Aurélien Froger 
email: aurelien.froger@cirrelt.ca
  
Jorge E Mendoza 
  
Ola Jabali 
  
Gilbert Laporte 
  
  
A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations

Keywords: Electric vehicle routing problem with nonlinear charging function, mixed integer linear programming, benders decomposition, matheuristic

Existing research on Electric vehicle routing problems (E-VRPs) assumes that charging stations (CSs) can simultaneously charge an unlimited number of electric vehicles. In practice, however, CSs have a limited number of chargers. In this research, we investigate the impact of considering these capacity restrictions. We focus on the electric vehicle routing problem with nonlinear charging function (E-VRP-NL). We first extend existing mixed integer linear programming formulations of the E-VRP-NL to deal with capacitated CSs. We then present a route-first assemble-second matheuristic to tackle the problem. In the first stage of this method, we rely on an existing metaheuristic to generate a pool of high-quality routes while relaxing the capacity constraints. In the second stage, we use a Benders' like decomposition to assemble a solution to the problem by assembling routes from the pool. We evaluate four different assembling strategies.

The results suggest that our algorithm performs well on a set of instances adapted from the literature.

Introduction and motivation

Electric vehicle routing problems (E-VRPs) started to be studied by the Operational Research (OR) community only recently. They consist in designing routes to serve a set of customers using a fleet of electric vehicles (EVs). Due to their relatively short driving range the EVs can detour to charging stations (CSs) to replenish their battery. Decisions in E-VRPs concern not only the sequence in which the customers are to be served, but also where and how much to charge the batteries. It is safe to say that one of the key elements in E-VRPs is the modeling of the charging process. For instance, some studies assume that the vehicle is fully replenished whenever they detour to a CS. In the green vehicle routing problem (G-VRP) tackled by [START_REF] Erdogan | A green vehicle routing problem[END_REF], [START_REF] Koc | The green vehicle routing problem: A heuristic based exact solution approach[END_REF], [START_REF] Montoya | A multi-space sampling heuristic for the green vehicle routing problem[END_REF], andBartolini and [START_REF] Bartolini | An exact algorithm for the green vehicle routing problem[END_REF], charging an EV is done in constant time, while in [START_REF] Schneider | The electric vehicle-routing problem with time windows and recharging stations[END_REF], [START_REF] Hiermann | The electric fleet size and mix vehicle routing problem with time windows and recharging stations[END_REF], [START_REF] Keskin | Partial recharge strategies for the electric vehicle routing problem with time windows[END_REF], and [START_REF] Desaulniers | Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows[END_REF] the charging time linearly depends on the state of charge (SoC) of the EV at its arrival at the CS. The full charging policy may be too restrictive. To overcome its drawbacks and to potentially save energy and time, one possibility is to allow partial recharge. This policy has been investigated in [START_REF] Bruglieri | A variable neighborhood search branching for the electric vehicle routing problem with time windows[END_REF], [START_REF] Desaulniers | Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows[END_REF], [START_REF] Felipe | A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges[END_REF], [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF], and [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF]. The latter three have studied the case in which, like in practice, CSs may have different technologies. Additionally, to account for the nonlinear relation between the time spent charging and the amount of energy charged, [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] and [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] modeled charging functions using piecewise linear expressions. This results in the definition of the electric vehicle routing problem with nonlinear charging function (E-VRP-NL).

It is noteworthy that the above-mentioned assume that the charging infrastructure is private, that is, that the CSs are always available. This is a plausible assumption, since large companies can decide to invest in their own Infrastructure to avoid dealing with the uncertainty in CSs availability (e.g, queues). However, to the best of our knowledge, one of the key assumptions in the E-VRPs defined in the literature is that the CSs are uncapacitated, that is, they are able to simultaneously handle an unlimited number of EVs. In practice, however, each CS has a limited number of chargers which limits the number of EVs charging at the same time. Needless to say, neglecting the CS capacity constraints may lead to poor decisions in practice. For instance we ran a feasibility test on the 120 BKS for the E-VRP-NL reported in [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] limiting the number of chargers per CS to 1, 2, 3, and 4. According to our results, nearly 50% of the [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] solutions become infeasible when only 1 charger is available. This figure drops to 11% and 2% for the cases with 2 and 3 chargers. On the other hand, when 4 chargers are available, all solutions remain feasible. It is worth noting that if a company decides to invest in out-of-the-depot charging infrastructure, there are few chances that they decide to install more than a couple of chargers at each CS. AppendixA presents the details of our feasibility test.

In this research we focus on the E-VRP-NL and we extend it to consider capacitated CSs. We call the resulting problem the E-VRP-NL with capacitated CSs (E-VRP-NL-C). We first propose several modeling alternatives for the E-VRP-NL-C built on top of existing 1 MILP formulations of the E-VRP-NL. Then, we present a two-stage matheuristic to tackle the problem. The first stage of the algorithm consists in building a pool of routes while not taking the capacity constraints into account. The second stage of the algorithm assembles the routes from the pool to build a solution to the E-VRP-NL-C. We propose different strategies based on a Benders' like decomposition of the assembling problem. More specifically, the overall scheme of the approach consists in solving a set partitioning model and discarding, by means of cuts, all along the branch-and-bound tree, selections of routes that are infeasible or for which the total time is underestimated.

The remainder of this document is organized as follows. Section 2 formally introduces the E-VRP-NL-C. Section 3 describes MILP formulations of the problem. Section 4 presents a two-stage matheuristic approach to tackle the E-VRP-NL-C. Section 5 shows the computational results of our carried out experiments. Finally, Section 6 concludes and outlines research perspectives.

Problem description

We define the electric vehicle routing problem with nonlinear charging function and capacitated stations (E-VRP-NL-C) as follows.

