per lane, in the direction i.

ρ̃i

traffic demand δi

q̃imax

ρ̃imaxρ̃icrit
(a) Traffic demand at P : δi = νi∆ie

network supply σi

q̃imax

ρ̃imaxρ̃icrit
(b) Network supply at P : σi = νiΩie

ρ̃i

lane flow q̃i

q̃imax

ρ̃imaxρ̃icrit
(c) Fundamental Diagram at P: q̃i = min(σi, δi)

Fig. 2: Cars-flow fundamental diagram at a point P

Lemma 2.1. Under above assumptions and hypothesis, the following relation holds:

∀i ∈ {1,2,3,4}, q̃i = µUΓ
i , with µ = min

1≤ j≤4

{
min(δ j,σ j)

UΓ
j

}
. (9)
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Proof. One has: µUΓ
i = q̃i 6 min(δi,σi). Hence, µ 6 min

1≤i≤4

{
min(δi,σi)

UΓ
i

}
. We assume that µ have to attend its

upper bound for responding the optimality condition of the flows, verifying by the physics of the traffics.

The relations (3) and (9) constitute the behavioural equation of the model.

3. Dynamic of car-flows within anisotropic continuum media

This section is devoted to the description of car-flows over network, whose area U is considered as an open subset
of R2, which is my be decomposed on M traffic-zones Um, m = 1, . . . ,M. We shall see that the dynamic of car-flows
within each Um anisotropic continuum media is governed by system of hyperbolic conservations laws.

3.1. Dynamic of number of vehicles in a zone

Therefore, there is internal conservation of the mass flow in any direction i of propagation. The two flows q̃i
and qi functions are related with qi = λiq̃i formula. As mentioned above, each zone Um is meshed by a family of
cells Cα,β

m which satisfies (Eymard et al., 2000, Definition 5.1). We assume that λ3 = λ1 and λ4 = λ2, and that
Γ13 = Γ31 = Γ24 = Γ42 = 0. The first relationship implies that at any point P there is always four directions which
are pairwise side by side. The second expresses that there is no U-turning movement at any point. Under these
assumptions, the dynamical traffic flow model in (Saumtally et al., 2013) is valid for the topological structure of the
network, presented in this study. The model in (Saumtally et al., 2013) boils down to a system of conservation laws
of cars-density within an elementary cell (10). For any fixed zone-index m = 1,2, . . . ,M, the same system shall be
valid on Um, since any cell of Um has the same values of lane-densities λi, i = 1,2,3,4 (which may differ from one
zone to another). Below, (10) is the multidimensional hyperbolic conservations laws that describes the variation of
car-density vector ρ in all directions. This holds in the local basis (u,v) related to each elementary cell, and then for
the zone containing the cell. We have:

∂tρ +∂xQx(ρ)+∂yQy(ρ) = 0 t ∈ R+,(x,y) ∈Um ⊂U ⊂ R2,m ∈M, (10)

with ρ = (ρ1 ρ2 ρ3 ρ4)
T taking values in R4, where ρi is the car-density in the preferred direction of propagation i,

i ∈ {1,2,3,4}, Qx(ρ) =
(
Qx

1(ρ) Qx
2(ρ) Qx

3(ρ) Qx
4(ρ)

)T and Qy(ρ) =
(
Qy

1(ρ) Qy
2(ρ) Qy

3(ρ) Qy
4(ρ)

)T . The expression
of the given vectorial function Q : R4 7−→ R8 is quite complicated. It takes into account a hydrodynamical law and
velocities profile in road traffic theory. The system (10) is hyperbolic: for any ρ ∈ R4, the Jacobian matrix DQ(ρ) is
diagonalizable in R.

Qx(ρ) =


q1

1
2

(
Γ12q1−Γ32q3 +

λ1

λ2
(Γ21−Γ23)q2

)
−q3

1
2

(
Γ14q1−Γ34q3 +

λ1

λ2
(Γ41−Γ43)q4

)

 , Qy(ρ) =



1
2

(
Γ21q2−Γ41q4 +

λ2

λ1
(Γ12−Γ14)q1

)
q2

1
2

(
Γ23q2−Γ43q4 +

λ2

λ1
(Γ32−Γ34)q3

)
−q4

 . (11)

Qx(ρ) and Qy(ρ) are the flow vector functions for measuring the change in flow in the x-direction and y-direction. By
using an affine transformation, the system can be transformed regarding the global basis (e1,e2) (Figure 1(b)).

3.2. Users’ transport demand in a cell and network cell supply

Let m fixed. Cα,β
m will denote an elementary cell of Um. Networks supply and users demands in a cell (α,β ) to

direction i ∈ {1,2,3,4} are defined as follows:

δ
α,β
i = λiνi∆

α,β
i

(
ρ

α,β
i
νi

)
and σ

α,β
i = λiνiΩ

α,β
i

(
ρ

α,β
i
νi

)
. (12)
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where Ω
α,β
i and ∆

α,β
i are supply and demand at a point (and hence of a point of a cell) illustrated by the Figure 2.

