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ABSTRACT

Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and
emerging honey bees after exposure at larval stages with different concentrations in the food
(0.00001 ng/uL, 0.001 ng/uL and 1.44 ng/uL). Thiamethoxam reduced the survival of larvae and pupae
and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important
physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages
and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal
stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect

g;{:/ ;ﬁlszfem was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival,
Neonicotinoids emergence and physiology of honey bees may affect the development of the colony. These results
Larvae showed that attention should be paid to the exposure to pesticides during the developmental stages of
Pupae the honey bee. This study represents the first investigation of the effects of thiamethoxam on the
Toxicity development of A. mellifera following larval exposure.

Development

1. Introduction mass disappearance of bees in the United States (including colony
collapse disorder (CCD)) and, in numerous cases, by losses of
managed and wild pollinators in Europe and Asia (Stokstad, 2007;

Potts et al., 2010). This raises the discussion among beekeepers,

The honey bee Apis mellifera plays an important role at the
economic and environmental levels. It contributes to more than

80% of the total pollination in agriculture and plays an important
role in the pollination in ecosystems (Klein et al., 2007; Breeze et al.,
2011). Gallai et al. (2009) estimated that the economic value of
pollination in global scales is approximately €153 billion per year.
However, there is an increasing number of reports on the decline of
the bee population worldwide. This decline is characterized by the
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researchers, the chemical industry and governmental agencies
about the factors involved in this syndrome. Several causes have
been identified to explain the decline in the bee population, high-
lighting beekeeping management, agricultural practices, loss of
floral diversity, habitat fragmentation and rarefication, pathogens,
parasites and pesticides (Ratnieks and Carreck, 2010; Goulson et al.,
2015).

An epidemiological study was performed in 2013 to explain the
loss of honey bee colonies in Europe (Chauzat et al.,, 2013). If we
exclude the problems of diseases (e.g., varroosis or nosemosis), the
intoxication with pesticides could also, at least partially, explain the
colony losses. Among pesticides, neonicotinoid insecticides repre-
sent the main family of insecticides used worldwide (Blacquiere
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et al., 2012; Sparks and Nauen, 2014). They act as agonists of the
nicotinic acetylcholine receptors of insects (nAChR) (Tomizawa and
Casida, 2003). They are characterized by the systemic properties
and xylem and phloem transports enable them to be distributed in
all plant tissues and to contaminate pollen and nectar, the two main
food resources of bees (Rortais et al., 2005). They thus have adverse
effects on bees, such as behaviour impairment or morphological
and physiological disturbances (Henry et al., 2012; Goulson et al.,
2015). Therefore, the effects and the properties of neonicotinoids
suggest that they pose the greatest risk to honey bees (Sanchez-
Bayo and Goka, 2014).

Within this class of insecticides, thiamethoxam, a second-
generation neonicotinoid, can be regarded as an active substance
of high concern (Maienfisch et al., 2001). Honey bees can be
exposed to thiamethoxam and other neonicotinoids because they
usually explore areas in a radius up to 12 km around the hive to
collect floral resources, water and resins, increasing the risk of
exposure at lethal and sublethal levels (Beekman and Ratnieks,
2000).

In addition to honey bee foragers, larvae could also be exposed
to neonicotinoids from residues contained in pollen, nectar, water
and wax stored in the hive (Rortais et al., 2005; Desneux et al.,
2007; Couvillon et al., 2014; Sanchez-Bayo and Goka, 2014; John-
son, 2015). Thiamethoxam has been found at concentrations
ranging from 1 to 100 pg/kg in nectar, pollen and plant secretions
(and some other environmental matrices) (Blacquiere et al., 2012;
Bonmatin et al., 2014; Kessler et al., 2015) and at a concentration
of 0.6 pg/kg in beebread (Giroud et al., 2013).