Let I be the set of customers that need to be served and F the set of charging stations (CSs) at which the vehicles can stop to recharge their battery. Each customer i I has a service time g i . The customers are served using an unlimited and homogeneous fleet of EVs. The vehicle driving-range is limited by a route duration limit T max . All the EVs have a battery of capacity Q (expressed in kWh). At the beginning of the planning horizon, the EVs are located in a single depot that they leave fully charged. Traveling from one location i (the depot, a customer, or a CS) to another location j incurs a driving time t ij ¥ 0 and an energy consumption e ij ¥ 0. Driving times and energy consumption both satisfy the triangular inequality. Due to their limited battery capacity, EVs may require to stop en route at CSs. Charging operations can occur at any CS and EVs can be partially recharged.

Each CS i F has a capacity, given by the number C i of available chargers. Each CS has also a piecewise linear charging function Φ i p∆q that maps for an empty battery the time ∆ spent charging at i to the SoC of the vehicle when it leaves i. If q is the SoC of the EV when it arrives at i and ∆ the charging time, the SoC of the EV when it departs from i is given by Φ i p∆ Φ ¡1 i pqqq. We denote as B i t0, . . . , b i u the set of breakpoints of the charging function at i (sorted in ascending order). We also introduce c ik and a ik to represent the charging time and the SoC for breakpoint k B i of the CS i. For notational convenience, let ρ ik denote the slope of the segment between c i,k¡1 and c ik (i.e. ρ ik pa ik ¡ a i,k¡1 q{pc ik ¡ c i,k¡1 q) and η ik the y-intercept of the segment between c i,k¡1 and c ik (i.e. η ik a ik ¡ c ik ρ ik ).

Feasible solutions to the E-VRP-NL-C satisfy the following conditions: 1. each customer is visited exactly once by a single vehicl; 2. each route starts and ends at the depot 3. each route satisfies the maximum-duration limit T max 4. each route is energy-feasible (i.e., the SoC of an EV when it arrives at and departs from any location is between 0 and Q) 2 5. no more than C i EVs simultaneously charge at each CS i F

The objective of the E-VRP-NL-C is to minimize the total time. The latter takes into account driving, service, and charging times. Due to the limited availability of CSs, it also includes the waiting times that may occur at CSs whenever an EV queues for a charger.

Mixed-integer linear programming formulations

In this section we extend the formulations propose in [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] for the closelyrelated E-VRP-NL to deal with CS capacity constraints. Their formulations belong to two different families: CS replication-based formulations and recharging path-based formulations. The former share the spirit of the MILP formulations that are most typically used in the E-VRP literature. The latter, on the other hand, correspond to an alternative modeling strategy. According to their results recharging path-based formulations outperform CS replication-based formulations. We, however, decided to explore both types of formulations for the E-VRP-NL-C.

CS replication-based formulation

Similarly to the E-VRP-NL, the E-VRP-NL-C can be defined on a digraph G pV, Aq, where V t0u I F I is the set of nodes and A is the set of arcs connecting nodes of V . The symbol 0 represents the depot. The set F I contains β i copies of each CS i F (i.e., |F I | °iF β i ). The value of β i corresponds to an upper bound on the number of visits to CS i. Note that β i must be strictly greater than C i ; otherwise, the capacity constraints are redundant. In the remainder of this manuscript, depending on the context, we refer to an element of F I or F I i as a CS copy or as a charging operation. We denote as F I i F I the set containing the β i copies of CS i (i.e., |F I i | β i and F I iF F I i ). We assume that F I i is an ordered set and that its elements are numbered from 1 to β i . We use the preprocessing technique presented in [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] to reduce the number of arcs in A. In a nutshell, this technique primarily removes arcs that can never been traveled as regards to the battery capacity.

The baseline model

According to the experiments carried out in [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF], the best formulations of the E-VRP-NL use arc-based tracking variables for the SoC and the time. Binary variable x ij is 1 if and only if an EV travels arc pi, jq A. Continuous variables τ ij and y ij track (respectively) the time and SoC of an EV when it departs from vertex i V to travel arc pi, jq. If no vehicle travels between nodes i and j, both variables are 0. Continuous variables q i and o i specify (according to the piecewise linear approximation of the charging function) the SoC of an EV when it arrives at and departs from CS copy i F I . Continuous variable ∆ i represents the duration of the charging operation performed at CS copy i F I . Let i F I be a CS copy and k B i zt0u. We introduce the continuous variable φ ik representing the amount of energy charged at i on the segment that lies between the points pc i,k¡1 , a i,k¡1 q and pc ik , a ik q. We also introduce the binary variable ω ik taking the value of 1 if and only if an EV charges at i on the segment between the points pc i,k¡1 , a i,k¡1 q and pc ik , a ik q. In the E-VRP-NL, optimal solutions are left-shifted schedules. Indeed, when minimizing the total time, there is no advantage to wait before serving any customer or before charging at any CS. In the E-VRP-NL-C, this does not hold since there are coupling constraints between the routes. As a matter of fact, it may sometimes be profitable to wait at a CS for an available charger rather than to go to another CS. Without loss of generality, we restrict waiting times to occur only before charging operations. We introduce a continuous variable ∇ i representing the waiting time of an EV before the start of the charging operation i F I . By adapting the existing CS replication-based formulations of the E-VRP-NL, a baseline model of the E-VRP-NL-C denoted as rF CS s, is written as follows:

rF CS s min i,jV t ij x ij i F I p∆ i K∇ i q iI g i (1)
subject to pi,jqA

x ij 1, di I (2)
pi,jqA

x ij ¤ 1, di F I (3) pj,iqA x ji ¡ pi,jqA x ij 0, di V (4) pi,jqA py ij ¡ e ij x ij q pj,lqA y jl , dj I (5) 
pi,jqA py ij ¡ e ij x ij q q j , dj F I (6) pj,lqA

y jl o j , dj F I (7) y ij ¤ ¢ Q ¡ min lF t0u e li x ij , dpi, jq A (8) 
y ij ¥ ¢ e ij min lF 0 e jl x ij , dpi, jq A (9) 
q i φ ik ¤ a ik ω ik Qp1 ¡ ω ik q, di F I , dk B i zt0u (10) 
φ ik ¤ pa ik ¡ a i,k¡1 qω ik , di F I , dk B i zt0u (11) 
ķBizt0u