3.3. Inflow and outflow of an elementary cell

Remark 3.1. Within the same zone Um for m fixed, values of λi from one cell to the other are the same. Let us mention
that, in the two dimensional approach, there is no buffer between cells. Hence, cells outflow rate do not depend upon
cells inflow rates.

The outflow and inflow rates in the four privileged directions with their constraints are expressed as follows (the
outflows in the first column and the inflows in the second one of (13)).

α − 1 α α + 1

β − 1

β

β + 1

Cα,β

Γ11qα− 1
2 ,β

1

Γ22qα,β− 1
2

2

Γ33qα+ 1
2 ,β

3

Γ44qα,β+ 1
2

4

qα+ 1
2 ,β

1

qα,β+ 1
2

2

qα− 1
2 ,β

3

qα,β− 1
2

4

Fig. 3: Inflows and outflows of computing cells

Other turning flows are: q
α,β− 1

2
1 Γ21 and q

α,β+ 1
2

4 Γ41 to direction i = 1, q
α− 1

2 ,β
1 Γ14 and q

α+ 1
2 ,β

3 Γ34 to direction i = 2,

q
α,β− 1

2
2 Γ23 and q

α,β+ 1
2

4 Γ43 to direction i = 3, and q
α− 1

2 ,β
1 Γ14 and q

α+ 1
2 ,β

3 Γ34 to direction i = 4.

•(α,β )←− (α +1,β ) : q
α+ 1

2 ,β
3 6 σ

α,β
3

•(α,β )←− (α−1,β ) : q
α− 1

2 ,β
1 6 σ

α,β
1

•(α,β )←− (α,β −1) : q
α,β+ 1

2
4 6 σ

α,β
4

•(α,β )←− (α,β +1) : q
α,β− 1

2
2 6 σ

α,β
2

•(α,β )−→ (α +1,β ) : q
α+ 1

2 ,β
1 6 δ

α,β
1

•(α,β )−→ (α−1,β ) : q
α− 1

2 ,β
3 6 δ

α,β
3

•(α,β )−→ (α,β −1) : q
α,β+ 1

2
2 6 δ

α,β
2

•(α,β )−→ (α,β +1) : q
α,β− 1

2
4 6 δ

α,β
4

(13)

• q
α− 1

2 ,β
1 = min

(
δ

α−1,β
1 ,σ

α,β
1

)
• q

α,β− 1
2

2 = min
(

δ
α,β−1
2 ,σ

α,β
2

) • q
α+ 1

2 ,β
3 = min

(
δ

α+1,β
3 ,σ

α,β
3

)
• q

α,β+ 1
2

4 = min
(

δ
α,β+1
4 ,σ

α,β
4

) (14)

4. Numerical method

We provide in this section a Godunov-type numerical scheme construction for the system (10) - (14) and a particular
case study of road network dynamics. Let us mentioned that Riemann problems for this two-dimensional system (10)
are not addressed in this paper.

4.1. Discretized model : Case of rectangular mesh of (Um)m=1,...,M

We assume a construction T = (T1, . . . ,TM) of rectangular meshes of (U1, . . . ,UM) in the sense of (Eymard et al.,
2000, Definition 5.1). The average value of the two-dimensional dynamic traffic state ρ , at time level t over a particular
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cell Cα,β is defined as

ρ
α,β (t) =

1∣∣Cα,β
∣∣ ∫Cα,β

ρ(x,y, t)dxdy. (15)

The solution at each time step t is described as a piecewise constant function:

ρ(x,y, t) = ∑
m∈M

∑
αm ∈ Nξm
βm ∈ Nηm

ραm,βm(t) χαm,βm with χαm,βm =

{
1 if (x,y) ∈Cαm,βm ,

0 if (x,y) <Cαm,βm .
(16)

For a particular cell Cα,β the density vector at the next time level (t +1), is computed as follows:



ρ
α,β
1 (t +1) = ρ

α,β
1 (t)+

∆t
ξ1η1

(
η1Γ11q

α− 1
2 ,β

1 +η2Γ21
λ1ν1

λ2ν2
q

α,β− 1
2

2 +η4Γ41
λ1ν1

λ4ν4
q

α,β+ 1
2

4 +η1q
α+ 1

2 ,β
1

)

ρ
α,β
2 (t +1) = ρ

α,β
2 (t)+

∆t
ξ2η2

(
η2Γ22q

α,β− 1
2

2 +η3Γ32
λ2ν2

λ3ν3
q

α− 1
2 ,β

3 +η1Γ12
λ2ν2

λ1ν1
q

α+ 1
2 ,β

1 −η2q
α,β+ 1

2
2

)

ρ
α,β
3 (t +1) = ρ

α,β
3 (t)+

∆t
ξ3η3

(
η3Γ33q

α+ 1
2 ,β

3 −η4Γ43
λ3ν3

λ4ν4
q

α,β+ 1
2

4 +η2Γ23
λ2ν3

λ2ν2
q

α,β− 1
2

2 +η3q
α− 1

2 ,β
3

)