The post-embryonic period of honey bees may be considered
crucial because the exposure to xenobiotics can cause irreversible
damage at the cellular, physiological and morphological levels,
which can jeopardize the development of the honey bee (Becher
et al, 2013; Tavares et al, 2015). At present, the side effects
induced by an exposure to neonicotinoids during the post-
embryonic period are poorly investigated (Desneux et al., 2007;
Blacquiere et al., 2012), although some studies have demon-
strated toxicity to bumblebees, which includes an increased mor-
tality, a reduced efficiency of pollen collection and a reduced
growth rate (Mommaerts et al., 2010; Whitehorn et al., 2012; Gill
et al., 2012; Elston et al., 2013; Laycock et al., 2014).

To study honey bee health, the approach involving the use of
biomarkers appears to be particularly pertinent to assess the
physiological responses of honey bees after exposure to xenobiotics
and to understand the mechanisms involved in the toxicity and the
adaptation to environmental changes (Jovanovic-Galovic et al.,
2004; Badiou-Beneteau et al., 2012; Boily et al., 2013; Carvalho
et al., 2013; Badawy et al., 2015). Some biomarkers are particularly
used to assess the physiological effects of environmental stressors.
Acetylcholinesterase (AChE, EC 3.1.1.7) is an enzyme that controls
the neuronal activity of cholinergic synapses (Badiou et al., 2008).
Carboxylesterases (CaE, EC 3.1.1.1) and glutathione-S-transferase
(GST 2.5.1.1.8) are phase I and phase II enzymes involved in the
detoxification and endocrine systems (Yu et al., 1984; Maxwell,
1992; Diao et al., 2006). Alkaline phosphatase (ALP, EC 3.1.3.1) hy-
drolyses the phosphate group of different substrates and is involved
in the absorption of substances, in intestinal integrity and ho-
meostasis, and in the immunity process (Moss, 1992; Millan, 2006;
Lalles, 2010).

In this study, we have investigated the effects of thiamethoxam
in larvae, pupae and emerging workers following exposure at the
larval stage. The study was focused on the success of post-
embryonic development and on the physiological disturbances
assessed by the modulation of the biomarkers AChE, GST, CaEp and
ALP.

2. Materials and methods
2.1. Chemicals

Thiamethoxam (98.5% pure) was purchased from Dr. Ehren-
storfer GmbH. Yeast extract, p-glucose, p-fructose, antipain, apro-
tinin, leupeptin, pepstatin A, soybean trypsin inhibitor,
monosodium phosphate, sodium chloride (NaCl), Triton® X-100,
acetylthiocholine iodide (AcSCh.I), 5,5'dithio-bis(2,nitrobenzoic
acid) (DTNB), reduced r-glutathione (GSH), ethylenediaminetetra-
acetic acid (EDTA), 1-chloro-2,4-dinitrobenzene (CDNB), Trizma®
base (Tris), hydrochloric acid (HCl), magnesium chloride (MgCly), p-
nitrophenyl phosphate (p-NPP), 1,5-bis(4-
allyldimethylammonium-phenyl)pentan-3-one-dibromide
(BW284C51) and p-nitrophenyl acetate (p-NPA) were obtained
from Sigma Aldrich (France). Royal jelly was purchased from Ick-
owicz Apiculture (Bollene, France).

2.2. Collection of honey bee larvae and maintenance during
development

Four colonies of Apis mellifera honey bees, previously checked
for their health status, were selected from the experimental apiary
of the Abeilles & Environment Research Unit (INRA, Avignon,
France). Each colony had 6 to 7 brood frames and was supervised
during the experiments to ensure good condition of the individuals.
Larvae rearing was performed according to the method developed
by Aupinel et al. (2005, 2007) and adopted by OECD (2013). To
obtain larvae of a known age, three days before the experiment,
combs containing empty cells were previously equipped with a
queen excluder and placed in the hive for egg laying. The fourth
day, 1st instar larvae were transferred into plastic queen-starter-
cells and placed in an incubator under controlled conditions
(34 + 2 °Cand 95 + 5% relative humidity (RH)). At the 7th day, the
RH was changed to 80% for the pupation period. On the 15th day
(emergence period), each plate was individually sealed with a thin
layer of beeswax so that each cell was individualized. In each cell,
orifices were made on the top to enable air exchange. The plates
were individually accommodated in pots upright, simulating col-
ony conditions. Temperature and RH were identical to those of the
pupation period. To feed the emerging honey bees, candy and
distilled water were provided ad libitum.