ω ik ¥ pi,jqA x ij , di F I (12) ω ik ¤ pi,jqA x ij , di F I , dk B i zt0u (13) 
o i q i ķBizt0u φ ik , di F I (14) ∆ i ķBizt0u φ ik {ρ ik , di F I (15) pi,jqA,i$0 pτ ij pt ij p j q x ij q pj,lqA τ jl , dj I (16) pi,jqA:i$0 pτ ij t ij x ij q ∆ j ∇ j pj,lqA τ jl , dj F I (17)

4

A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31

τ ij ¤ pT max ¡ t ij ¡ p j ¡ t j0 q x ij , dpi, jq A : i $ 0, j I (18) τ ij ¤ T max ¡ t ij ¡ ∆ min j ¡ t j0 ¨xij , dpi, jq A : i $ 0, j F I (19)
ph,jqA

x hj ¤ ph,lqA x hl , di F, dj, l F I i , j l (20) 
pj,hqA:j$0

τ jh ¡ ∆ j ¥ pl,hqA:l$0 τ lh ¡ ∆ l , di F, dj, h F I i : j l (21) x ij t0, 1u, dpi, jq A (22) 
τ ij ¥ 0, dpi, jq A : i $ 0 (23)
y ij ¥ 0, dpi, jq A (24) 
q i ¥ 0, o i ¥ 0, ∆ i ¥ 0, di F I (25) φ ik ¥ 0 di F I , dk B i zt0u (26) 
ω ik t0, 1u di F I , dk B i zt0u (27) 
Equation ( 1) gives the objective of the problem. It includes the driving, service, and charging times, but also a weighted sum (with a parameter K ¡ 0) of the waiting times.

Constraints (2) ensure that each customer is visited once. Constraints 3 ensure that each CS copy is visited at most once. Constraints (4) impose the flow conservation. Constraints (5) track the battery level at each customer. Constraints ( 6) track the battery level of the EV when it arrives at a CS copy. Constraints ( 7) track the battery level of the EV when it leaves a CS copy. Constraints (8) couple the y ij and x ij variables. Constraints (9) state that if an EV traverses the arc pi, jq its SoC when leaving i must be enough to traverse the arc and then to reach the closest CS or the depot. Constraints (10) restrict the segments on which EVs can charge according to the state of charge they have at their arrival at CS copies. Constraints (11) restrict the charging amount that can be charged on each segment. Constraints (12) impose the activation of one segment whenever an EV visits a CS copy. Constraints (13) are valid inequalities. Constraints ( 14) define the state of charge after a charging operation. Constraints (15) define the time spent charging at each CS copy. Constraints (16) track the departure time at each customer. Constraints (17) track the departure time at CS copies. Constraints ( 18) and ( 19) couple the τ ij and x ij variables.

Specifically, if an EV traverses an arc pi, jq, then its departure time must guarantee that the EV returns to the depot without exceeding the tour duration limit. Constraints ( 20) and ( 21) break symmetries created by the introduction of CS copies. These constraints ensure that the copies of CS i are visited in the reverse order they appear in F i (i.e, a charging operation j F I i must start after a charging operation l F I i if l ¡ j). The reverse order is used since departure time and charging duration variables take the value 0 when a CS copy is not visited. Finally, constraints ( 22)-( 27) define the domain of the decision variables.

The E-VRP-NL-C is a combined routing (the EVs visiting customers) + scheduling (the charging operations) problem. To extend previous formulations of the E-VRP-NL to include the CS capacity constraints, we borrowed some ideas from the Resource Constrained Scheduling Problem (RCPSP) literature. More precisely, we propose two formulations, a flow-based and an event-based, drawing some inspiration from the models introduced by 5 A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 [START_REF] Artigues | Insertion techniques for static and dynamic resourceconstrained project scheduling[END_REF] and [START_REF] Koné | Event-based MILP models for resourceconstrained project scheduling problems[END_REF] for the RCPSP. There is, however, a major difference between our CS scheduling problem and the RCPSP or the related parallel machine scheduling problem: in our problem i) the duration of each task (i.e., charging operation) and ii) the number of tasks executed by each resource (i.e., charging station) are decision variables (they are problem parameters in the RCPSP). To the best of our knowledge this case has never been addressed in the literature before.

Flow-based modeling of the capacity constraints

In our flow-based formulation (hereafter referred to as FB), we consider C i parallel machines for each CS i F . Each machine can execute at any given time at most one job. Let i F be a CS and 0 i and β i 1 be two dummy charging operations (acting as the source and the sink of the flow). We denote as

F I i the set F I i t0 i , β i 1u of charging operations (CS
copies are here considered as charging operations). Without loss of generality, we can enforce that in any feasible solution, after the completion of an operation j F I i , the resource unit (charger) allocated to j is directly transferred to a unique operation l

F I i .
The FB formulation requires the following decision variables. Sequential binary variable u jl is equal to 1 if and only if charging operation l starts after the completion of charging operation j ¡ l (symmetry breaking constraints (21) impose that charging operation j starts before charging operation l j). Let now j, l F I i be two charging operations (potentially dummy) such that j ¡ l. Continuous flow variable f jl denotes the quantity of resource that is transferred from charging operation j to charging operation l. For notational convenience, we define r C j : 1 for all j F I i and r C 0 i : r C β i 1 : C i . For the sake of clarity, we provide here one example to illustrate the structure of the flow network. We consider in this example a CS i with 2 chargers (i.e. C i 2) and we create 4 copies of the CS (β i 4). Figure 1 shows an example of four charging operations occurring at this CS (hereafter referred to as Example 1). Figure 2 illustrates the structure of the flow network on this example and describes a feasible flow. 