ρ
α,β
4 (t +1) = ρ

α,β
4 (t)+

∆t
ξ4η4

(
η4Γ44q

α,β+ 1
2

4 +η3Γ34
λ4ν4

λ3ν3
q

α− 1
2 ,β

3 +η1Γ14
λ4ν4

λ1ν1
q

α− 1
2 ,β

1 −η4q
α,β− 1

2
4

)
(17)

where the partial flows, especially the flow flux across cell, appearing in the above formulation (17) are determined by
the traffic equilibrium principle. That is the traffic equilibrium between users’ transport demand in a cell and network
supply of these neighbor cells, depicted by Figure 2 and expressed by (14).

Remark 4.1. For any admissible mesh of quadrangular cells, one shall apply the method presented in (Vides et al.,
2014) where a simple two-dimensional HLL Riemann Solver has been proposed to find approximate solutions to the
above system of nonlinear hyperbolic conservations laws. The resulting numerical scheme takes into account all
conflicts across the cell interfaces by the resolution of the associated two-dimensional HLL Riemann problems, both
on rectangular meshes and non-rectangular meshes. In the case to apply a high resolution method to the system (10),
we indicate the works of (Leveque and Shyue, 1996; Leveque, 1996).

4.2. Algorithms

With regard to the two-dimensional system equations we present a snippet of pseudo-code to compute the values
of cell demands and cell supplies, followed by the flux across cell interfaces, and then the density per cell; and all to
the directions i = 1,2,3,4. The obtained algorithm is an extension of (Saumtally et al., 2013, Algorithm 2).
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Large anisotropic/orthotropic continuous networks algorithm

Input: ∗ the mesh of the considered domain (in this paper we use
.msh file generated by GMSH software).

∗ lane density λi
∗ average number of lanes νi per link in the direction i
∗ turning movement coefficients Γi j
∗ boundary conditions: cell supplies σ t=0

i and users’ demands δ t=0
i at

the network entries and exits
∗ ending time T

∗ empty network initial conditions (at time t = 0): ρ
α,β ,0
i = 0, i = 1,2,3,4

for t = 0 to T do
for α = 1 to N do (N being the total number of the cells)

for β = 1 to N do
∗ calculate users’ demand δ

α,β ,t
i and cell supply σ

α,β ,t
i with (12)

end for
end for

for α = 1 to N do
for β = 1 to N do
∗ calculate the flows qα,β ,t

i across cell interfaces with the min-formula (14)
∗ calculate densities ρ

α,β ,t
i within each cell with the expressions of (17)

end for
end for

end for
Output: ∗ the flows qα,β , t

i , t = 0 . . .T and the densities ρ
α,β , t
i , t = 0 . . .T

4.3. Numerical aspect

Let us consider a large urban transportation network like road networks of the city of Paris as shown with the map
in the Figure 4(a). And let us extract specific geodesic coordinates of the boundary of the city of Paris and of the
Seine. These coordinates have been converted in Euclidean coordinates which allowing get geometric subspace of the
Euclidean space R2 for the real road network map. The geometric domain is meshed with GMSH software for the
Godunov numerical scheme. The result is depicted by the Figure 4(b). We get information about the input topological
parameters of the model presented in this paper. These are the vectors lane density λ = (λ1 λ2 λ3 λ4)

T , the average
number of lanes per link in the directions ν = (ν1 ν2 ν3 ν4)

T , the cell capacity κ = (κ1 κ2 κ3 κ4)
T (its maximal

capacity to absorb transport demand in a cell, with respect to the directions of the flow). And then apply the algorithm
4.2 with artificial data for the input of the model.

5. Conclusion and perspectives

We presented a dynamic traffic model of large urban transportation networks (in the area of network flow
modelling) that takes into account the multi-commodity flows and the anisotropy of the networks. The model reduces
well the significant computational efforts and the large number of parameters and variables involved, in the case of
the description of network traffic states by macroscopic models. Since there may exist main arteries road on urban
network, the model shall be connected with macroscopic traffic models, mainly with the generic second order family
models, namely GSOM, on networks. In that case of network, the dense area shall be modelled by a two-dimensional
medium as we do in this paper, and the main arteries shall be modelled by the family GSOM models. This can be
done naturally using the network supply and the users’ demand framework. Further issues are the assimilation of
Lagrangian data (the floating cars etc) and the modelling of dynamic assignment. An example of dynamic assignment
is given in (Jiang et al., 2011; Yang et al., 1994). The problem is to calculate the matrix of turning-movements Γ



K.S. Sossoe et al. / Transportation Research Procedia 00 (2015) 000–000 9

(a) Maps of Paris road network (b) Mesh of Paris road network

Fig. 4: From geographic map to a mesh for finite volume method

which is given in this paper. The matrix Γ may significantly and locally vary in some sub-areas or cells depending on
the users’ paths choice which depend on the state of the system.
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