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Abstract. A model consisting in two quantum XX spin chains, one
homogeneous and the second with random couplings drawn from a binary
distribution, is considered. The two chains are coupled to two different non-
local thermal baths and their dynamics is governed by a Lindblad equation. In
the steady state, a current J is induced between the two chains by coupling them
together by their edges and imposing different chemical potentials µ to the two
baths. While a regime of linear characteristics J versus ∆µ is observed in the
absence of randomness, a gap opens as the disorder strength is increased. In the
infinite-randomness limit, this behavior is related to the density of states of the
localized states contributing to the current. The conductance is shown to diverge
in this limit.

PACS numbers: 05.10.-a, 05.30.-d, 05.30.Fk, 05.60.Gg

1. Introduction

Disorder can have drastic consequences, especially in low-dimensional systems. At
thermal equilibrium, the case of the quantum Ising chain in a transverse field has
been particularly studied. At the quantum phase transition of the model, the in-
troduction of random couplings leads to a new critical behavior governed by a new
infinite-randomness fixed point [1, 2]. Even outside the critical point, in the so-called
Griffiths phases, rare disorder configurations induce singularities of the free energy, as
well as anomalous dynamical properties [3].

Much less is known about open random spin chains. In this work, we are interested
in transport properties of a random spin-1/2 XX chain. Usually, a non-equilibrium
steady state (NESS) is induced by coupling two different baths to the two edges of
the chain. As in the pure case [4], a non-uniform magnetization profile is expected in
the NESS. Since the XX chain can be mapped onto a free fermion gas, the system can
be seen as a tight-binding model with random couplings and coupled to two thermal
baths with different temperatures and/or different chemical potentials. In the absence
of disorder, a uniform current is expected to flow through out the system. Because
the eigenmodes of a translation-invariant Hamiltonian are delocalized over the whole
chain, the conduction is ballistic. Any excitation created by one bath reaches the
second one. The conductivity is therefore infinite, though the conductance is finite
and quantized [5, 6, 7]. In contrast, in the presence of randomness, the excitations are
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scattered on the impurities so that the conduction becomes diffusive as the disorder is
increased. In one-dimensional systems, the consequence is even more drastic because
all eigenstates of the Hamiltonian are localized, even with an infinitesimal disorder.
Therefore, the excitations cannot propagate from one bath to the other. The current
dies off exponentially over the so-called Anderson localization length. The chain is an
insulator [8, 9, 10]. This mechanism of localization is preserved when interactions be-
tween the charge carriers are considered, i.e. in the so-called Many-Body Localization
phase [11].

The coupling with a bath requires some approximations. The simplest one is to
consider two semi-infinite chains initially prepared in different thermal states. The
two chains are then coupled together and the whole system is considered as isolated in
the calculation of its time evolution. In the long-time limit, the magnetization profile
m(x, t) is a function of x/t and becomes flat for both XX [4] and XXZ [12] chains.
The coupling of a XX chain with two baths at its edges was later taken into account
by repeatedly bringing thermalized spins in contact with the system during short time
steps [13]. A different route is provided by the Lindblad equation [14, 15]

dρ

dt
= −

i

~
[H, ρ] + 2D[ρ] (1)

which gives the effective time evolution of the system in the Markovian and rotating-
wave approximations. ρ is the reduced density matrix of the chain and the dissipator
D[ρ] has the general structure

2D[ρ] =
∑

α

γα(t)
[

Vα(t)ρ(t)V
+
α (t)−

1

2
{V +

α (t)Vα(t), ρS(t)}
]

. (2)

When a bath is coupled only to an edge of the chain, the two only possible Lindblad
operators Vα are the ladder operators σ−

1 , σ+
1 at the left boundary and σ−

L , σ
+
L at the

right one. Exact results are known for this configuration for the pure XX chain [16].
It was later shown that the steady state of the Lindblad equation admits a repre-
sentation in terms of Matrix Product State for both the XX [17] and the XXZ [18]
chains. In molecular nanowires for which the dynamics of electrons is well described
by a tight-binding model, a third reservoir coupled to all sites of the chain is often
introduced to describe phase-breaking processes, mainly due to electron-phonon cou-
pling [19]. Such a dephasing effect was also studied for the XX chain by introducing
a Lindblad operator σz

i coupled to all sites i of the chain [20, 21]. Interestingly, the
mechanism of Anderson localization may be avoided with such a bath because the
phase decoherence is destroyed [22].