ļ F I i ,l¡j f lj ¡ ļ F I i ,l j f jl 0, di F, dj F I i ( 29 
)
C i ¡ ļ F I i ,l¡0i f l,0i 0, di F (30) 
ļ

F I i ,l βi 1 f βi 1,l ¡ C i 0, di F (31) 
u jh ¥ u jl u lh ¡ 1, di F, dj, l, h F I i : j ¡ l ¡ h (32)
pl,hqA

τ lh ¡ ∆ l ¡ pj,hqA τ jh ¥ pT max ¡ t i0 q pu jl ¡ 1q , di F, dj, l F I i , j ¡ l (33) 
f jl ¤ minp r C j , r C l qu jl , di F, dpj, lq F I i , j ¡ l (34) u jl t0, 1u, di F, dj, l F I i , j ¡ l (35) 
f jl ¥ 0 di F, dj, l F I i , j ¡ l (36) 
Constraints (28) state that a resource has to be allocated to a charging operation in F I i if an EV reaches the corresponding CS. Constraints (29)-(31) ensure the flow conservation. Constraints (32) express the transitivity of the precedence relations. Constraints (33) are the disjunctive constraints coupling the start time of j and l to u jl . The constraint is active when u jl 1 and, in that case, it enforces the precedence relation between the charging operations j and l (i.e., l cannot start before the completion of j). Constraints (34) couple the flow variables to the sequence variables. Constraints ( 35) and (36) define the domain of the decision variables.

Event-based formulation of the capacity constraints

This event-based formulation (hereafter referred to as EB) is inspired by the on/off event-based formulation introduced by [START_REF] Koné | Event-based MILP models for resourceconstrained project scheduling problems[END_REF]. Consider the start of a charging operation as an event. The intuition behind the EB formulation is to count the number of events that overlap with the execution of other charging operations and set a constraint on that number.

Similarly to the FB formulation, on the EB formulation we can write the CS capacity constraints independently for each CS i. We define binary variable v jl that is 1 if and only if the charging operation at j F I i starts at the same time as charging operation l F I i (j ¥ l) or is still being processed after the start of l. We use the variables pv jl q jF I i :j¥l to count the number of chargers required during each time interval defined by the starting time An event-based formulation of the capacity constraints is as follows:

v jj ph,jqA x hj , di F, dj F I i (37) pl,hqA τ lh ¡ ∆ l ¥ pj,hqA τ jh ¡ p1 v jl ¡ v j,l 1 q pT max ¡ t i0 q di F, dj, l F I i : j ¡ l (38) j¡1 ḩ0 v jh ¤ jp1 ¡ v j,l 1 v jl q di F, dj, l F I i : j ¡ l (39) jF I i :j¥l v jl ¤ C i di F, dl F I i (40) v jl t0, 1u, di F, dj, l F I i : j ¥ l (41)
Constraints (37) forces each charging operation j F I i to activate variable v jj . Constraints (38) ensure that if charging operation j ends before charging operation l starts, then the starting time of l is larger than the completion time of j. Constraints (39) enforce contiguity for the value of the v jl variables. Since charging operations are non-preemptive, we can safely forbid cases where for j F I there exists l F I i such that v jl 1, v j,l¡1 0, and v j,l¡2 1. Constraints (40) limit the number of charging operations that can be simultaneously performed. Constraints (41) define the domain of the newly introduced decision variables.

Recharging path-based formulation

One drawback of the previous formulations is the need to replicate the CSs. If we want to ensure that no optimal solutions are cut off, the number of copies to create has to be large. However this yields impracticable MILPs. See [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] for a detailed discussion on this issue. To overcome this difficulty, [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] propose an alternative modeling of the E-VRP-NL-C based on the concept of recharging paths (hereafter sometimes referred to simply as paths) between each couple of nodes (either customers or the depot).

The concept of recharging paths leads to the definition of the E-VRP-NL-C on a directed multigraph r G p r

V , r

Aq, where r V t0u I and r

A is the set of arcs associated with paths connecting nodes of r V . Without preprocessing, the number of paths explodes with the number of CSs and the number of customers. However, a large number of these arcs cannot be part of an optimal solution. A dominance rule can be applied to discard unpromising recharging paths. To find all the non-dominated paths, we use the procedure described in AppendixB. Let i, j r V be two nodes such that i $ j. We define P ij as the set of (nondominated) recharging paths connecting node i to node j by visiting none or some CSs. Let P be the set of all recharging paths connecting any couple of nodes in the graph. Specifically, we have P i,j r V ,i$j P ij . We denote oppq and dppq as the origin and destination of a path p P . For each path p, we define an arc in r

A from oppq to dppq. represent the duration of the charging operation performed at ipp, lq. Continuous variable φ plk represents the amount of energy charged on the segment that lies between the points pc ipp,lq,k¡1 , a ipp,lq,k¡1 q and pc ipp,lq,k , a ipp,lq,k q at the CS ipp, lq. Binary variables ω plk equal to one if and only if an EV charges at the CS at position l in path p on the segment between the points pc ipp,lq,k¡1 , a ipp,lq,k¡1 q and pc ipp,lq,k , a ipp,lq,k q. Let e p and t p be the energy consumption and the driving time associated with path p P . Continuous variable ∇ pl represents the waiting time at the CS at position l in path p before charging. We also introduce starting and completion time for the charging operations. Continuous variables s pl and d pl represent the starting and completion time of the charging operation performed at ipp, lq.

A path-based formulation of the E-VRP-NL-C, denoted as rP path s, is as follows: Equation ( 42) gives the objective of the problem: minimizing the total time (driving times, service times, and charging times). Constraints (43) ensure that each customer is visited once. Constraints (44) impose the flow conservation. Constraints (45) track the SoC of EVs at each customer. Constraints (46) track the SoC at the arrival at the first CS of each recharging path. Constraints (47) couple the SoC of an EV that leaves a CS to go to another CS. Constraints (48) ensure that if the EV travels between a vertex and the depot, it has sufficient energy to reach its destination. Constraints (49) couple the SoC tracking variable to the arc travel variables. Constraints (56) track the departure time at each vertex. (57) couple the time tracking variable to the arc travel variables, and impose the tour duration limit. Constraints (50) restrict the segments on which EVs can charge according to the state of charge they have at their arrival at CSs. Constraints (51) restrict the charging amount that can be charged on each segment. Constraints (52) impose the activation of one segment whenever an EV visit a CS. Constraints (53) are valid inequalities. Constraints (54) define the SoC of an EV after a charging operation. Constraints (55) define the time spent charging at each CS. Finally, constraints ( 61)-( 65) define the domain of the decision variables.

