
HAL Id: hal-01559688
https://hal.science/hal-01559688

Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Diagnosis Framework for Critical Systems Verification
Vincent Leilde, Vincent Ribaud, Ciprian Teodorov, Philippe Dhaussy

To cite this version:
Vincent Leilde, Vincent Ribaud, Ciprian Teodorov, Philippe Dhaussy. A Diagnosis Framework for
Critical Systems Verification. 15th International Conference on Software Engineering and Formal
Methods, SEFM 2017, Sep 2017, Trente, Italy. Short Papers 1-6. �hal-01559688�

https://hal.science/hal-01559688
https://hal.archives-ouvertes.fr


A Diagnosis Framework for Critical Systems
Verification (Short Paper?)

Vincent Leildé1, Vincent Ribaud2, Ciprian Teodorov1, and Philippe Dhaussy1

1 Lab-STICC, team MOCS, ENSTA-Bretagne, rue François Verny, Brest, France
firstname.lastname@ensta-bretagne.fr,

2 Lab-STICC, team MOCS, Université de Bretagne Occidentale, Avenue le Gorgeu,
Brest, France Vincent.Ribaud@univ-brest.fr

Abstract. For critical systems design, the verification tasks play a cru-
cial role. If abnormalities are detected, a diagnostic process must be
started to find and understand the root causes before corrective actions
are applied. Detection and diagnosis are notions that overlap in common
speech. Detection basically means to identify something as unusual, di-
agnosis means to investigate its root cause. The meaning of diagnosis
is also fuzzy, because diagnosis is either an activity - an investigation -
or an output result - the nature or the type of a problem. This paper
proposes an organizational framework for structuring diagnoses around
three principles: that propositional data (including detection) are the in-
puts of the diagnostic system; that activities are made of methods and
techniques; and that associations specialize that relationships between
the two preceding categories.

Keywords: Diagnosis, Verification, Critical systems, Framework

1 Introduction

Critical systems are concerned by dependability, i.e. the ability of an entity to
perform as and when required [3], that requires the means of improving the
quality of systems design. This should be realized in three cyclical phases: ver-
ification, diagnosis and correction. Verification aims to demonstrate whether a
system meets specification properties. This may be achieved using various tech-
niques such as static analysis, simulation or model checking. Model checking is
an automated technique that, given a finite-state model of a system and a formal
property, systematically checks whether this property holds for that model [4].
If a property is violated, a counter-example is produced as a trace from the ini-
tial state to the state in which the error was detected. This triggers a diagnosis
process (generally carried out through detection, localization and identification
tasks) that aims to outline the violation root causes. Consequently, the system
is corrected and the design cycle repeated.

? This is a short paper accepted in the new ideas and work-in-progress section of
SEFM 2017.



There are many frameworks and approaches for performing a diagnosis [2, 5,
6, 11, 13], all of which face the following two issues. First, poor management and
control [19] of the verification process produces a profusion of heterogeneous in-
terrelated models that makes it more difficult to understand errors, for instance,
localizing the relevant parts in a detailed source-level trace to identify why a
verification run failed [10]. Second, diagnosis is also loosely formalized. As a re-
sult, models produced during the design and verification process are not well
adapted to diagnosis tasks. Therewith, diagnosis is weakly integrated with other
activities and interoperability between tools and processes is not easily achieved.

For the above reasons, understanding and formalizing the diagnosis is in-
tended to foster the definition of diagnosis tools and methodologies, and reduce
the set of diagnoses. If diagnosis is applicable in different fields (medicine, plant
and process supervision), frameworks differ, and cannot be fully applied to trace-
based diagnosis. We propose an organizational framework for diagnosis systems,
based on three concepts: activity, propositional object and association.