In this study, a random XX chain coupled to delocalized degrees of freedom acting,
not only as a thermal bath, but also as a reservoir in the fermion picture, is considered.
The coupling is implemented in the Lindblad equation using the phenomenological
non-local dissipator recently introduced by Guimarães et al. [23]. In the first section,
the model is discussed and the dissipator implementing the coupling with the baths is
introduced. In the second section, the case of two homogeneous subchains is studied
as a preliminary. The conductance, not considered in [23], is computed in the limit of
a weak interchain coupling. In the third section, the case of a random left subchain
is considered. A divergence of the conductance as the disorder strength increases is
observed in the numerical simulations and explained in the infinite-randomness limit.
Conclusions follow.
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2. Description of the model

We consider an open spin-1/2 XX chain governed by the Hamiltonian

H = −
1

2

L−1
∑

n=1

Jn(σ
x
nσ

x
n+1 + σy

nσ
y
n+1)−

L
∑

n=1

hnσ
z
n. (3)

The Jordan-Wigner transformation maps the XX chain onto a fermionic tight-binding
model, whose Hamiltonian is, up to a constant,

H = −

L−1
∑

n=1

Jn(c
+
n cn+1 + c+n+1cn)− 2

L
∑

n=1

hnc
+
n cn (4)

where the exchange couplings Jn play the role of hopping constants between nearest-
neighboring sites and the transverse fields hn of a chemical potential. Such a model
is relevant for the description of conduction in polymers as polyaniline [24]. In the
homogeneous case, i.e. Jn = J and hn = h, the unitary transformation

ηk =

L
∑

n=1

Uk,ncn =

√

2

L+ 1

L
∑

n=1

sin
nkπ

L+ 1
cn, (k = 1 . . . L) (5)

diagonalizes the Hamiltonian:

H =

L
∑

k=1

εkη
+
k ηk (6)

with the dispersion law εk = −2J cos πk
L+1 − 2h (k = 1, . . . , L).

Two such XX chains are joined together to form a single chain of length 2L. In
the right subchain, the couplings are homogeneous, Jn = 1, while in the left one, they
are random variables drawn from the binary distribution

℘(Jn) =
1

2
δ
(

Jn − r
)

+
1

2
δ
(

Jn − 1/r
)

. (7)

This particular choice is motivated by the fact that it allows for the numerical
computation of average quantities over all disorder configurations so that the
contribution of rare events is properly taken into account. For a left subchain of L
sites, the number of random couplings is indeed L− 1 so that the number of disorder
configurations is 2L−1. A Jordan-Wigner transformation is performed independently
in each subchain, leading to two species of fermions cα,n (α = 1, 2). The resulting tight-
binding Hamiltonian is diagonalized and new fermionic operators ηα,k, annihilating a
particle in the k-th eigenmode of the subchain α, are introduced. The right subchain
being homogeneous, the unitary transformation between c2,n and η2,k is given by
Eq. (5). For the left subchain, the unitary transformation

η1,k =

L
∑

n=1

Vk,nc1,n (8)

is determined numerically for each disorder realization {Jn}. The left and right
subchains are then connected by a coupling g. The full Hamiltonian reads

H = −

L−1
∑

n=1

Jn(c
+
1,nc1,n+1 + c+1,n+1c1,n)− g(c+1,Lc2,1 + c+2,1c1,L)

−

L−1
∑

n=1

(c+2,nc2,n+1 + c+2,n+1c2,n). (9)
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No transverse field has been included since the chemical potential will be fixed in the
following by the two thermal baths. Note that this model is not equivalent to Ander-
son model [8] for which the hopping Jn is constant while the energy hn of the fermion
on each site is random.

