
HAL Id: hal-01559723
https://hal.science/hal-01559723

Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early Decision and Stopping in Synchronous Consensus:
A Predicate-Based Guided Tour

Armando Castañeda, Yoram Moses, Michel Raynal, Matthieu Roy

To cite this version:
Armando Castañeda, Yoram Moses, Michel Raynal, Matthieu Roy. Early Decision and Stopping in
Synchronous Consensus: A Predicate-Based Guided Tour. International Conference on Networked
Systems (NETYS), May 2017, Marrakech, Morocco. pp.167 - 221, �10.1007/978-3-319-59647-1_16�.
�hal-01559723�

https://hal.science/hal-01559723
https://hal.archives-ouvertes.fr


Early Decision and Stopping in Synchronous Consensus:
a Predicate-Based Guided Tour

Armando Castañeda1, Yoram Moses2, Michel Raynal3,4, Matthieu Roy5

1 Instituto de Matemáticas, UNAM, México
2 Technion, Haifa, Israel

3 Institut Universitaire de France
4 IRISA, Université de Rennes, Rennes, France
5 LAAS, CNRS, Université de Toulouse, France

Abstract. Consensus is the most basic agreement problem encountered in fault-
tolerant distributed computing: each process proposes a value and non-faulty pro-
cesses must agree on the same value, which has to be one of the proposed values.
While this problem is impossible to solve in asynchronous systems prone to pro-
cess crash failures, it can be solved in synchronous (round-based) systems where
all but one process might crash in any execution. It is well-known that (t + 1)
rounds are necessary and sufficient in the worst case execution scenario for the
processes to decide and stop executing, where t < n is a system parameter denot-
ing the maximum number of allowed process crashes and n denotes the number
of processes in the system.
Early decision and stopping considers the case where f < t processes actually
crash, f not being known by processes. It has been shown that the number of
rounds that have to be executed in the worst case is then min(f + 2, t + 1).
Following Castañeda, Gonczarowski and Moses (DISC 2014), the paper shows
that this value is an upper bound attained only in worst execution scenarios. To
this end, it investigates a sequence of three early deciding/stopping predicates
P1 = Pcount, P2 = Pdif and P3 = Ppref0, of increasing power, which differ in
the information obtained by the processes from the actual failure, communication
and data pattern. It is shown that each predicate Pi is better than the previous one
Pi−1, i ∈ {2, 3}, in the sense that there are executions where Pi allows processes
to reach a decision earlier than Pi−1, while Pi−1 never allows a process to decide
earlier than Pi. Moreover, P3 = Ppref0 is an unbeatable predicate in the sense that
it cannot be strictly improved: if there is an early deciding/stopping predicate P ′

that improves the decision time of a process with respect to Ppref0 in a given ex-
ecution, then there is at least one execution in which a process decides with P ′

strictly later than with Ppref0.

Keywords: Agreement, Consensus, Early decision, Early stopping, Process crash,
Round-based algorithm, Synchronous message-passing system, t-Resilience.

1 Introduction

1.1 t-Resilient crash-prone synchronous system

This paper considers a distriuted system with n processes, among which at most t may
crash, 1 ≤ t < n. Hence, n and t are two system model parameters that are statically



defined and known when designing an algorithm. A crash is a premature halt: a process
behaves correctly, executing the algorithm assigned to it, until it possibly crashes. After
a crash, a process executes no more actions. A process that does not crash in a given
execution is said to be correct or non-faulty there, otherwise it is faulty. Moreover, given
an execution, let f , with 0 ≤ f ≤ t, denote the number of processes that actually crash
in this execution. Notice that while n and t are two parameters (of the system model)
that can be used in an algorithm executed by processes, f is specific to each execution
and cannot be known in advance, and consequently no process knows its value.

The processes communicate by broadcasting and receiving messages. If a process
does not crash while executing a broadcast, the message is received by all processes,
including itself. If it crashes while executing a broadcast, an arbitrary subset of pro-
cesses (not predetermined and possibly empty) receive the message (without alteration).
Hence, a broadcast operation is not atomic.

The processes execute collectively a sequence of synchronous rounds. In each round
a process first broadcasts a message, then receives messages, and finally executes a local
computation whose inputs are its current local state and the messages it has received
during the current round. The synchrony model assumption states that a message is
received in the very same round as the round in which it is sent. Hence, synchrony
means that the processes progress in a lock-step manner.

An distributed algorithm (or protocol) is made of a collection of local algorithms,
one per process. Each local algorithm indicates messages to be sent by the correspond-
ing process at each round. Sometimes it is convenient to consider full-information
algorithms where in every round, each process broadcasts all it knows so far. Full-
information algorithms are not meant to be efficient —messages may contain unneces-
sary information— but are easy to describe and useful to prove lower bounds on step
complexity: any information transfer scheme used by another algorithm is contained in
the full information transfer scheme.

1.2 The consensus problem

The consensus problem was introduced in the Eighties by Lamport, Shostack, and Pease
in the context of synchronous message-passing systems prone to Byzantine (arbitrary)
failures [14,16]. Here we consider the case of process crash failures.