2.3. Larvae feeding

Larvae were provided with food at the daily intakes recom-
mended for each developmental stage (OECD, 2013). Food was
composed of 1 volume of royal jelly and 1 volume of an aqueous
solution containing 12% (w/v) glucose, 12% fructose and 2% yeast
extract (diet A); 15% glucose, 15% fructose and 3% yeast extract (diet
B); or 18% glucose, 18% fructose and 4% yeast extract, plus or minus
(control) thiamethoxam (diet C). The daily feeding of larvae (vol-
ume per diet and per day) was performed from the 1st day
(grafting) to the 6th day, except for the 2nd day, which was
considered a period of acclimatization. The diet was: 20 pL of diet A
on the 1st day, 20 pL of diet B on the 3rd day, and 30, 40, and 50 pL
of diet C on the 4th, 5th and 6th days, respectively.

2.4. Exposure to thiamethoxam

To expose larvae, three concentrations of thiamethoxam were
selected: 0.00001, 0.001 and 1.44 ng/uL of the diet. The two lowest
concentrations were close to the levels of residues found in nectar,
pollen and beebread (Rortais et al., 2005; Desneux et al., 2007;
Mullin et al., 2010; Blacquiere et al., 2012; Krupke et al., 2012;
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Stoner and Eitzer, 2012; Giroud et al., 2013; Pilling et al., 2013;
Bonmatin et al., 2014; Couvillon et al., 2014; Sanchez-Bayo and
Goka, 2014; Johnson, 2015; Kessler et al., 2015). The highest con-
centration was selected according to a previous study (Tavares
et al., 2015) and was equivalent to 1/10 of the LCs¢ in Africanized
Apis mellifera larvae. Thiamethoxam was added directly to the larval
food (diet C) from a stock solution prepared in distilled water after
purity correction. The control group received only the uncontami-
nated diet. Acute exposure was performed on the 4th day after
grafting (PG) by providing 30 puL of diet C containing thiamethoxam
at the appropriate concentrations. The concentrations of the stock
solutions of thiamethoxam were checked according to Wiest et al.
(2011), and the relative standard deviations (RS) were less than
10%. At the thiamethoxam concentrations used, the doses per
larvae were 0.0003, 0.03 and 43.2 ng/larvae. Larval mortality was
checked individually by observation under a stereomicroscope at
the 5th, 6th and 8th days PG. Pupal mortality was checked at the
11th, 13th and 15th days PG, and the percentage of adult emergence
enabled the estimation of the success of the pupae phase, which
occurred between the 15th and the 20th day PG. Bees were
considered emerging when individuals left the artificial cells. The
experiments were conducted from May to June 2014. For the bio-
assays, experimental replicates of 48 larvae from at least 3 colonies
were adopted. For each bioassay, an experimental duplicate or
triplicate was made n = 96 larvae per group or n = 144 larvae per
group, and data were analysed.