The dynamics is governed by a Lindblad equation (1) with a non-local dissipator
recently introduced for the homogeneous XX chain [23, 25]. Each subchain is coupled
to a different bath. The latter are coupled to each eigenmodes k of the subchains via
two Lindblad operators corresponding to the fermionic creation/annihilation operators
η+α,k et ηα,k. The dissipators read explicitly

Dα[ρ] = 2γ
∑

k

nα,k

(

η+α,kρηα,k −
1

2
{ηα,kη

+
α,k, ρ}

)

+ 2γ
∑

k

(1− nα,k)
(

ηα,kρη
+
α,k −

1

2
{η+α,kηα,k, ρ}

)

. (10)

The constants nα,k are fixed by the requirement that, in the absence of interchain
coupling (g = 0), each subchain will thermalize independently. In the steady state,
the average number of fermions in each mode is given by the Fermi-Dirac distribution:

〈η+α,kηβ,k′〉st. = nα,kδα,βδk,k′ =
δα,βδk,k′

e(εα,k−µα)/kBTα − 1
(11)

where Tα and µα are respectively the temperature and the chemical potential of the
bath and εα,k is the energy of the k-th eigenmode of the isolated subchain. The
dynamical equation of the equal-time correlation function Cα,k;β,k′ = 〈η+α,k(t)ηβ,k′ (t)〉
can be cast into the convenient matrix form [23]

d

dt
C =

i

~
[W0 +W1, C]− {Γ, C}+ 2D (12)

where W0, Γ and D are diagonal matrices whose entries are εα,k, γ and γnα,k re-
spectively. The non-diagonal matrix W1 comes from the interchain coupling. In the
following, Eq. (12) is integrated numerically using a 4th-order Runge-Kutta algorithm
up to a time sufficiently large (t = 100) for the steady state to be reached.

The particle current between the two subchains reads [23]

J = − ig
(

〈c+1,Lc2,1〉 − 〈c+2,1c1,L〉
)

= 2gℑ
∑

k,k′

V ∗

L,kU1,k′〈η+1,kη2,k′〉. (13)

In the steady state this current is equal to the current between the first subchain and
the bath with which it is coupled:

J = −2γ
∑

k

(

n1,k − 〈c+1,kc1,k〉
)

. (14)

The particle current between the two subchains is measured numerically and averaged
over all disorder configurations. The model will also be studied analytically in the
limit of a weak interchain coupling g. To lowest order in g, the current (13) reads [23]

J = −4γg2
∑

k,k′

|Vk;L|
2|Uk′;1|

2

(

n2,k′ − n1,k

)

4γ2 +
(

ε1,k − ε2,k′

)2 +O(g3) (15)

The limit of an infinitely strong disorder, i.e. r → +∞, will be discussed.
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3. Conductance between two pure subchains

We first consider two pure chains with Jn = 1. In the usual setup where the chain is
coupled to two baths at its edges, the conductivity is infinite because the propagation
of excitations (fermions) is ballistic. Any fermion of wavevector k > 0 injected in the
system at the left boundary reaches the right boundary. In the system considered in
this work, fermions introduced by the left bath into the left subchain can be scattered
by the coupling between the two subchains:

−g(c+1,Lc2,1 + c+2,1c1,L) = −g
∑

k,k′

(

UkLU
∗

k′1η
+
1,kη2,k′ + U∗

kLUk′1η
+
2,k′η1,k

)

(16)

and, as a consequence, reach the right subchain with a different wavevector. In a
second step (second-order in g), they can be scattered back to the left subchain. The
only constrain comes from the exclusion principle which forbids the scattering of an
electron from the mode k in the left subchain to the mode k′ in the right one if the lat-
ter is not unoccupied. Therefore, as in the Büttiker formalism, the total current (13)
depends on the net number of allowed scattering channels from an occupied mode
in one subchain to an unoccupied mode in the other subchain. Different chemical
potentials in left and right reservoirs induce an imbalance and, as a consequence, a
current.