Each process is assumed to propose a value, and the processes have to agree on
the same value. Of course, a process may crash before proposing a value, or before
deciding a value. For the problem to be meaningful, the decided value must be related
to the proposed values. This is captured by the following properties, which constitute
a specification of the consensus problem (hence, any algorithm that claims to solve the
problem must satisfy these properties).

– Termination. Every correct process decides on a value.
– Validity. A decided value is a proposed value.
– Agreement. No two (correct or faulty) processes decide different values.



1.3 Bounds on the number of rounds

The bound (t+1). It is shown in [1,10] that (t+1) rounds are necessary and sufficient
to solve consensus in a synchronous system prone to up to t < n process crash failures.
An intuition that underlies this bound is the following. A “worst case” scenario is when
there is a crash per round, which prevents processes from knowing the state of the
system at the beginning of the round. But if (t+1) rounds are executed, there is a failure-
free round (a.k.a. clean round [7]) during which all the correct processes can exchange
and obtain proposed values, from which a value can be deterministically extracted to be
decided.

The bound min(f + 2, t + 1). As t is known by the processes while f ≤ n is not, an
interesting question is the following: is it possible to solve the consensus problem in
crash-prone synchronous systems in fewer than (t+ 1) rounds when the number of ac-
tual crashes f is smaller than t? This question is known as the early deciding/stopping,
problem [6]. In early stopping, a process stops executing when it decides; In early de-
ciding, a process can continue executing rounds after it has decided. Here, we consider
early deciding/stopping algorithms, i.e., algorithms were a process stops executing in
the same round as the one in which it decides.

In other words, can we adapt the efficiency of a consensus algorithm to the actual
value of f , instead of always having the “(t+1) rounds” cost? Thus, the main target in
early deciding/stopping algorithms is to allow at least one process to detect as soon as
possible a predicate on the execution, e.g., a failure-free round, which will allow it to
safely decide and stop.

It is shown in [2,6,13,18,22] that min(f +2, t+1) is a necessary and sufficient con-
dition for early deciding/stopping consensus. Interestingly, this bound is independent of
the failure model, be it crash failure, omission failure, or Byzantine failure. An intuition
for the (f + 2) bound is the following. As there are only f failures in the considered
execution, after (f + 1) rounds there is at least one process that executed a round in
which it saw no failures. Thereby, this process knows which value can be decided, but,
as f 6= t, it does not know if the other processes are aware of it. Hence, it needs an
additional round to inform the other processes of this knowledge before deciding.

1.4 Content of the paper

In the following we are interested in predicates that, not only match the lower bound
of min(f + 2, t + 1) rounds for reaching consensus in worst case scenarios, but allow
processes to reach a decision in much fewer rounds in a lot of frequent cases, such as
when there are initial crashes, or when several processes crash during the very same
round.

These predicates are denoted Pcount, Pdif , and Ppref0. We investigate their respective
power to solve early deciding/stopping binary consensus6 and consider those predicates
in sequence P1 = Pcount, P2 = Pdif and P3 = Ppref0. We show that each predicate in

6 While Ppref0 is specific to binary consensus, Pcount and Pdif can be used for multivalued con-
sensus (where the size of the proposed value is not restricted to be only one bit). However, the
predicate can be modified to handle multivalued consensus.



the sequence Pi (i ∈ {2, 3}) is better than the previous one Pi−1: there are executions
in which Pi allows processes to reach a decision earlier than Pi−1, while Pi−1 never
allows processes to reach a decision earlier than Pi.

To go further, we consider the notion of unbeatability [12] (initially called opti-
mality), that has been introduced to formally compare the decision-time performance
of algorithms. For binary consensus, Ppref0 is an unbeatable predicate in the sense that
it cannot be strictly improved: if there is an early deciding/stopping predicate that im-
proves the decision time of a process for binary consensus in a given execution, then
there is an execution in which a process decides strictly later than by Ppref0. Thus, in
principle, there are predicates that can improve the decision time of a process in an
execution at the cost of deciding/stopping strictly later in another case.

2 The Three Early Deciding/Stopping Predicates

2.1 Pcount (P1) : a Predicate Based on the Counting of Crashed Processes

Let us observe that “to be crashed” is a stable property, i.e., after it crashed, a process
never recovers. A crash is a premature halt. This observation can be used to detect
process crashes, by requiring each process to broadcast a message at every round, until
it decides or crashes. Hence, if r is the first round during which pi does not receive a
message from pj , and pi has not yet received a decision message from pj , then pi can
safely conclude that pj crashed.

Let faultyi[r] be the number of processes that pi considers faulty after the reception
of messages during round r, i.e., the number of processes from which it did not receive
a message during r. A simple early decision predicate used by pi at round r is P1 =
Pcount:

Pcount[i, r] ≡
(
faultyi[r] < r

)
.

This predicate (used in [17]) specifically targets the worst case scenario: it allows a
process pi to detect the first round in which, from its point of view, there is no crash.
Let r be the first round such that Pcount[i, r] is true. This means that (a) for any round
r′ < r we have faultyi[r

′] ≥ r′, and (b) r is a failure-free round from pi point of view.
Those properties will be exploited to obtain a Pcount-based early stopping consensus
algorithm, that we describe in Section 3.3.