2.5. Analysis of the physiological markers

The samples collected at the different developmental stages
were 5th instar larvae, black-eye pupae with the cuticle slightly
tanned (Pdl) and newly emerged workers (emerging bees)
(Rembold et al., 1980; Michelette and Soares, 1993; Cruz-Landim,
2009). Different tissues were used for enzymatic analysis. AChE
and GST were extracted from the whole body of larvae and the head
of pupae and emerging bees. CaEp and ALP were extracted from the
whole body of larvae, the abdomens of pupae and the midgut of
emerging bees. For each enzyme and at each exposure condition
and developmental stage, 7 extracts each containing 3 body parts
were assayed in triplicate. Bee tissues were homogenized with
TissueLyser (Qiagen®) to make a 10% (w/v) tissue extract, for
5 x 10 s at 30 Hz, in the extraction medium composed of 10 mM
NaCl, 1% Triton X-100, 40 mM sodium phosphate, pH 7.4, and
containing 2 mg/ml antipain, 2 mg/ml leupeptin, 2 mg/ml pepstatin
A, 25 units/ml aprotinin and 0.1 mg/ml soybean trypsin inhibitor.
After homogenization, samples were centrifuged for 20 min at
15,000 g, and the supernatants were recovered for analysis. All
procedures were performed at 4 °C. Enzyme kinetics were followed
with a multimode microplate reader Infinite F500 (Tecan®) at 25 °C
in a final reaction volume of 200 pL. AChE activity was measured at
412 nm in a medium containing 0.3 mM AcSCh.], 1.5 mM DTNB and
100 mM sodium phosphate pH 7.0. GST activity was measured at
340 nm in a medium containing 2.5 mM GSH, 1 mM EDTA, 1 mM
CDNB and 100 mM Na/K phosphate, pH 7.4. CaEp activity was
measured at 410 nm in a reaction medium containing 0.01 mM
BW284C51, an AChE inhibitor, 0.1 mM of p-NPA and 100 mM so-
dium phosphate, pH 7.5. ALP activity was measured at 410 nm in a
medium containing 20 mM MgCl,, 2 mM p-NPP and 100 mM Tris-
HCI, pH 8.5.

2.6. Statistical analyses
All data were analysed using the statistical R Development Core

Team (2015). Survival data were analysed using the Cox propor-
tional hazards regression model (survival package), and significant

differences were denoted when P < 0.05. The influence of thia-
methoxam on emergence success was analysed by a chi-square test
that makes pairwise comparisons between exposed and control
groups, with 1 df and P < 0.001. Enzymatic data were analysed by
the pairwise Wilcoxon rank sum tests from the package “stats”.

3. Results
3.1. Honey bee survival

The exposure of larvae to thiamethoxam at the concentration of
1.44 ng/uL affected the survival of individuals with higher mortality
rates at day 8 (Cox model P < 0.01, Fig. 1). Pupae exposed to the
concentrations of 0.001 and 1.44 ng/uL exhibited a significant
decrease of the survival rate (Cox model P < 0.05, Fig. 2). However,
there was no effect on survival in larvae exposed to 0.00001 and
0.001 ng/uL and in pupae exposed to 0.00001 ng/uL thiamethoxam
(Figs. 1 and 2). Regarding the adult emergence rate, a significant
decrease was observed with exposures at the concentration of
0.001 and 1.44 ng/uL thiamethoxam because of the increased
mortality of larvae and pupae (Chi-Square test P < 0.001, Fig. 3).
Furthermore, independent of the experimental group, an increase
in mortality was observed during the periods of transition from
larvae to pupae, which occurred at day 13, and from pupae to adult,
which occurred at day 20 (Fig. 4).