2 Background

If model checking is often dedicated to faults detection, some frameworks also
employ it for faults localization. For instance, slicing-based approaches [21] use
dependency analysis to retrieve the set of elements which contains the fault.
State space reduction [13] aims at reducing the state space size by exploiting the
concurrent transitions commutativity. Ball et al. [5] introduced an approach to
compare the counter-examples with successful traces and thus isolate faulty state
transitions. In [6], the authors propose a Symbolic Model Checking framework
for safety analysis diagnosis. These approaches focus on trace processing, and the
identification task, i.e. identifying the specific nature of faults, is not considered.
Consequently, a semantic gap between design models and traces still holds.

Some approaches allow for a complete diagnostic. For instance in [11], the
authors define a framework that combines an abductive model-based diagnosis
approach with a Labelled Transition System. This kind of method is also experi-
enced by [2], who associated logic learning with trace-based diagnosis and error
correction using positive and negative traces. These approaches are restricted
to one diagnosis technique, model-based, that imposes the presence of either a
fault or a well-functioning model, which is not always available.

Venkatasubramanian [20] has broadly classified fault diagnosis methods into
quantitative model-based methods, qualitative model-based methods, and pro-
cess history-based methods. This classification provides a large spectrum of
methods and techniques, but focuses on industrial processes, and put aside im-
portant techniques for trace-based diagnosis like interaction-based techniques.

To the best of our knowledge, there are no frameworks for characterizing diag-
nosis systems, unrestricted to any diagnosis techniques, activities or application
domains. Therefore, we focus on understanding diagnosis in order to identify a
core set of concepts that can be applied for any diagnoses systems.



3 Conceptual Framework

We propose a framework for characterizing diagnosis systems, not restricted to
a diagnosis technique or method. We start from a general definition of diagnosis
given by Merriam Webster [1] : ”diagnosis is an investigation or analysis of the
cause or nature of a condition, situation, or problem”. This framework is based
on three concepts: - Activity, a set of mechanisms or tasks used to perform the
diagnosis; - Propositional object, tangible or immaterial, produced or consumed
by activities ; - Association between propositional objects and activities.

3.1 Activities

The foremost part of the diagnosis definition refers to an activity, whether an
investigation or an analysis. An activity is a set of cohesive tasks. Activities and
tasks use mechanisms as means to achieve their outcomes.

Diagnosis tasks. According to the literature, diagnosis systems support
three main tasks, fault detection, isolation, and causal analysis [20].

Fault detection establishes that a system run raises so-called abnormal event.
In the particular case of verification by model checking, detection is done by
model checking itself.

When a diagnosis is required, the ensuing step consists in isolating the subset
of elements, part of models, that needs to be corrected [9]. Isolation is performed
through various techniques, such as slicing-based approaches [21], state space
reduction techniques [13] or counter-example comparisons [5].

Once suspicious elements are localized, the causal analysis task, associates
causes to the observed abnormalities. This is generally a reasoning process, either
deductive, inductive or abductive. Deduction is concerned by deducting knowl-
edge from already learned knowledge, induction identifies general rules from
observations, and abductive reasoning discovers causes from facts by elaborat-
ing hypothesis. Each type of reasoning fits with a different situation, abduction
produces ideas and concepts to be explained, then induction contributes to the
construction of the abductive hypothesis by giving it consistency, finally deduc-
tion formulates a predictive explanation from this construction [8].

Mechanisms. Activities and tasks are supported by a set of mechanisms,
including tools and methods, that can be organized in model-based or process
history-based category. We complete the list with an interaction-based category,
relevant for trace-based diagnosis.

Model-based mechanisms assume that a model of the system is available, rep-
resenting its correct (consistency-based) [18] or abnormal (abductive-based)[22]
behavior. In consistency-based, the reasoning consists in rejecting a set of as-
sumptions using the correct behaviour, to restore consistency with (abnormal)
observations [7]. In the opposite, abductive-based reasoning works with causes
and effects models, for instance using Inductive Logic Programming to provide
automated support for correcting the errors identified by model checking [2].

Process-history based mechanisms relies on the availability of large amount of
historical process data. Mechanisms may use knowledge extraction techniques,
like data mining or statistical analysis. Liu [15] uses statistical models to remove



false positive counterexamples. Probabilities can also be applied, using decision
trees or Bayesian networks. In machine learning approach, neural networks and
case-based reasoning try to reproduce the human way of reasoning. When a
strong expertise is available, one can simply use expert systems gathering prob-
lems set, rules and an inference engine.