2.2 Pdif (P2): a Round-based Differential Predicate

A second early stopping predicate, introduced in [19], is a differential predicate, in the
sense that it is based on each pair of consecutive rounds (the current and the previous
rounds). It requires that each process broadcasts a message until it decides or crashes,
and each message m indicates if its sender is about to decide after having broadcast m.

Let UP [r] be the set of processes that start round r, i.e., the set of alive processes
when round r starts. Let reci[r] be the set of processes from which pi receives messages
during round r > 0, and reci[0] be the set of n processes. Let us notice that, while it
executes round r, no process knows the value of UP [r], but each pi can easily compute



the value of reci[r − 1] and reci[r]. Moreover, as crashes are “stable”, pi knows that
reci[r−1] ⊆ UP [r] ⊆ reci[r]. The early deciding/stopping predicate P2 = Pdif is then

Pdif [i, r] ≡
(
reci[r − 1] = reci[r]

)
.

As shown in Fig. 1, the fact that Pdif [i, r] holds does not mean that there is no crash dur-
ing round r. A cross means that the corresponding process crashed during its broadcast
phase, sending a message to a single process only.

p1

p2

p3

p4

r = 1 r = 2
❌

❌
Pdif [2, 1]

Pdif [4, 2]

Fig. 1. An execution illustrating Pdif . Crosses denote crashes, Pdif [i, j] indicates when Pdif holds.

When Pdif [i, r] becomes satisfied, pi received a message from all the processes that
were alive at the beginning of round r. Due to the message exchange pattern, it can
know all values known by these processes from the first round until the previous round
(r− 1). Consequently, it will never know new values in the future. It follows that it can
deterministically decide value among all values it know (smallest or greatest one, for
example).

It is possible that reci[r−1] = reci[r] while there is a process pj such that recj [r−
1] 6= recj [r]. As a simple example, let us consider again Fig. 1 and assume that v1 <
min(v2, v3, v4) (vi being the value proposed by pi). During round 1, p1 sent v1 to p2
only before crashing, and then, during round 2, p2 sent v1 to p4 only before crashing.
It follows that, while p4 can decide v1, no other (not crashed) process knows v1. This
issue is solved as follows: when Pdif [4, r] becomes satisfied, p4 does not decide and
stop during round r, but proceeds to round (r + 1) during which it broadcasts v1 plus
a flag indicating it is about to decide and stop, which it does only after the broadcast is
completed.

2.3 Ppref0 (P3): A Knowledge-Based Unbeatable Predicate

The predicate Ppref0, introduced in [3], allows processes to decide as soon as possible on
a preferred value, 0 in this case, while the other value 1 is decided only when the process
is sure that no process decides on the preferred value 0. The predicate is expressed in the
knowledge-based approach in distributed computing, in the spirit of [9]. This approach
leads us to understand, in a precise sense, the information needed for a process to decide
as fast as possible.



Roughly speaking, a process pi knows a statement A if in every execution which
is indistinguishable from the point of view of pi (i.e., in which pi has the same local
view), A is true. For example, if pi receives a message with an input 0, it knows the
statement “there is a 0 in the system”.

Assuming that processes want to decide as soon as possible, preferring value 0,
there are two cases:

– When is it safe for a process to decide on 0? As soon as the process knows that
every correct process knows that there is a 0 in the system, i.e., each correct process
has received in some round a message communicating that someone started with
input 0.

– When is it safe for a process to decide on 1? Since processes decide 0 as soon as
possible, the process can safely decide on 1 as soon as the process knows that there
is no 0 in the system, namely, no active process got a message containing a 0. Thus,
no process will ever know there is a 0.

This is formalized as follows. In an execution, we say that pj is revealed to pi in
round r if either pi knows the information pj has at the beginning of round r or it knows
that pj is crashed before that round. As a consequence, pj cannot carry information in
round r that is hidden to pi because, in the first case, pi knows the information pj
knows, while in the second case, pj crashed before (hence it is not active in round r).
A round r is revealed to pi if every process pj is revealed to pi in round r. Therefore,
when r is revealed to pi, the process knows all the information than went through the
system from round r − 1 to r.

The predicate Ppref0 is based on the following sub-predicates. Let ∃ correct 0(i, r)
denote the predicate: “pi knows that at least one correct process knows in round r that
there is a 0” and let ∃ revealed(i, r) denote the predicate: “a round r′ ≤ r has been
revealed to pi”. The early deciding/stopping predicate P3 = Ppref0 is defined as [3]:

Ppref0[i, r] ≡ ∃ correct 0(i, r) ∨ ∃ revealed(i, r).

We stress that if ∃ correct 0(i, r) holds, then, at the end of round r+1, every correct
process will know that there is a 0: the correct process knowing a 0 (whose existence
is guaranteed by ∃ correct 0(i, r)) will have communicated this value to every correct
process.

The way each sub-predicate of Ppref0[i, r] is made operational will be detailed in
Section 3.3, where a Ppref0-based algorithm is presented. To give a flavor of it, we
consider below two executions, each one satisfying one sub-predicate of Ppref0.