Numerically, the current is observed to display a staircase-like behavior with the
difference of chemical potentials ∆µ between the two reservoirs at low temperature
(figure 1). These steps are due to the quantization of the eigenmodes in the
two finite-size subchains. They should not be confused with the steps observed
in experiments [26, 27] where the wire is not purely one-dimensional so that the
wavevectors have a transverse component which remains quantized when the length
of the wire goes to infinity but not his width. In the model considered here, the steps
are indeed observed to vanish as the length is increased (figure 2). As expected, the
steps are smoothed as the temperature is increased. One can also notice by comparing
the left and right figures 1 that J/g2 displays only a small residual dependance on g
when g ≤ 0.3, in agreement with the perturbative expansion (15).

The conductance between two pure subchains can be computed analytically in
some limits. As mentioned above, the coupling g is treated perturbatively. To lowest
order in g, the current is given by (15) where |Vk;L|

2 = |Uk;1|
2 = 2

L+1 sin
2 πk

L+1 , and

ε1,k = ε2,k = −2 cos πk
L+1 . Then, the temperature is set to zero for both left and right

reservoirs and the dissipation γ is assumed to be strong. In these limits, the current
reads

J ≃ −
4g2

(L+ 1)2γ

L
∑

k,k′=1

sin2
πk

L+ 1
sin2

πk′

L+ 1

(

θ(µ2 − ε2,k′)− θ(µ1 − ε1,k)
)

. (17)

Introducing the density of states on the first (or last) site of the chain as

ρ(ε) =
2

L+ 1

∑

k

δ(ε− εk) sin
2 πk

L+ 1

≃
2

π

∫

δ(ε+ 2 cos k) sin2 kdk

=
1

π

√

1− ε2/4 (18)
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Figure 1. Current J/g2 between two pure XX chains of size L = 14 versus
∆µ when the two chains are in contact with baths at a different chemical
potential ∆µ/2 and −∆µ/2. The two curves corresponds to different temperatures
T = 0.001 and T = 0.02. The interchain coupling is g = 0.1 (left), 0.3 (center),
and 0.7 (right).

in the thermodynamic limit L → +∞, the current becomes

J ≃ −
g2

γ

∫ 2

−2

ρ(ε)ρ(ε′)
(

θ(µ2 − ε′)− θ(µ1 − ε)
)

dεdε′ (19)

Swapping ε and ε′ in the last term

J ≃ −
g2

γ

∫ µ2

µ1

ρ(ε′)dε′
∫ 2

−2

ρ(ε)dε, (20)

the second integral is equal to 1. In the case µ1 = ∆µ/2 and µ2 = −∆µ/2, the current
finally reads

J ≃
g2

πγ

∫ ∆µ/2

−∆µ/2

√

1− ε2/4dε =
g2

πγ

(

∆µ
√

16−∆µ2

8
+ 2 arcsin

∆µ

4

)

(21)

In the neighborhood of |∆µ| = 0, the current behaves as J ≃ g2

πγ∆µ, i.e. the

conductance is g2

πγ . Despite the various assumptions made, the behavior Eq. (21)

is consistent with the numerical data (figure 2), even at non-zero temperature and for
relatively small lattice sizes.
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Figure 2. Current J/g2 between two pure XX chains versus ∆µ when the
two chains are in contact with baths at a different chemical potential ∆µ/2 and
−∆µ/2. The different curves correspond to different lattice sizes L and, the last
one, to the analytical expression (21). On the left graph, the temperature of the
left and right baths is T = 0.001 while it is equal to 0.02 on the right.