Interactions-based mechanisms allow for observing, controlling, understand-
ing and altering the system execution. By storing the execution traces, omni-
scient debuggers enable back-in-time navigation features, postmortem query pro-
cessing, trace-analysis and reduction facilities, and execution replay [17]. Besides,
a large number of visualization tools exists [12], including diagram structures
ranging from waveforms, finite state machines and business representations.

3.2 Propositional Objects

Activities handle different kinds of information [1], whether ”situation or prob-
lem”. As information may be tangible or immaterial, we define any information
items as propositional objects that are, or represent sets of propositions about
real or imaginary things.

Set of circumstances. Situation or problem are related to propositional
objects. A situation is a way in which something is positioned with respect to
its surroundings [1]. Regarding model checking, propositional objects comprises
design models, properties, exploration graphs or model checker configurations.
A problem is a difficulty that has to be resolved or dealt with [1]. Thus situation
and problem are generalized in a concept called set of circumstances.

Observation. Problems are revealed by symptoms, a special case of observa-
tions, which are effects or visible consequences of the passage of the system into
an abnormal state. Regarding model checking it includes counterexamples. As
stated by [18], ”real world diagnostic settings involve observations, and without
observations, have no way determining whether something is wrong and hence
whether a diagnosis is called for”.

3.3 Associations

”Cause or nature” are both diagnoses, i.e. statements or conclusions from diag-
nosis analysis [1]. A diagnosis specializes an association between activities and
propositional objects. Following a systemic triangulation, we organize diagnoses
in three viewpoints, causality, concerned with functional aspects, nature, con-
cerned with structural aspects, and evolution, concerned with historical aspects.

Causality is defined by [16] as a sequence of linked events. Consider for
instance a car with flat tires that suddenly slips on a water poll, resulting to an
accident. The accident is a succession of related events. Closed to our concerns,
a Fault, an Error and a Failure are considered for [3] as causal events, a fault
may produce an error, which may lead to a failure.

Nature consists in determining the type, the characteristics or the essence
of something, ”what the object is”. By taking up the example of a car, the
owner inspects each tires and finds that some are more damaged than others,
and classifies one tire in the category ”too flat”. The nature association itself
can be refined in more specific relations, like generalization or specialization.



Evolution represents the historical, that is linked to the evolutionary nature
of the system, ”what the system was or is becoming”. For instance, a man is
driving when an impact happen closed to the car wheels. He remembers he found
one flat tire during his last car inspection, and supposes the tire is scratched.

4 Framework by example

Fig. 1. Full adder

We present different kind of diagnosis systems using
our framework, each pursuing a different objective.
We refer to the classical example of a one bit adder,
see in Fig. 1 an illustration from wikimedia commons
Full-adder.svg. A full adder is composed of two AND
gates, two XOR gates, and one OR gate.

(Analysis ∨ Investigation) (Analysis ∨ Investigation) (Analysis ∨ Investigation)

of the of the of the

(Cause ∨ Nature ∨ Evolution) (Cause ∨ Nature ∨ Evolution) (Cause ∨ Nature ∨ Evolution)

of a of a of a

(Situation ∨ Problem) (Situation ∨ Problem) (Situation ∨ Problem)

⇒ Pedagogical objective ⇒ Curative objective ⇒ Prognosis objective

Table 1. Diagnosis Systems Examples

An analysis of the nature of a situation
pursues a pedagogical objective. If we are not aware
of the purpose of a digital circuit, we might build the truth table which sets
out the output values for each combination of input values. The truth table is a
diagnosis that helps to understand how the circuit works (assuming the circuit
behavior is normal). The analysis associates outputs (observations) to inputs
(facts) and tries to figure out the nature of the circuit. Regarding verification,
simulation activity helps to understand the way the system behaves, or ensure
it behaves correctly.