– The simplest case is when a process pi starts with input 0, then broadcasts this
value to every process in round 1, and finally receives the messages sent to it in
this round. At the end of the round, since pi succinctly communicates 0 to every
process, the predicate ∃ correct 0(i, 1) is satisfied. Hence, using Ppref0, a process
can decide on 0 at the end of round 1, even in presence of failures. In the execution
there might be another process pj such that Ppref0[j, 1] is not true. This can happen
if pj starts the execution with input 1 and sees failures in round 1, and hence it does
not decide in this round. However, pj is prevented from deciding 1 because it knows



there is a 0 in the system (as it gets the message from pi in round 1 containing a 0).
While our example involved round 1, the same holds for an arbitrary round r: if a
process broadcasts a 0 in round r and does not crash in this round, the condition
∃ correct 0(i, r) holds at the end of round r.

p1

p2

p3

p4

r = 1 r = 2
❌

❌

Ppref0[3, 1]

Ppref0[4, 2]

Fig. 2. An illustration of Ppref0. Crosses denote crashes, Ppref0[i, j] indicates when Ppref0 holds.

– A second example is shown in Fig. 2 where every process starts with input 1. In
round 1, process p4 gets messages from every process but p1, hence, by the end
of the round, p4 has uncertainty on the input of p1 and the fact that this input
may be known by some other process. In the example, before crashing, p1 sends
its message to p3, and in round 2, p4 gets a message from p3 but not from p2.
Although p4 sees a failure in round 2, it knows all inputs from all processes since
p4 gets indirectly the input of p1 from the message of p3 in round 2 (assuming full-
information algorithms). Thus, round 1 is revealed to p4 during round 2, namely,
the sub-predicate ∃ revealed(4, 2) is satisfied, and thus p4 can safely decide on 1,
regardless of the fact that it sees failures in both rounds.

3 Consensus Algorithms Based on the Predicates

For ease of exposition, an algorithm based on P2 = Pdif is first presented, and only
then it is shown that a simple replacement of the predicate P2 = Pdif by P1 = Pcount

produces an algorithm based on P1 = Pcount. The algorithm based on P3 = Ppref0 is
described at the end of the section.

3.1 An algorithm based on Pdif (P2)

An early deciding/stopping consensus algorithm based on Pdif is described in Fig. 3.
The variable r denotes the current round number, whose progress is automatically en-
sured by the underlying system (synchrony assumption of the distributed computing
model). When the consensus algorithm starts (round 1), each process locally invokes
the operation propose(vi) where vi is the value it proposes to the consensus instance. If
it does not crash before, it terminates when it executes the statement return(v) where v
is the value it decides.



Local variables. A process pi manages three local variables.

– esti is pi’s current estimate of the decided value. It is initialized to vi.
– nbi[r] is the number of processes from which pi received messages during round r.

By assumption nbi[0] = n. As crashes are stable, reci can only decrease. It follows
that the predicate reci[r − 1] = reci[r] can be replaced by nbi[r − 1] = nbi[r].

– earlyi is a Boolean initialized to false. It is set to true when pi discovers that it
can early decide at the next round.

Local algorithm. During a round r, a process pi first broadcasts a message carrying its
current estimate esti and the Boolean earlyi (line 3). If earlyi = true, pi early decides
by executing the statement return(esti) which stops its execution (line 4). Let us notice
that if pi decides at round r, at each round r′ ≤ r, it broadcasts the smallest value it has
seen up to round r′.

If pi does not decide, it checks if another process early decides (line 5) during this
round, and updates esti according to the estimates received during the current round
(line 6). Then, if its early deciding/stopping predicate is true, or if it learns another
process early decides, it sets earlyi to true (line 8). Finally, if r < t + 1, pi proceeds
to the next round. Otherwise, it returns its current estimate value.

operation propose(vi) is
(1) esti ← vi; nbi[0]← n; earlyi ← false;
(2) when r = 1, 2, . . . , t+ 1 do

begin synchronous round
(3) broadcast EST(esti, earlyi);
(4) if (earlyi) then return(esti) end if;
(5) let decidei ←

∨
(earlyj values received during current round r);

(6) esti ← min({estj values received during current round r});
(7) let nbi[r] = number of messages received by pi during r;
(8) if

(
(nbi[r − 1] = nbi[r]) ∨ decidei

)
then earlyi ← true end if;

(9) if (r = t+ 1) then return(esti) end if
end synchronous round

end operation.

Fig. 3. Pdif -based early deciding/stopping synchronous consensus (code for pi, t < n)

The proof of the Termination property follows directly from the synchrony assump-
tion provided by the computing model. The proof of the Validity property follows from
the observation that the esti local variables can only contain proposed values (lines 1
and 6). The proof of the Agreement property is given in [19]. Let us notice that, in the
executions where no process decides at line 4, the algorithm boils down to the very
classical synchronous consensus algorithm described and proved in several textbooks
(e.g., [17,19]). We prove in the following only the early decision property.

Theorem 1. When considering the Pdif -based early deciding/stopping synchronous con-
sensus algorithm, no process executes more than min(f + 2, t+ 1) rounds.



Proof The (t+1) bound follows directly from the predicate of line 9. So let us assume
that a process pi decides at line 4 of a round d. There are two cases.

– There is a process pi that decides at line 4 of round d ≤ f +1. Hence, it previously
broadcast the message EST(esti, earlyi) at line 3, and all non-crashed processes
receive this message during round d. Let pj be any of them. If pj does not early
decide during round d, it sets earlyj to true during round d (lines 5 and 8). It
follows that, if it does not crash, it will decide during the next round d+1 ≤ f +2.