rF path s min pP ¤ ¥ t p x p ļ Lp p∆ pl ∇ pl q iI g i (42) subject to j r V ,i$j p Pij x p 1, di I (43) j r V ,i$j p Pji x p ¡ j r V ,i$j p Pij x p 0, di r V (44) ļ r V ,l$j p P lj ¤ ¥ y p ¡ e p x p ļ Lp po pl ¡ q pl q ļ r V ,
It is worth noting that other authors have proposed recharging path-based formulations for closely related problems. For instance [START_REF] Andelmin | Electric vehicle routing with realistic recharging models[END_REF] proposed a refueling path-based model for the G-VRP. However, his model greatly differs from ours because the author used node tracking variables and the problem contains several simplifying hypothesis: a full charging policy and a linear approximation of the charging function.

For each visit to a CS in a path of set P , we associate a charging operation o O.

Every charging operation o corresponds to the visit of the CS at position l o in a path that we denote p o . Let O i the set of charging operations at CS i F . Sequential binary variable u oo I is equal to 1 if and only if charging operation o I is constrained to start after the completion of charging operation at o. For every CS i F , we denote ε i and ε ¡ i be two dummy charging operations (acting as the source and the sink of the flow). Let

po, o I q O i tε i u ¨¢ O i tε ¡
i u ¨be a couple of charging operations, continuous flow variable f oo I denotes the quantity of resource that is transferred from charging operation o to charging operation o I . For notational convenience, we define r

C o : 1 for all o O i and r C ε i : r C ε ¡ i : C i .
A flow-based formulation of the capacity constraints for rP path s is as follows:

oI Oitε i u f o I o x po di F, do O i (66) oI Oitε i u f o I o ¡ oI Oitε ¡ i u f oo I 0, di F, do O i (67) 
C i ¡ oOitε ¡ i u f ε i ,o 0, di F (68) oOitε i u f o,ε ¡ i ¡ C i 0, di F (69) s po,lo ¡ d p o I,l o I ¥ T max pu o I o ¡ 1q , di F, do, o I O i (70) 
f oo I ¤ minp r C o , r C o qu oo I, di F, dpo, o I q O i tε i u ¨¢ O i tε ¡ i u ¨(71) u oo I t0, 1u, di F, do, o I O i (72) 
f oo I ¥ 0 di F, dpo, o I q O i tε i u ¨¢ O i tε ¡ i u ¨(73)
Alternatively, to model the capacity constraints, an event-based formulation or one of the continuous formulations introduced by Kopanos et al. ( 2014) could be used. Some preliminary experiments revealed that those formulations are intractable (even for small instances) because they rely on a large number of binary variables and constraints. We therefore decided to abandon that path.

A two-stage solution method

It is known that directly solving MILP formulations is usually computationally intractable for medium-sized and especially for large-sized instances. The results in [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] confirm the limitation of MILP solvers to provide good-quality solutions to the E-VRP-NL in a reasonable amount of time even for small instances (up to 20 customers). To tackle the E-VRP-NL-C we propose a route-first assemble-second approach. The first stage of our matheuristic intends to build a high-quality and diverse pool Ω of routes. The second stage assembles solutions by selecting a subset of routes from the pool Ω. This two-stage method has been successfully applied to several hard vehicle routing problems (VRPs): the VRP with time windows [START_REF] Alvarenga | A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows[END_REF], the truck and trailer routing problem [START_REF] Villegas | A matheuristic for the truck and trailer routing problem[END_REF], the Swap-Body VRP [START_REF] Absi | A relax-and-repair heuristic for the swapbody vehicle routing problem[END_REF], the E-VRP-NL [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF]. Traditionally, the second phase builds the best possible solution by solving a set partitioning (SP) model over the pool of routes. Route-first, assemble-second approaches have been mostly applied to problems without route coupling constraints. The latter means that in those problems the feasibility of one route is totally independent of the feasibility of other routes. Due to the CS capacity constraints, clearly the E-VRP-NL does not fall into this category. To the best of our knowledge, only two studies have dealt with RFAS approaches for VRPs with route coupling constraints: [START_REF] Morais | Iterated local search heuristics for the vehicle routing problem with cross-docking[END_REF] and [START_REF] Grangier | A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking[END_REF] as an intensification phase of a metaheuristic for the VRP with cross docking. In both cases, the cross-dock constraints are relaxed in the SP model. Each time the SP model finds a new better solution [START_REF] Morais | Iterated local search heuristics for the vehicle routing problem with cross-docking[END_REF] applied a local search to make it meet the cross-dock constraints, whereas [START_REF] Grangier | A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking[END_REF] used a constraint programming model to check its feasibility.

We first propose to relax the CS capacity constraints during the first stage and to adapt the set partitioning model of the second stage to take the limited numbers of chargers at CSs into account.

First stage: an iterated local search

The first phase of the matheuristic builds a pool of routes that meet the constraints 2, 3, and 4 described in Section 2 (i.e. all the constraints that need to be satisfied for a route are satisfied, except the CS capacity constraints). To generate these routes, we use the approach proposed by [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] for the E-VRP-NL. These authors designed an iterated local search (ILS) initialized with a solution provided by a constructive heuristic. The metaheuristic first sequences the customers and then takes the charging decisions. Specifically, at each iteration of the local search, the method builds a giant tour by concatenating the routes in the current solution. Then, it applies a small perturbation to the tour based on a randomized double bridge operator. Afterwards, it applies a splitting procedure to create a feasible solution to the problem. The split procedure works on an acyclic graph where nodes are customers and there exists an arc between two nodes if there exists a route where the first and the last visited customers are the origin and the tail of the arc, respectively. The procedure repairs energy-infeasible routes using a heuristic procedure that considers the insertion of one CS between each pair of customers. Solving a shortest path problem in the above graph leads to a feasible solution to the E-VRP-NL. To improve this latter, a local search is applied. This search uses two classical operators focusing on sequencing decisions: two-opt and relocate (intra-route and inter-route versions with best improvement selection). A third operator revises the charging decisions using a MILP model. During the procedure, all the local optimum solutions are stored in a pool Ω. It is noteworthy that in all the routes in Ω do not have any waiting time (i.e. charging operations are left-shifted). Moreover, the charging decisions inside each route are already optimized.