An investigation of the cause of a problem pursues a curative objective.
Consider we expect from the circuit a full adder behavior, and thus one expected
property is P1 : ”for the set of entries A=1, B=1 and C=1, the result is S=1
and Cout=1”. Assume that the XOR gate X1 was inadvertently replaced by
an OR gate. Then the output of the circuit conflicts with the property P1, i.e.
S=0 and Cout= 1”, and we must investigate the cause of the failure. Regarding
model checking, if a violation of functional specifications is discovered by a model
checker. One has to correct the design or model accordingly.

An analysis of the evolution of a situation pursues a prognosis objec-
tive. Given a set of properties (probably non-exhaustive), running the model
checker over the set without any errors yields an indication that the circuit, as
far we know, behaves correctly. The underlying diagnosis is used as a prognosis
of circuit major dysfunctions. In software, design patterns, like security patterns,
are prevention mechanisms. Regarding model checking of system design, if we
consider a set of historical state spaces, one could apply design prognosis by
using statistical and probability analysis.



5 Conclusion
In this paper we presented core concepts of a framework for understanding diag-
nosis. We believe that this set of concepts will enable the exploration of the pos-
sible and constrained compositions of diagnostic systems, reducing the minimal
set of diagnoses. This work paves the way for the construction of an organizing
system, an ongoing work [14], for storing system data (propositional objects),
interpreting them (association), and diagnosing the critical systems (activities).

References

1. Dictionary | Merriam-Webster, https://www.merriam-webster.com
2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support for diagnosis

and repair. Communications of the ACM 58(2), 65–72 (2015)
3. Aviienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy

of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on 1(1), 11–33 (2004)

4. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press, Cambridge,
Mass (2008)

5. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: ACM SIGPLAN. vol. 38. ACM (2003)

6. Bertoli, P., Bozzano, M., Cimatti, A.: A symbolic model checking framework for
safety analysis, diagnosis, and synthesis. In: MoChArt’16. pp. 1–18. Springer (2006)

7. Bourahla, M.: Model-Based Diagnostic Using Model Checking. IEEE (2009)
8. Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in

verification by AI techniques. Artificial Intelligence 112(1), 57–104 (1999)
9. Cleve, H., Zeller, A.: Locating causes of program failures. p. 342. ACM Press (2005)

10. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model
Checking Software, pp. 121–136. Springer (2003)

11. Gromov, M., Willemse, T.A.: Testing and model-checking techniques for diagnosis.
In: Testing of Software and Communicating Systems, pp. 138–154. Springer (2007)

12. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: CASCON ’04. pp. 42–55. IBM Press (2004)

13. Holzmann, G.J.: The Theory and Practice of A Formal Method: NewCoRe. In:
IFIP Congress (1). pp. 35–44 (1994)

14. Leilde, V., Ribaud, V., Dhaussy, P.: An Organizing System to Perform and Enable
Verification and Diagnosis Activities. In: IDEAL. pp. 576–587. Springer (2016)

15. Liu, Y., Xu, C., Cheung, S.: AFChecker: Effective model checking for context-aware
adaptive applications. Journal of Systems and Software 86(3), 854–867 (Mar 2013)

16. Mackie, J.L.: The cement of the universe: a study of causation. Clarendon library of
logic and philosophy, Clarendon Press, Oxford, 5. dr. edn. (1990), oCLC: 258760915

17. Pothier, G., Tanter, ., Piquer, J.: Scalable omniscient debugging. ACM SIGPLAN
Notices 42(10), 535–552 (2007)

18. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence (1987)
19. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. International Jour-

nal on Software Tools for Technology Transfer (STTT) 4(2), 246–259 (Feb 2003)
20. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault

detection and diagnosis. Computers & Chemical Engineering 27(3) (Mar 2003)
21. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.

Automated Software Engineering 10(2), 203–232 (2003)
22. Wotawa, F., Rodriguez-Roda, I., Comas, J.: Abductive Reasoning in Environmen-

tal Decision Support Systems. In: AIAI workshops. pp. 270–279. Citeseer (2009)