– No process decides at line 4 of a round d ≤ f + 1. Let pi be any process that
executes round f + 1. As it did not decide by the end of the round f + 1, we
have nbi[r − 1] 6= nbi[r] at any round r, 1 ≤ r ≤ f . As there are exactly f
crashes, this means that we necessarily have nbi[0] = n, nbi[1] = n − 1, ...,
nbi[f − 1] = n − (f − 1), and nbi[f ] = n − f (there is one crash per round and
the process that crashed did not send a message to pi). Moreover, as there are f
crashes, we have nbi[f + 1] = n− f . It follows that nbi[f ] = nbi[f + 1] at round
f + 1, and pi sets earlyi to true at line 8. Hence, pi (which is any process that
executes the rounds f + 1 and f + 2) early decides at line 4 of round d ≤ f + 2,
which concludes the proof.

2Theorem 1

3.2 An algorithm based on Pcount (P1)

Let us remark that faultyi[r] = n−nbi[r]. An algorithm based on Pcount can be easily
obtained from Fig. 3 by replacing at line 8 the predicate (nbi[r − 1] = nbi[r]) by the
predicate Pcount[i, r] ≡ (n− nbi[r] < r). The correctness proof and the bounds on the
decision times of process can be proven similarly as before.

Theorem 2. When considering the Pcount-based early deciding/stopping synchronous
consensus algorithm, no process executes more than min(f + 2, t+ 1) rounds.

3.3 An algorithm based on Ppref0 (P3)

Fig. 3 contains the early deciding/stopping consensus algorithm based on Ppref0, intro-
duced in [3]. The processes proceed in a sequence of synchronous rounds (the variable
r denotes the current round). As before, when the consensus starts, all processes simul-
taneously invoke the operation propose with the values they propose to the consensus
instance.

Local variables. Each process pi uses the following local variables.

– valsi: set of values pi is aware of. The set it is initialized to {vi} as, at the beginning
of the execution, pi knows its input only.

– Gi: directed graph containing pi’s view in the current round, namely, the chain of
messages that has been sent to pi so far. Initially, it has a single node 〈i, 0〉 denoting
that pi is not aware of any message before round 1. This graph is formally defined
below. V (Gi) denotes the vertices of Gi, and E(Gi) denotes its edges.



– knew 0i: Boolean indicating if pi knows there was a zero in the previous round,
namely, valsi contained a zero by the end of the previous round.

– correct 0i: Boolean indicating if the predicate ∃ correct 0(i, r) is satisfied in the
current round r.

– revealedi: Boolean indicating if the predicate ∃ revealed 0(i, r) is satisfied in the
current round r.

– earlyi: Boolean indicating if pi discovers that it can decide at the next round.

Local algorithm. At the beginning of every round, pi first broadcasts its set of known
values, valsi, together with its view graph, Gi (i.e. it communicates all it knows so
far) and then checks if it can decide early, namely, earlyi = true. If so, it simply
decides 0, otherwise, it updates its local variables, lines 5–9, in order to test the predicate
Ppref0[i, r] ≡ ∃ correct 0(i, r) ∨ ∃ revealed(i, r), lines 10–14.

Before receiving the messages sent to it in the current round, pi sets knew 0i to true
if, at the end of the previous round, pi was aware that there was a zero in the system,
line 5. Then, pi updates its set of known values valsi, line 6, and records in n 0i and
n fi the number of messages from the current round containing a zero and the number
of processes it does not receive a message from in the current round, lines 7 and 8.

To explain how pi updates its view graph Gi, let us consider the communication
graph Gc of an execution of a full-information algorithm. Intuitively, the communi-
cation graph Gc is the directed graph that represents how communication and failures
occur in a given execution. Formally, each vertex of the graph has the form 〈i, r〉, rep-
resenting pi at the beginning of round r + 1 (hence the vertex also represents pi at the
end of round r), and there is a directed edge (〈j, r〉, 〈i, r + 1〉) if process pj sends a
message to pi in round r + 1. The view of pi at the end of round r, denoted Gc(i, r),
is the subgraph of Gc containing every directed path that ends at 〈i, r〉. Notice that
Gc(i, r) contains all Lamport message chains from all processes in previous rounds to
pi at round r. Roughly speaking, Gc(i, r) contains the maximal amount of information
pi has (directly or indirectly) heard of up to round r. Fig. 4 provides, as an illustra-
tion, the views of processes of the communication graph, computed for the execution
of Fig. 2.

p1

p2

p3

p4

r = 1 r = 2
❌

❌

Ppref0[3, 1]

Ppref0[4, 2]

h2; 0i

h3; 0i

h4; 0i

h2; 1i

h1; 0i

h2; 0i

h3; 0i

h4; 0i

h3; 1i

h2; 0i

h3; 0i

h4; 0i h4; 1i

Gc(2; 1) Gc(3; 1) Gc(4; 1)

h1; 0i

h2; 0i

h3; 0i

h4; 0i

h3; 1i

h2; 1i

h4; 1i

h3; 2i

h1; 0i

h2; 0i

h3; 0i

h4; 0i

h3; 1i

h4; 1i h4; 2i

Gc(3; 2) Gc(4; 2)

Fig. 4. Local views of the communication graph of the execution from Fig. 2



In the algorithm, pi computes its view graph inductively as rounds go by. The main
invariant in this construction is that at the beginning of round r, the local variable Gi is
equal to Gc(i, r − 1) (which holds for r = 1 by the initialization of Gi). Then, at the
end of round r, Gi is equal to Gc(i, r) because, in line 9, pi adds to Gi the edges due to
(a) the messages it receives in round r, and (b) the view graphs of round r − 1 carried
by those messages.