3.2. Physiological effects of thiamethoxam

The physiological effects of thiamethoxam on individuals of
different ages (immature stages and adults) were assessed with
physiological biomarkers. Thiamethoxam modulated the activity of
AChE in larvae, pupae and emerging bees. Larvae exposed at
1.44 ng/uL showed an increase of AChE activity (5.51 + 1.26 and
7.56 + 0.40 mAU/min/mg tissue in control and exposed bees,
respectively) (Mann Whitney U tests, P < 0.05, Fig. 5). For pupae
and emerging bees, a significant increase of AChE activity was
observed in all thiamethoxam-exposed groups (Mann-Whitney U
test, P < 0.05, Fig. 5). For pupae exposed to thiamethoxam at
0.00001, 0.001 and 1.44 ng/uL, AChE activities were 61.06 + 11.54,
55.80 + 10.82 and 60.30 + 6.99 mAU/min/mg tissue, respectively,
and were higher than that of the control (of 40.99 + 6.93 mAU/min/
mg tissue). For emerging bees exposed to thiamethoxam at
0.00001, 0.001 and 1.44 ng/uL, AChE activities were 114.38 + 11.02;
11714 + 991 and 11747 + 8.77 mAU/min/mg tissue and were
higher than that of the control (93.2 8 + 9.89 mAU/min/mg tissue).

For the enzymes related to the metabolism of xenobiotics, the
activities of GST and CaEp showed significant increases only in
pupae (Mann-Whitney U tests, P < 0.05, Figs. 6 and 7). The activity
of GST was 202.26 + 6.99; 197.16 + 3.16 and 194.7 5 + 2.31 mAU/
min/mg tissue in pupae exposed to thiamethoxam at 0.00001,
0.001 and 1.44 ng/uL, respectively, and 188.82 + 6.27 mAU/min/mg
tissue in the control (Fig. 6). For CaEp, the activities were
201.88 + 6.99; 196.78 + 3.16 and 194.37 + 2.31 mUA/min/mg tissue
in pupae exposed to thiamethoxam at 0.00001, 0.001 and 1.44 ng/
uL, respectively, and 188.45 + 6.27 mAU/min/mg tissue in the
control (Fig. 7). No effect of thiamethoxam was observed in larvae
and emerging bees (Fig. 8). In the pupal stages, ALP activity was not
detected.

4. Discussion

Few studies have evaluated the effects of insecticides, and
particularly thiamethoxam, on the developmental phase of honey
bees, although the success of this phase is dependent on large
changes in tissues, such as the modelling of the brain (Chapman,
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Fig. 1. Effect of thiamethoxam on honey bee larvae survival. Bees were acutely exposed to thiamethoxam at the 4th day PG at the concentrations of 0.00001, 0.001 and 1.44 ng/
uL. The data represent the survival rate of larvae following exposure. Asterisks denote significant differences between exposed and control groups analysed by Cox proportional
hazards regression model (**p < 0.01). (n = 336 individuals per group from 7 replicates).
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Fig. 2. Effect of thiamethoxam on honey bee pupae survival. Bees were acutely exposed to thiamethoxam at the 4th day PG at the concentrations of 0.00001, 0.001 and 1.44 ng/
uL. The data represent the survival rate of pupae following exposure. Asterisks denote significant differences between exposed and control groups analysed by Cox proportional
hazards regression model (*p < 0.05 and **p < 0.01) (n = 240 individuals per group from 5 replicates).
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Fig. 3. Effect of thiamethoxam on the emergence success of honey bee adults. Bees were acutely exposed to thiamethoxam at the 4th day PG at the concentrations of 0.00001,
0.001 and 1.44 ng/uL. The percentage of emergence was calculated from the number of pupae in each experimental group: (i) control, n = 120; (ii) 0.00001 ng/uL, n = 107; (iii)
0.001 ng/uL, n = 111 and (iv) 1.44 ng/uL, n = 105. The comparisons between exposed groups and controls were performed with the Chi-square test with 1 df (*p < 0.001) (n = 144

individuals per group from 3 replicates). Asterisks denote significant differences between exposed and control groups. Bars represent the mean values + standard deviations from 3
repetitions.
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Fig. 5. Effects of thiamethoxam on acetylcholinesterase. Bees were acutely exposed to thiamethoxam at the 4th day PG at the concentrations of 0.00001, 0.001 and 1.44 ng/uL.
Acetylcholinesterase (AChE) activity was measured in 5th instar larvae (A), the head of pupae (Pdl) (B) and the head of emerging bees (C). Bars represent the mean values + SD of 7
repetitions performed in triplicate. Asterisks denote significant differences between exposed groups and their respective control groups analysed by Mann-Whitney U tests
(*p < 0.05, **p < 0.005).
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respective control groups analysed by Mann-Whitney U tests (*p < 0.05, **p < 0.005).