4. Conductance between a pure and a random system

4.1. Conductance at zero chemical potential

The right chain is still homogeneous (J = 1) but the left one is now random with
Jn ∈ {r, 1/r}. The temperatures of the two baths are equal but the chemical potentials
are assumed to be ∆µ/2 for the left bath and −∆µ/2 for the right one. The average
current J̄ is plotted on figure 3. As in the pure case considered above, no current
flows between the two subchains if ∆µ = 0. For the weakest disorder (r = 2), the
curve displays a shape still roughly similar to the pure case (figure 1). However, as
the strength of disorder increases, the curve becomes steeper and steeper at ∆µ = 0.
The conductance, defined as the derivative [5]

G =

(

dJ̄

d∆µ

)

∆µ=0

, (22)

increases with r. From the curve corresponding to the strongest disorder (r = 10),
one can conjecture that a gap will open at zero temperature in the limit of infinite
randomness, yielding in this case an infinite conductance. Both finite disorder and
zero-temperature smooth the curve and make the conductance finite.

The current being related to the imbalance between the number of scattering
channels from left to right and right to left, an explanation for the opening of a gap
observed numerically should be looked for in the energy spectrum of the random
XX subchain. As often noticed in the literature, the level spacing distribution of
the random XX subchain is not compatible with the Gaussian Orthogonal Ensemble
observed in chaotic systems [28, 29]. It can be checked numerically that the levels
are distributed according to a Poisson distribution ℘(∆E) ∼ e−∆E in the random XX
chain. However, this distribution is not relevant to our purpose because the current
is expressed in terms of fermionic excitations. More relevant here is the density of
states of the free fermion gas after the Jordan-Wigner transform of the XX model.
The latter is presented on figure 4. For strong randomness, the density of states
appears as a sequence of Dirac peaks, the largest one being located at ε = 0. This
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Figure 3. Average current J̄/g2 between a random and a pure XX chains of
size L = 14 versus ∆µ when the two chains are in contact with baths at different
chemical potentials ∆µ/2 and −∆µ/2. The couplings of the random XX model
are randomly chosen in {1/r; r} with r = 2 (left), r = 4 (center) and r = 10
(right). The two curves corresponds to different temperatures T = 0.001 and
T = 0.02.

behavior is easily understood in the infinite-randomness limit r → +∞. For a given
disorder realization, the fermion Hamiltonian is a tridiagonal matrix whose elements
are Hn,n+1 = Hn+1,n = Jn where Jn is a random variable in {r, 1/r}. In the infinite-
randomness limit r → +∞, at least one fourth of the eigenvalues of the Hamiltonian
are expected to vanish. Indeed, the probability that two consecutive couplings, say
Jn and Jn+1, are both equal to 1/r, and therefore vanish in the limit r → +∞, is
1/4. As a consequence, the (n+ 1)-th line of the matrix H − ε has only one non-zero
element, −ε on the diagonal. The determinant of the L × L matrix H − ε therefore
reads (−ε)Mn+1,n+1 where Mn+1,n+1 is the minor of the matrix. The characteristic
polynomial of the matrix can be factorized by −ε which implies that ε = 0 is one of its
roots. When N consecutive couplings are large and bounded by two weak couplings,
i.e. Jn = Jn+N+1 = 1/r and Jn+m = r for any m = 1, . . . , N , the N +1 sites n+1 to
n+N +1 are uncoupled from the rest of the system in the infinite-randomness limit.
For a given disorder realization, the fermion Hamiltonian is a block diagonal matrix.
Each block of N large couplings corresponds to the Hamiltonian of a fermion on a
chain of N + 1 sites with a hopping constant r. The N + 1 eigenvalues are [30]

εN,q = −2r cos
πq

N + 2
, q = 1, . . . , N + 1 (23)
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Figure 4. Probability density ℘(ε) of the eigenvalues of the random tight-binding
Hamiltonian with r = 2 (left) and r = 10 (right). The red curve corresponds
to the distribution for a lattice size L = 16 averaged over the 32768 random
configurations of the couplings. The blue curve is the probability density for a
single random realization of a large lattice of size L = 2000.

and the associated eigenvectors

φN,q(m) =

√

2

N + 2
sin

πqm

N + 2
, m = 1, . . . , N + 1. (24)

The eigenvectors have zero component on other sites. The probability to observe such
a block is 1/2N+2, i.e. the localization length is ξ = 1/ ln 2. The density of states
is not a smooth function, even in the thermodynamic limit, but displays a discrete
number of peaks. Each one of these peaks can be associated to two numbers, N ∈ N

and q = 1, . . . , N +1. This picture is consistent with what is observed numerically on
figure 4.