Once pi handles all messages and updates its local variables, it verifies if Ppref0[i, r]
is satisfied by separately testing the sub-predicates ∃ correct 0(i, r) and ∃ revealed 0(i, r),
lines 10 and 11.

operation propose(vi) is
(1) valsi ← {vi}; Gi ← ({〈i, 0〉}, ∅);

earlyi, knew 0i, correct 0i, revealedi ← false;
(2) when r = 1, 2, . . . , t+ 1 do

begin synchronous round
(3) broadcast MSG CONS(valsi, Gi);
(4) if (earlyi) then return(0) end if;
(5) if (0 ∈ valsi) then knew 0i ← true end if;
(6) valsi ←

⋃
(valsj values received during round r);

(7) let n 0i = number of messages received in round r with 0 ∈ valsj ;
(8) let n fi = number of processes from which no message was received in round r;
(9) Gi ←

⋃(
Gj graphs received during round r and directed edges (〈j, r〉, 〈i, r + 1〉)

)
;

%% Testing ∃ correct 0(i, r)
(10) if (0 ∈ valsi ∧ (knew 0i ∨ (t− n fi ≤ n 0i)))

then correct 0i ← true end if;
%% Testing ∃ revealed(i, r)

(11) if
(
∃r′ ≤ r,∀pj ,

((
〈j, r′〉 ∈ V (Gi)

)
∨
(
∃〈`, r′〉 ∈ V (Gi), (〈j, r′ − 1〉, 〈`, r′〉) /∈ E(Gi)

)))
then revealedi ← true end if;

%% Testing Ppref0[i, r]
(12) if (correct 0i) then return(0) end if;
(13) if (revealedi ∧ 0 /∈ valsi) then return(1) end if;
(14) if (revealedi ∧ 0 ∈ valsi) then earlyi ← true end if

end synchronous round
end operation.

Fig. 5. Ppref0-based early deciding/stopping synchronous consensus (code for pi, t < n)

If the condition in line 10 is true, there are two not necessarily mutually exclusive
subcases. If knew 0i = true, then pi knew there was a zero at the end of the previous
round, hence, in the current round, it broadcasts that zero to all correct processes. And if
t− n fi ≤ n 0i, then at least t− n fi + 1 processes know there is a zero at the current
round (where the +1 is because pi itself knows there is a zero), from which follows
that at least one correct process knows there is a zero, since at most another t − n fi
processes can crash. In both cases, ∃ correct 0(i, r) is satisfied, hence correct 0i is set
accordingly.



To test if ∃ revealed 0(i, r) is satisfied, line 11, pi directly verifies on Gi if a round
is revealed to pi: for some r′ ≤ r, for each pj , either (a) there is a chain of messages
from 〈j, r′〉 (pj at the beginning of round r′ + 1) to 〈i, r〉 (pi at the end of round r), i.e.
〈j, r′〉 ∈ V (Gi), or (b) there is a 〈`, r′〉 ∈ V (Gi) with (〈j, r′ − 1〉, 〈`, r′〉) /∈ E(Gi)
(i.e. p` did not receive a message from pj in round r′). If so, the round r′+1 is revealed
to pi, and thus ∃ revealed 0(i, r) is satisfied.

Finally, pi verifies if it can decide. If correct 0i = true, then all correct processes
know there is a zero and hence pi can safely decide 0, line 12. If revealedi = true ∧
0 /∈ valsi, then a round has been revealed to pi and there is no zero in the system
(as 0 /∈ valsi), hence it is safe for pi to decide 1, line 13. However, if revealedi =
true ∧ 0 ∈ valsi, then there might be a correct process that knows a zero (but pi
does not know that fact as correct 0i = false), hence it cannot decide 1 but sets
earlyi to true, indicating that it can decide at the very next round. Observe that after pi
broadcasts its message in the next round, ∃ correct 0(i, r) is satisfied as it knew there
was a zero and consequently sent its message to everyone, and thus it decides 0 in line 4.

The correctness proof of the algorithm is shown in [3]. The validity and termination
properties are easy to prove. For agreement, the main observation is that the only way
a process decides on 1 is if it is sure that no process ever will know there is a 0 (as it
knows there is no 0 and a round has been revealed to it), hence no process will ever
decide 0.

The decision time bound in the following theorem follows directly from Theorem 1
above and Theorem 4 in the next section comparing the predicates and showing that at
any time that Pdif [i, r] is satisfied, Ppref0[i, r] is satisfied as well.

Theorem 3. When considering the Ppref0-based early deciding/stopping synchronous
consensus algorithm, no process executes more than min(f + 2, t+ 1) rounds.

4 Comparing the Predicates

While the three predicates presented above ensure that the processes decide in at most
min(f + 2, t+ 1) rounds in the worst cases, is one predicate better than the other?