ClE

a2 = | Control
2 s 0.00001 ng a.i./uL
Y AN

o -~

£

= o _|

£ -

[ 1
< o

o)

E

> ©

=

8 < -

o

-

< N

[0}

=}

12}

o o -

=

Larvae

[ —
[ —

0.001 ng a.i./uL
1.44 ng a.i./uL

il

Newly-emerged

Phases of honey bee development

Fig. 8. Effects of thiamethoxam on alkaline phosphatase. Bees were acutely exposed to thiamethoxam at the 4th day PG at the concentration of 0.00001, 0.001 and 1.44 ng/uL.
Alkaline phosphatase (ALP) was measured in 5th instar larvae (A), the head of pupae (Pdl) (B) and the head of emerging bees (C). Bars represent the mean values + SD of 7

repetitions performed in triplicate. Mann-Whitney U tests (*p < 0.05, **p < 0.005).

1998; Roat and Landim, 2010), and is crucial for the fitness of adults
(Desneux et al., 2007; Yang et al., 2012; Cousin et al., 2013). This
study represents the first investigation on the effects of thiame-
thoxam on the development of A. mellifera after exposure at larval
stages. Our results demonstrate that acute exposures of A. mellifera
larvae to thiamethoxam reduce the survival of larvae, pupae and
the emergence rate of adult honey bees. They also disrupt the
physiology by modifying the activity of AChE, at all developmental
stages, and GST and CaEp at pupal stages.

Regarding larval survival, only the highest thiamethoxam con-
centration had a lethal effect on larvae. However, it is very impor-
tant to consider that delayed effects may occur during development
or at the adult stage. This can be exemplified by the concentration
of 0.001 ng/uL that did not change the survival rate of larvae but
decreased the survival of pupae and thus the percentage of
emerging bees. Grillone et al. (2017) in evaluating the effects of
thiamethoxam on the development of A. mellifera found different
sublethal late effects including like brownish larvae, duplication of
the pupal integument, delay in development, and deformed adults.

In addition to survival, it should be considered that late effects

on development can occur and that the functional integrity of
adults may be impaired. Thus, exposure to neonicotinoids at doses
that did not induce mortality in larvae can impair learning per-
formance in adults (Yang et al., 2012) or can induce the appearance
of atypical neurons in the brains of larvae (Tavares et al., 2015).

The effects on survival were observed only from the 8th day.
Thus, it is possible to assume that both thiamethoxam and its
metabolites are involved in the toxicity. This assumption is in
accordance with the results showing that neonicotinoids may
accumulate in bee tissues and that metabolites are involved in the
toxicity through a metabolic relay (Suchail et al., 2001, 2004; Yang
et al,, 2012; Zhu et al., 2014). In addition, as honey bee larvae do no
defecate until the pupal stage, metabolites may accumulate and
thus increase the toxicity of the parent substance (Michelette and
Soares, 1993; Cruz-Landim, 2009; Suchail et al., 2001, 2004).

In this study, it was observed that mortality presented peaks
that coincided with the periods of transition in the development,
larva to pupa (13-d) and pupa to adult (20-d) both in control and
exposed individuals. This outcome not only highlights the impor-
tance of these periods in the success of honey bee development
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(Cruz-Landim, 2009) but also reveals that these periods should be
considered at risk for exposures to pesticides. Thus, effects on the
survival of pupae and adult emergence might originate from a
particular susceptibility during metamorphosis.