Second stage: a decomposition method to assemble the routes

The second stage of the matheuristic builds the best possible solution from Ω. We proposed to assemble solutions using a Benders' like decomposition of the problem into a route selection master problem and a CS capacity management sub-problem. The master problem consists in selecting a set of routes such that every customer is covered exactly by one route. Every selection of routes (output of the route selection problem) yields a set of charging operations; each operation being defined by a CS, a starting time, and a recharge amount. The sub-problem checks if the CS capacity constraints can be met. We proposed three different versions of this CS capacity management sub-problem depending to the degree of freedom that we allow to modify the routes selected as a solution to the master problem. In the a first strategy, we do not revise the charging decisions (starting time and recharging amount) in the routes selection and we only check if the CS capacity constraints are satisfied for the selected routes. In the second strategy, we can delay the charging operations (i.e. postpone their starting time) to satisfy the CS capacity constraints. In other words, contrary to the first strategy, here we allow vehicles to wait for a charger if a CS is overcrowded. In the third strategy, in addition to the introduction of waiting times, we also revise the recharging amounts, but not the visited CSs.

To efficiently solve the problem while exploiting this decomposition, we adopt the following approach implemented on top of a commercial solver. We solve the SP model related to the route selection problem using a branch-and-bound algorithm. At each integer node of the branch-and-bound tree, the corresponding solution is sent to the CS capacity management problem. In the three strategies, we introduce cuts to discard infeasible selection of routes. In the two last strategies we also add cuts to account for the additional waiting times potentially introduced. Contrary to the classical implementation of Benders decomposition, we dynamically generate cuts in the branch-and-bound tree used to solve the initial relaxed master problem. More specifically, at each integer node of the branch-and-bound tree, the corresponding solution is sent to the sub-problem in order to potentially generate the Benders cuts. This method is referred to as a Benders-based branch-and-cut algorithm in (Naoum-Sawaya and Elhedhli, 2010) or as a branch-and-Benders-cut method in [START_REF] Gendron | A Branch-and-Benders-Cut Method for Nonlinear Power Design in Green Wireless Local Area Networks[END_REF]. It also shares a lot of similarities with the Branch&Check framework -introduced by Thorsteinsson (2001) -and originally designed for linear and constraint programming (CP) hybridization.

In the following subsections, we provide a detailed description of our three strategies. We use the following notation. Set Ω i Ω contains the routes serving customer i I and t r is the duration of a route r Ω. Set OpΩq contains all the charging operations occurring in the routes belonging to Ω and O i pΩq contains the charging operations occurring at CS i F . Let ∆poq, r o , and i o be the duration, the route, and the CS associated with charging operation 

First strategy

In the first strategy, we do not revise the charging operations involved in the routes built during the ILS stage. Let us first define a MILP model for the route selection problem.

We introduce binary variable x r that is 1 if and only if route r Ω is selected. The MILP formulation is then the following classical SP model:

rHC1s min ŗΩ t r x r ( 74 
) ŗΩ i x r 1, di I (75) 
x r t0, 1u, dr Ω (76)

The objective ( 74) is to select the subset of routes from Ω that minimizes the total duration. Constraints (75) ensure that each customer is visited exactly once. Constraints (76) set the domain of the decision variables.

We now assume that we have a fixed selection Ωpxq of routes given by fixing the variables tx r u rΩ . Specifically, we have Ωpxq tr Ω|x r 1u. Let SHC1pxq be the resulting CS capacity management problem that consists in checking the feasibility of the charging operations at every CS. SHC1pxq can be decomposed into |I| independent problems, one for every CS. Let define O i pxq O i pΩq as the set of charging operations occurring at CS i F in the routes of Ωpxq. To solve SHC1pxq, we apply procedure CheckCapacityCut(O i pxq, C i ) for every CS i F to check the existence of subsets of operations overloading the CS. If the set returned by this procedure is non-empty, there exists one or multiple time intervals during which the number of EVs charging at i is strictly greater than C i .

To discard the current solution x in the route selection sub-problem, we add the following cuts to rHC1s:

ŗΨ i pΩpxq,Uq x r ¤ C i di F, dU U (77) 
where Ψ i pΩpxq, U q tr Ωpxq|O r U $ ru.

These cuts simply state that the number of selected routes (according to x) that have charging operations that overlap at a specific CS must be less than or equal to the number of chargers available at this CS.

We can also imagine to separate cuts for continuous solution x. In that case, we check the satisfaction of the CS capacity constraints by simply considering that for every CS i every operation o O i pxq requires a fractional number xro of chargers. Another strategy is to consider only the routes r such that xr 1. In our experiments, this latter strategy proves to lead to the best results. -an integer number C ¥ 1 representing the maximum number of operations that can be scheduled simultaneously output: a set containing all the maximal subsets of charging operations leading to a violation of the CS capacity constraint 1 Sort the operations in L in non-decreasing order of starting time 
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Second and third strategies

One possible drawback of the first strategy is that it may reject solutions that could be repaired by simply allowing the EV to wait a few minutes for a charger. As mentioned earlier, the second and third strategies consider the possibility of introducing waiting times before the charging operations. Delaying a charging operation in a route r Ω necessarily increases the duration of the route. Therefore, allowing the introducing of waiting times when solving the CS capacity management sub-problem may change the objective function of the solution computed when solving the route selection problem. Let θ be a non-negative variable estimating the delay added when solving the CS capacity management sub-problem. A MILP formulation of the route selection problem (derived directly from rHC1s) follows:

rHC2s min ŗΩ t r x r θ (78)

ŗΩ i x r 1, di I (79) θ ¥ 0 (80) x r t0, 1u, dr Ω (81)
Given a solution x of rHC2s, we define Ωpxq as the set of routes r selected according to x (i.e. Ωpxq tr Ω|x r 1u). We also define Ω ¦ pxq as the subset of Ωpxq that contains only the routes including at least one charging operation (i.e. Ω ¦ pxq tr Ωpxq|Oprq $ ru).