We show here that, in a precise sense, P3 = Ppref0 is the strongest predicate for early
deciding/stopping binary consensus, and P2 = Pdif is strictly stronger than P1 = Pcount,
resulting in the above mentioned strict hierarchy in the sequence P1, P2, P3.

Theorem 4. Consider the predicates Pcount[i, r], Pdif [i, r] and Ppref0[i, r].

(a) Given an execution, let r be the first round at which Pdif [i, r] is satisfied. We have
Pcount[i, r]⇒ Pdif [i, r].

(b) Given an execution, let r be the first round at which Ppref0[i, r] is satisfied. We have
Pdif [i, r]⇒ Ppred0[i, r].

(c) There are executions in which ¬
(
Pdif [i, r]⇒ Pcount[i, r]

)
, where r is the first round

at which Pdif [i, r] is satisfied.
(d) There are executions in which ¬

(
Ppref0[i, r]⇒ Pdif [i, r]

)
, where r is the first round

at which Ppref0[i, r] is satisfied.



Proof Each case is handled separately.
Proof of item (a). As r is the first round during which Pcount[i, r] ≡ (n − nbi[r] < r)
is satisfied, Pcount[i, r − 1] is false, i.e., n − nbi[r − 1] ≥ r − 1. It follows from these
inequalities that (n−nbi[r])− (n−nbi[r− 1]) < r− (r− 1) = 1. Combined with the
fact that nbi[r] ≥ nbi[r], we obtain nbi[r]− nbi[r − 1] = 0 which concludes the proof
of item (a).

Proof of item (b). Since Pdif [i, r] is satisfied, we have that nbi[r − 1] = nbi[r]. There-
fore, in round r, pi receives a message from any process pj that sends a message to
pi in round r − 1. Moreover, pi knows for sure that all other processes crash before
round r simply because it does not get any message from them in round r − 1. We
conclude that round r is revealed to pi, from which follows that Ppref0[i, r] is satisfied
(as ∃ revealed(i, r) is true).

Proof of item (c). The proof follows from a counter-example. Consider a run in which
2 ≤ x ≤ t processes have crashed before taking any step, and then no other process
crashes. The predicate Pcount[i, r] ≡ (n − nbi[r] < r) becomes true for the first time
at round x+ 1. Let us now look at the predicate Pdif [i, r] ≡ (nbi[r − 1] = nbi[r]). We
have, nbi[1] = nbi[2] = n−x. Consequently, Pdif [i, 2] is satisfied. As x ≥ 2, it follows
that ¬Pcount[i, 2] ∧ Pdif [i, 2], which concludes the proof.

Proof of item (d). Consider any execution in which (1) all processes start with input 0,
(2) pn crashes without communicating its input to any process, and (3) all other pro-
cesses are correct. Then, for every process pi, 1 ≤ i ≤ n − 1, ∃ revealed(i, 1) is true,
as pi starts with 0 and communicates it to every one. Thus, Ppref0[i, 1] is satisfied. In
contrast, Pdif [i, r] is not satisfied because pi does not receive a message from pn, and
hence nbi[0] = n ∧ nbi[1] = n− 1. 2Theorem 4

Operational view. The fact that Pdif [i, r] is better than Pcount[i, r] comes from the fol-
lowing. The predicate Pcount[i, r] ≡ (n − nbi[r] < r) considers the number of crashes
since the beginning, while Pdif [i, r] considers the failure pattern in a finer way: it is a
differential predicate based on the number of crashes perceived by a process pi between
each pair of consecutive rounds. Similarly, Ppref0[i, r] is better than Pdif [i, r] because of
the following two things: (a) each process decides on 0 as soon as possible without
considering failures (as in the execution explained in the proof of Theorem 4(d)); and
(b) processes detect rounds in which no information is hidden by looking at “how in-
formation flowed in the past” (like in the execution described in Section 2.3) and not
only looking at the current round.

It is interesting to notice that with Pdif [i, r] (a) if no process crashes, the processes
decide in two rounds, and (b) if the crashes occur before the execution, the correct pro-
cesses decide in three rounds. In the failure pattern (b), Pcount[i, r] does not allow to
decide before round (f + 2). Similarly, with Ppref0[i, r], any correct process starting
with 0 decides at the end of round 1, while there are executions in which such a process
would decide in round f + 2 (or, in the worst case, in round t+ 1) with Pdif [i, r].



On the unbeatability of Ppref0. As already mentioned, Ppref0 is unbeatable in the sense
that it cannot be strictly improved. Thus, there might be predicates that improve the
decision time of a process in a given execution but the decision time of a (possibly
different) process in a (possibly different) execution is strictly worse. An example of
such a predicate is Ppref1 where the roles of 0 and 1 are exchanged. Thus, the aim of
the predicate is to decide on 1 as soon as possible (to adapt the algorithm in Fig. 5 to
Ppref1, 0’s and 1’s are exchanged). Observe that in executions in which all processes
start with 0, Ppref0 is fast, regardless of the failure pattern, while Ppref1 might need up to
t+ 1 rounds, and vice versa, in executions in which all processes start with 1, Ppref1 is
fast while Ppref0 might be slow.