Coming back to the expression (15) of the current, one can notice that the
scattering of an eigenmode k of the left subchain to an eigenmode k′ of the right one is
weighted by |Vk;L|

2|Uk′;1|
2, i.e. the probability to find the fermion in the eigenmode k

on site L of the left subchain times the probability to find the fermion in the eigenmode
k′ on site 1 of the right one. Since the eigenmodes of the pure right subchain are
delocalized, |Uk′;1|

2 = 2
L+1 sin

2 πk′

L+1 does not vanish. In contrast, in the random left
subchain, all states are localized in the thermodynamic limit. Therefore, only those
states with a non-zero probability on the site L will contribute to the current. These
states are surface states and were not discussed above. If the last coupling JL−1 = 1/r
is weak then, in the infinite-randomness limit, the site L is decoupled from the rest
of the chain. All elements HL,n of the Hamiltonian vanish. Therefore, there exists
an eigenvalue ε = 0 associated to the eigenvector φ(n) = δn,L. The probability of
such an event is 1/2. In a way analogous to what happens in the bulk, when the N
last couplings are equal to r, i.e. JL−N = . . . = JL−1 = r and JL−N−1 = 1/r, then,
in the infinite-randomness limit, the last N + 1 sites are decoupled from the rest of
the system. A (N + 1)× (N + 1) block appears on the diagonal of the Hamiltonian.
After diagonalization, the N + 1 eigenvectors are found to be given by (24) with the
associated energies (23). The probability of such a block is 1/2N+1.
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At zero-temperature, the average current reads

J̄ = −4γg2
∑

k,k′

|Vk;L|2|Uk′;1|2
θ(µ2 − ε2,k′)− θ(µ1 − ε1,k)

4γ2 +
(

ε1,k − ε2,k′

)2 +O(g3). (25)

All energies ε1,k (23) are proportional to r, and therefore diverge in the infinite-
randomness limit, apart from the surface states for which ε = 0. As a consequence,
only those latter states contribute to the current (25). The energies εN,q vanish when
the fermion is localized on the site L of the left chain or in a block of N strong
couplings when N is even and q = N

2 +1. The square of the wavefunction on the right
site, i.e. |Vk;L|

2, is equal to one in the former case and to

|φN,q=N
2
+1(N)|2 =

2

N + 2
sin2

(

πNq

N + 1

)

=
2

N + 2
(26)

in the latter. The probability of such a block being 1/2N+1, the weight appearing in
the current is

1

2
+

+∞
∑

N=2

even

|φN,q=N
2
+1(N)|2

2N+1
=

1

2
+

+∞
∑

N=2

even

1

(N + 2)2N
= 2 ln

4

3
. (27)

The average current is now

J̄ = −8γg2 ln
4

3

∑

k′

2

L+ 1
sin2

(

πk′

L+ 1

)

θ(µ2 − ε2,k′)− θ(µ1)

4γ2 + (ε2,k′)2
+O(g3). (28)

The sum is evaluated in the thermodynamic limit L → +∞. When µ1 < 0, the left
states ε1 = 0 are empty so the current flows from the right to the left:

J̄(µ2) = −
16γg2

π
ln

4

3

∫ kF

0

sin2 k

4γ2 + 4 cos2 k
dk (µ1 < 0)

= −
4γg2

π
ln

4

3

[

√

1 + γ2

γ
arctan

γ tan kF
√

1 + γ2
− kF

]