After exposure to thiamethoxam, pupae and emerging bees
exhibit a significant increase in AChE activity in all exposed groups.
AChE is an enzyme that hydrolyses the neurotransmitter acetyl-
choline (ACh) in cholinergic synapses for the rapid and precise
control of nerve transmission (Massoulié et al., 1993; Badiou et al.,
2008). Thus, the increase of AChE might be a biological response to
compensate the permanent activation of cholinergic neurons due
to the strong binding of thiamethoxam to nicotinic acetylcholine
receptors (nAChR). However, whatever the mechanisms by which
AChE is increased, these results exemplify the interest in AChE as a
pertinent biomarker of exposure to neonicotinoids (Boily et al.,
2013; Badiou-Beneteau et al., 2013).

CaEp and GST are phase I and phase Il enzymes involved in the
detoxification of xenobiotics (Claudianos et al., 2006; Badawy et al.,
2015; Berenbaum and Johnson, 2015; Dussaubat et al., 2016). CaEp
and GST showed an increase in activity during the pupal stage and
in the individuals of all exposed groups. Their activity could have
increased as a biological response to detoxify thiamethoxam.
However, GST is also involved in the detoxification of reactive ox-
ygen species, and its increase could be the consequence of the in-
duction of oxidative stress by thiamethoxam (Kostaropoulos et al.,
2001; Barata et al., 2005; Babczynska et al., 2006). In addition,
under normal conditions the amount of GST is higher in pupae than
in larvae and adults, as reported by Diao et al. (2006) and according
to our results. Since there is a high amount of this enzyme in the
pupae phase, its increase following exposure to thiamethoxam
should be a rapid physiological protective response. Nielsen et al.
(2000) evaluated the effect of flumethrin on Apis mellifera lingus-
tica Spinola, and also observed an increase of GST in larvae, pupae
and nurse bees, which is more notable in larvae and pupae. This
demonstrates the importance of GST in detoxification during the
pupal phase and suggests that its activity may be very important in
the metabolization of insecticides during this phase.

Concerning carboxylesterases, these enzymes appear very sen-
sitive to the exposure to pesticides and can be easily modulated by
neonicotinoids, as shown for CaEo, CaEf and CaEp (Badiou-
Beneteau et al,, 2012; Dussaubat et al., 2016). They are enzymes
that besides being involved in detoxification, also act in the
degradation of the juvenile hormone during the development of
A. mellifera. Since juvenile hormone is associated with develop-
ment, we can relate the high amount of carboxylesterases in the
pupal phase with the decrease of the juvenile hormone that occurs
at this stage (Truman and Riddiford, 1999). For larvae and newly-
emerged honey bees, there were no differences in the enzymatic
activity of GST and CaEp. It is important to consider that each stage
of life must rely on its specific defence mechanisms. For example,
larvae have a large amount of fat body that probably plays an
important role in detoxification because this tissue is rich in cyto-
chromes P450. For adults honey bees, the susceptibility of
A. mellifera to xenobiotics may also be related to the fact that there
is a low amount of GST and other detoxification enzymes
(Claudianos et al., 2006).

The basic structure of the intestine of larvae and pupae is similar
but, during metamorphosis, the intestine is extensively reorganized
to fit the body of the adult bees (Cruz-Landim, 2009; Moss, 1992).
However, ALP activity was not detected during the pupal stage. This
could be due to the fact that this enzyme is involved in the hy-
drolysis of phosphate groups and in the absorption of substances
not present in the food of pupae.

We demonstrated that the exposure of A. mellifera larvae to
thiamethoxam, at concentrations similar to or lower than those

found in field, may affect the survival rate, the emergence success
and the physiology of bees at the larval, post-embryonic and adult
stages. It is legitimate to think that these effects may jeopardize the
survival of A. mellifera colonies, alone or in combination with effects
induced by other chemical or biological stressors. These results are
important for the process of pesticide registration because they
emphasize the necessity of assessing the toxicity of plant protection
products on developmental stages.
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