Interestingly, it is shown in [15] that there is no all case optimal predicate P for
consensus that is at least as fast as any predicate that allows to solve consensus.

A similar result was observed for the non-blocking atomic commit problem in syn-
chronous systems ([8], see also Chap. 10 in [19]). According to its local computation,
each process votes yes or no. If all processes vote yes and there is no failure, they all
must commit their local computations. If one of them votes no, they must abort their
local computations. It is shown in [8] that there is no algorithm that, whatever the deci-
sion (abort or commit), is fast in all executions: a fast algorithm for commit cannot be
fast for abort, and vice versa.

5 Conclusion

This article explored the notion of early deciding/stopping for consensus, trying to bet-
ter understand the relationship between static and dynamic decisions. Indeed, it turns
out that dynamicity in early deciding/stopping can be based on several properties of
actual execution, namely, failure pattern, flow of information, and input pattern. To
compare existing solutions, we presented three early deciding/stopping strategies as a
sequence of predicates, respectively based on i) counting crashed processes, ii) con-
secutive rounds message pattern, and iii) a finer analysis of the information flow in the
execution.

On the pedagogical side, we advocate that having all algorithms presented in the
same framework eases understanding and comparison of early deciding/stopping con-
sensus algorithms, and pinpoints the subtle differences between those strategies.

The question whether such an approach can be conducted on the k-set agreement
problem, the most natural extension of consensus where up to k different values can be
decided [5,21], remains an open question. The predicate given in [4] is strictly better
than any other predicate found in the literature but the question of its unbeatability is
still an open problem.

Acknowledgements

Armando Castañeda is supported by UNAM-PAPIIT project IA102417. Yoram Moses
is the Israel Pollak chair at the Technion. Michel Raynal is supported by the French
ANR project DESCARTES devoted to distributed software engineering.



References

1. Aguilera M. K. and Toueg S., A simple bi-valency proof that t-resilient consensus requires
t+ 1 rounds. Information Processing Letters, 71:155-158 (1999)

2. Berman P., Garay J. A., and Perry K. J., Optimal early stopping in distributed consen-
sus. Proc. 6th Int’l Workshop on Distributed Algorithms (WDAG’92), Springer LNCS 647,
pp. 221-237 (1992)

3. Castañeda A., Gonczarowski Y. A., and Moses Y., Unbeatable consensus. Proc. 28th Inter-
national Symposium on Distributed Computing (DISC’14), Springer LNCS 8784, pp. 91-106
(2014)

4. Castañeda A., Gonczarowski Y. A., and Moses Y., Unbeatable set consensus via topologi-
cal and combinatorial reasoning. Proc. 35th ACM Symposium on Principles of Distributed
Computing (PODC’16), ACM Press, pp. 107-116 (2016)

5. Chaudhuri S., More choices allow more faults: set consensus problems in totally asyn-
chronous systems. Information and Computation, 105:132-158 (1993)

6. Dolev D., Reischuk R., and Strong H. R., Early stopping in Byzantine agreement. Journal of
the ACM, 37(4):720-741 (1990)

7. Dwork C., and Moses Y., Knowledge and common knowledge in a Byzantine environment:
Crash failure Information and Computation, 88(2):156-186 (1990)

8. Dutta P., Guerraoui R. and Pochon B., Fast non-blocking atomic commit: an inherent trade-
off. Information Processing Letters, 91(4):195-200 (2004)

9. Fagin R., Halpern J. Y., Moses Y., and Vardi M. Y., Reasoning about knowledge. MIT Press
(2003)

10. Fischer M. and Lynch N., A lower bound for the time to ensure interactive consistency.
Information Processing Letters, 14:183-186 (1982)

11. Fischer M., Lynch N. A., and Paterson M. S., Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374-382 (1985)

12. Halpern J. Y., Moses Y., and Waarts O., A characterization of eventual byzantine agreement.
SIAM Journal on Computing, 31(3):838-865 (2001)

13. Keidar I., and Rajsbaum S., A simple proof of the uniform consensus synchronous lower
bound. Information Processing Letters, 85(1):47-52 (2003)

14. Lamport L., Shostack R., and Pease M., The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3)-382-401 (1982)

15. Moses Y., and Tuttle M. R., Programming simultaneous actions using common knowledge.
Algorithmica, 3:121–169 (1988)

16. Pease M., R. Shostak R., and Lamport L., Reaching agreement in the presence of faults.
Journal of the ACM, 27:228-234 (1980)

17. Lynch N.A., Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872
pages, ISBN 1-55860-384-4 (1996)

18. Raı̈pin Parvédy Ph. and Raynal M., Optimal early stopping uniform consensus in syn-
chronous systems with process omission failures. Proc. 16th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’04), ACM Press, pp. 302-310 (2004)

19. Raynal M., Fault-tolerant agreement in synchronous message-passing systems. Morgan &
Claypool Publishers, 189 pages, ISBN 978-1-60845-525-6 (2010)

20. Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515
pages, ISBN 978-3-642-32026-2 (2013)

21. Raynal M., Set agreement. 2d Edition of Springer Encyclopedia of Algorithms, pp. 1956-
1959 (2016)

22. Wang X., Teo Y. M., and Cao J., A bivalency proof of the lower bound for uniform consensus.
Information Processing Letters, 96:167-174 (2005)