(29)

where the Fermi wavevector satisfies −2 coskF = µ2 and the arctan(x) function should
be defined on [0;π[ instead of ]−π/2;π/2[. When µ1 > 0, the right states are occupied
and the current flows only from left to right:

J̄(µ2) =
4γg2

π
ln

4

3

[

√

1 + γ2

γ
arctan

γ tan k
√

1 + γ2
− k

]π

kF

(µ1 > 0) (30)

Considering as before µ1 = ∆µ/2 and µ2 = −∆µ/2, the current turns out to be an
odd function of ∆µ and to display a quasi-linear dependance on ∆µ when ∆µ ∼ O(1)
but with a gap at ∆µ = 0 equal to

∆J̄ = 4γg2 ln
4

3

(

√

1 + γ2

γ
− 1

)

(31)

Since the derivative of (29) is

dJ̄

dkF
=

4γg2

π
ln

4

3

tan2 kF
1 + γ2 + γ2 tan2 kF

(32)

the slope of the current at small non-zero chemical potential is given by

lim
kF→π/2+

dJ̄

dkF

dkF
d∆µ

=
4γg2

π
ln

4

3
×

1

γ2
×

1

4
(33)
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Figure 5. Average current J̄/g2 between a random and a pure XX chain of sizes
L = 14 versus ∆µ when the two chains are in contact with baths at a different
chemical potentials ∆µ/2 and −∆µ/2. The couplings of the random XXmodel are
randomly chosen in {1/r; r} with r = 30 and the inter-chain coupling is g = 0.1.
The two first curves correspond to different temperatures T = 0.001 (black) and
T = 0.02 (red). The last curve (blue) is the analytical expression (29) and (30).

when ∆µ > 0. Repeating the calculation for ∆µ < 0, it follows that the average
current at first order in ∆µ is

J̄ =
g2

γπ
ln

4

3
∆µ+ 2γg2 ln

4

3

(

√

1 + γ2

γ
− 1

)

sign ∆µ+O(∆µ2). (34)

When plotted on figure 5, this expression cannot be distinguished from equations
(29) and (30). The first term is similar to the linear behavior observed in the pure

case. The slope Ḡ = g2

γπ ln 4
3 only differs from the conductance of the pure chain by a

factor ln 4
3 . However, the second term of (34) leads to an infinite conductance at zero

chemical potential in the infinite-randomness limit.

4.2. Conductance at non-zero chemical potential

In the pure case, the current J between the two subchains vanishes when the chemical
potentials of the two baths are equal. This is no longer the case when one of the chains
is random. Instead, a non-zero current is observed whenever the chemical potential in
the random subchain is different from zero. On figures 6, the average current J̄(µ1, µ2),
as given by equations (29) and (30) in the infinite-randomness limit, is plotted versus
the chemical potentials µ1 and µ2 of the two baths in contact with the two subchains.
The current displays a monotonous dependance on µ2 but depends only on the sign of
µ1. As discussed in the previous section in the case µ2 = 0, a discontinuity is observed
at µ1 = 0, leading to an infinite conductance.

Even though the current does not vanish when µ1 6= 0, a conductance can still be
defined as the linear response of the system to an imbalance of the chemical potentials
of the two baths. Considering now the setup where µ1 = µ+∆µ/2 and µ2 = µ−∆µ/2,
the average conductance is assumed to be

Ḡ(µ) =

(

dJ̄

d∆µ

)

∆µ=0

. (35)
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Figure 6. Average current J̄/g2 versus the chemical potentials of the two
reservoirs in the infinite-randomness limit. The graphs correspond to different
values of the dissipation of the baths: γ = 0.01 (left), γ = 1 (center), and γ = 10
(right).