For convenience, we denote as Oprq the list of charging operations occurring in route r. We assume that the operations in Oprq are sorted in non-decreasing order of their starting times.

We denote as π ¡ poq and π poq the charging operations preceding and following o in route r o .

If no charging operation precedes or follows before or after o, we set π ¡ poq π poq ¡1.

For every route r Ωpxq and for each charging operation o Oprq in a route we denote as t poq the travel time of the EV between the completion of o and the start of π poq if o is not the last operation of the route or the arrival at the depot. More specifically, this time corresponds to the total time spent by the vehicle covering its route between the CS associated with o and the CS associated with pi poq or the depot. Similarly, we define as t ¡ poq the time elapsed between the EV's departure from the depot (if o is the first operation of the route) or the completion of π ¡ poq and the beginning of o. We denote as Π ¡ poq and Π poq the set of charging operations preceding and following charging operation o.

Second strategy: Let SHC2pxq be the problem where we want to schedule -while considering the capacity of the CSs -the charging operations occurring in the routes Ωpxq in order to minimize the addition of waiting times. Contrary to SHC1pxq, SHC2pxq does not decompose into an independent problem for each CS. For each operation o, we introduce two parameters ES o and LS o representing its earliest and latest possible starting time. The parameter ES o is equal to Spoq since by definition the operations are left shifted in each route of the pool. The parameter LS o is computed by subtracting to T max the time needed to complete the route (considering the duration of the next operations, the driving times, and no waiting times). Specifically LS o T max ¡ ∆poq ¡ t poq ¡ °oI Π poq pt po I q ∆po I qq.

A MILP formulation of SHC2pxq requires several types of decision variables. We define the continuous variable S o defining the starting time of operation o. We model the capacity constraints using a flow-based formulation. For each CS i F , we consider two dummy operations ε i and ε ¡ i , and we define r 

u oo I u o I o ¤ 1 di F, do, o I O i pxq : o o I (83) 
u oo P ¥ u oo I u o I o P ¡ 1 di F, do, o I , o P O i pxq (84) S o I ¡ S o ¥ ∆poqu oo I pLS o ¡ ES o Iqpu oo I ¡ 1q di F, dpo, o I q O i pxq tε i u ¨ O i pxq tε ¡ i u (85) S π poq ¡ S o ¥ ∆poq t poq dr Ωpxq, do Oprq : π poq $ ¡1 (86) oI Oipxqtε i u f o I o 1, di F, do O i pxq (87) oI Oipxqtε i u f o I o ¡ oI Oipxqtε ¡ i u f oo I 0, di F, do O i pxq (88) 
C i ¡ oOipxqtε ¡ i u f ε i ,o 0, di F (89) oOipxqtε i u f o,ε ¡ i ¡ C i 0, di F (90) 
f oo I ¤ max ¡ C o , C o I © u oo I di F, do, o I O i pxq (91) ES o ¤ S o ¤ LS o di F, do O i pxq (92) 
f oo I ¥ 0 di F, dpo, o I q O i pxq tε i u ¨ O i pxq tε ¡ i u (93) 
u oo I t0, 1u, di F, do, o I O i pxq (94) 
The objective ( 82 To reduce the size of the previous model, we applied the following procedure. For every CS i and every couple of operations po, o I q O i pxq 2 , we created only the variables u oo I and f oo I if the charger used by operation o can be transferred to operation o I (i.e., ES o ∆poq ¤ LS o I).

One can notice that SHC2pxq is a particular parallel machine scheduling problem where the objective is to minimize the total tardiness. Indeed, one can see ES o as the release date of each charging operation o and ES o ∆poq as its due date if o if it is the last operation of route r o (the due date is equal to LS o ∆poq otherwise). The particularity of SHC2pxq is that there is a minimum time lag between charging operations of the same route. Moreover,
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Third strategy: In addition to the introduction of waiting times, reducing congestion at CSs can come from the revision of the amounts of energy charged at each CS in every route. For example, if an EV leaves a CS i not fully charged and visits another CS j in the route, one can decide to charge more at CS i to delay the arrival of the EV at j if this latter is overcrowded. Alternatively, one can decide to charge more at CS j (if possible) to reduce the time spent at CS i. Let px r q rΩ be a fixed selection of routes (resulting in Ωpxq), we denote SHC3pxq the sub-problem where we want to minimize the increase in the duration of the selected routes.

We denote as e ¡ poq the energy consumption of the EV from its departure from i o to its arrival at i π poq if o is not the last charging operation of r o or its arrival at the depot. This takes into account the energy consumed to visit all the customers scheduled in the route between charging operations o and π poq or the depot. Similarly, we denote as e poq the energy consumption of the EV from its departure from i π ¡ poq if o is not the first charging operation of the route or from the depot to its arrival at i o . Since a charging operation can be skipped by shifting energy to previous or next charging operations of the same route, we define r tpoq and r epoq as the time and energy saved if the EV does not detour to perform the charging operation o.