Numerically, this quantity was computed by approximating the derivative with a linear
difference:

Ḡ(µ) ≃
J̄(µ+∆µ/2, µ−∆µ/2)− J̄(µ, µ)

∆µ
(36)

with the small value ∆µ = 10−4. The numerical data are presented on figures 7. Due
to the discreteness of the spectrum of the pure subchain, the conductance displays
peaks which become sharper and sharper as the strength of disorder increases. Such a
configuration of peaks is not a specificity of random chains. It is also observed in pure
XX chains (see in particular figure 4 of Ref. [23]). However, in the random case, the
height of the peak centered at µ = 0 diverges as the strength of disorder increases while
all other peaks remain finite. This behavior is understood in the infinite-randomness
limit. Using Eq. (32), the average conductance is found to be

Ḡ(µ) =
γg2

π
ln

4

3

tan2 kF
1 + γ2 + γ2 tan2 kF

1

sin kF
+ 4γg2 ln

4

3

(

√

1 + γ2

γ
− 1

)

δ(µ) (37)

where µ = −2 coskF . The Dirac distribution at zero chemical potential discussed in
the previous section has been added to the derivative. Eliminating kF , the expression
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Figure 7. Average conductance Ḡ(µ)/γg2 between a random and a pure XX
chains of size L = 14 versus the chemical potential µ when the two chains are
in contact with baths at a different chemical potentials µ+∆µ/2 and µ −∆µ/2
where ∆µ = 10−4. The couplings of the random XX model are randomly chosen
in {1/r; r} with r = 2 (left), r = 4 (center) and r = 10 (right). The different
curves corresponds to different values of the dissipation γ. The temperature is
T = 0.02.

can be simplified to

Ḡ(µ) =
γg2

π
ln

4

3

4− µ2

4γ2 + µ2

1
√

1− µ2/4
+ 4γg2 ln

4

3

(

√

1 + γ2

γ
− 1

)

δ(µ). (38)

The average conductance is plotted on figure 8. Though similar to the one obtained
in the pure case when γ = 1, the curve Ḡ(µ) versus µ is significantly different at low
dissipation, i.e. γ ≪ 1. Since randomness limits the number of channels from one
subchain to the other, a low coupling γ with the bath restricts the conductance to a
small window around µ = 0.

5. Conclusions

A model consisting in two XX chains, one with random couplings drawn from a binary
distribution and the second one homogeneous, has been considered. The two chains
are coupled to different thermal baths through a non-local Lindblad dissipator and
connected by their edges. Despite the fact that all eigenstates in the random subchain
are localized, a current is induced between the two subchains in the steady state



Diverging conductance between random and pure XX spin chains 14

0

0.02

0.04

0.06

0.08

0.1

-3 -2 -1 0 2 3

G
/
γ
g
2

µ

γ = 0.01

γ = 1

γ = 1

γ = 10

Figure 8. Average conductance Ḡ(µ)/γg2 when the chemical potentials of the
two reservoirs are µ±∆µ/2 versus µ in the infinite-randomness limit. The different
curves corresponds to different values of the dissipation γ. Note that the Dirac
peak at µ = 0 has not been plotted.

because of the non-locality of the dissipator. A divergence of the conductance is
observed at zero chemical potential as the disorder strength increases and is explained
in terms of the density of states of the localized states of the random subchain.

As far as we are aware, such a diverging conductance has not been observed
before in random quantum systems. Our model has indeed several peculiarities. As
mentioned above, the coupling to the baths is non-local while boundary dissipators are
usually considered. Then, most studies on Anderson localization are based on tight-
binding models with random local energies rather than random hopping constants.
Moreover, these random energies are usually distributed according to a Gaussian law or
a uniform law. The binary distribution of the hopping couplings is a crucial ingredient
for the divergence of the conductance.

Nevertheless, the model consider in this study is not completely unrealistic.
Besides experimental realizations of spin chains, one can imagine long polymers made
of two kinds of monomer with different electrical conductivities and adsorbed on a
metallic surface that could play the role of a reservoir.
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[2] Iglói F, and Monthus C, 2005 Phys. Rep. 412 277
[3] Motrunich O, Damle K, and Huse D A, 2001 Phys. Rev. B 63, 134424
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