Our modelization of SHC3pxq draws very broadly on the formulation rSHC2pxqs. We therefore use the decision variables S o , f oo I, u oo I defined in this latter formulation. Let i be a CS. First, we introduce binary variable z o that is 1 if and only if the charging operation o O i pxq is not executed anymore and the detour to the corresponding CS is not needed anymore. Specifically, z o allows to account for special cases where shifting the charging amount to the other operations of the route can avoid charging operation o. To evaluate the impact of the revision of the charging operations, we introduce for each route r Ω ¦ pxq a continuous variable T r that is the new duration of route r. We model the piecewise linear approximation of the charging function as in the formulation presented in Section 3. Let o be a charging operation and k B i zt0u. We define continuous variable φ ok as the amount of energy charged during o on the segment that lies between the points pc i,k¡1 , a i,k¡1 q and pc ik , a ik q k B i . We also define the binary variable ω ok that is equal to 1 if and only if during the charging operation o the EV charges on the segment between the points pc i,k¡1 , a i,k¡1 q and pc ik , a ik q. We introduce continuous variables y 1 pT r ¡ t r q (95)

y 1 o φ ok ¤ a ik w ok Qp1 ¡ w ok q, di F, do O i pxq, dk B i zt0u (96) 
φ ok ¤ pa ik ¡ a i,k¡1 qw ok , di F, do O i pxq, dk B i zt0u (97) 
ķBizt0u 

w ok ¥ 1, di F, do O i pxq (98) y 2 o y 1 o ķBizt0u φ ok , di F, do O i pxq (99) ∆ o ķBizt0u φ ok {ρ ik , di F, do O i pxq (100) ∆ o ¤ c ibi p1 ¡ z o q, di F, do O i pxq ( 
u oo I u o I o ¤ 1 di F, do, o I O i pxq : o o I (104) 
u oo P ¥ u oo I u o I o P ¡ 1 di F, do, o I , o P O i pxq (105) 
S o I ¡ S o ¥ ∆ o pES o I ¡ LE o qp1 ¡ u oo Iq di F, do, o I O i pxq (106) 
S π poq ¡ S o ¥ ∆ o t poq ¡ r tpoqz o dr Ωpxq, do Oprq, π poq $ ¡1 (107) 
oI Oipxqtε i u

f o I o 1 ¡ z o , di F, do O i pxq (108) oI Oipxqtε i u f o I o ¡ oI Oipxqtε ¡ i u f oo I 0, di F, do O i pxq (109) C i ¡ oOipxqtε ¡ i u f ε i ,o 0, di F (110) oOipxqtε i u f o,ε ¡ i ¡ C i 0, di F (111) 
f oo I ¤ max ¡ C o , C o I © u oo I di F, do, o I O i pxq (112) T r S o last r ∆ o last r ¡ r tpo last r q t po last r q dr Ωpxq, (113) 
T r ¤ T max dr Ωpxq, ( 114) The objective ( 95) is to minimize the additional time inserted in each route. Constraints ( 96)-( 100) model the piecewise linear approximation of the charging function. Constraints (101) impose a duration equal to 0 for each charging operation that is removed (S max is the maximum possible charging time in any CS of F ). Constraints (102) couple the SoC of the EV after finishing a charging operation with its SoC when starting the next charging operation occurring in the route. Notice that if z o is equal to 1, then the SoC y 1 o y 2 o still takes into account the energy consumed to detour to CS i o . The energy saved by not visiting this CS is subtracted when computing the SoC at the beginning of the next operation of the route or at the arrival at the depot (see ( 103)). For each route, constraints (103) enforce the corresponding EV to have enough SoC at the end of the last charging operation to reach the depot. Constraints ( 104), (105), and (106) define the precedence relationships between the operations. Constraints (107) enforces the precedence relation and the time lag between the charging operations occurring in the same route. Notice that if z o is equal to 1, then the starting time S o still takes into account the detour to CS i o . The time saved by not visiting this CS is subtracted during the computation of the departure time for the next operation of the route or at the arrival at the depot (see ( 114)). Constraints (108) set if a charging operation requires a charger or not. Constraints ( 109) -( 112) define the flow constraints. Constraints (113) compute the duration of each route. Constraints (114) enforce the tour duration limit. Constraints ( 115) and ( 122) define the domain of the decision variables.

ES o ¤ S o ¤ LE o di F, do O i pxq (115) AE min o ¤ y 1 o ¤ AE max o di F, do O i pxq (116) DE min o ¤ y 2 o ¤ DE max o di F, do O i pxq (117) φ ok ¥ 0 di F, do O i pxq, dk B i zt0u (118) w ok t0, 1u di F, do O i pxq, dk B i zt0u (119) 
f oo I ¥ 0 di F, dpo, o I q O i pxq tε i u ¨ O i pxq tε ¡ i u ¨(120) u oo I t0, 1u, di F, do, o I O i pxq ( 
Cut generation: The efficiency of the approach is primarily based on the constraints we generate to cut off infeasible solutions and to bound the variable θ.

When the CS capacity management sub-problem (SHC2pxq or SHC3pxq) is infeasible, we generate an integer Benders cut, also called combinatorial Benders cuts [START_REF] Codato | Combinatorial Benders' Cuts for Mixed-Integer Linear Programming[END_REF] to invalidate the current solution to the restricted master problem. Let C be the set of indices of the variables x restricted to be binary and x ¦ the current solution to the restricted master problem. Denoting Ωpxq tr Ω|x r 1u, a combinatorial Benders cut can be defined as follows:

ŗΩzΩpxq x r ŗΩpxq p1 ¡ x r q ¥ 1 (124)
Clearly, this cut states that at least one of the variables of the master problem must change its value with respect to the current solution x. This cut is also known as a no-good cut.

Since every selection of routes Ω such that Ωpxq Ω also leads to an infeasible solution, we can reformulate the cut (124) as follows:

ŗΩpxq x r ¤ |Ωpxq| ¡ 1 (125)
If the sub-problem is feasible, we compare the value of θ (denoted θ) to the sub-problem objective value denoted z SP pxq. If the objective value of the sub-problem is underestimated (i.e. θ z SP pxq), we generate integer optimality cuts to ensure that the value of the variable 20 A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 θ is larger than or equal to the value of the sub-problem for the current selection of routes. Specifically, we add the following cut:

z SP pxq ¤ ¥ ŗΩpxq x r ¡ ŗΩzΩpxq x r ¡ z SP pxq p|Ωpxq| ¡ 1q LB ¤ θ (126) 
These cuts are similar to those introduced by [START_REF] Laporte | The integer l-shaped method for stochastic integer programs with complete recourse[END_REF] for the integer L-shaped method. Since every selection of routes Ω such that Ωpxq Ω leads to a solution with a larger objective value, we can reformulate the cut (126) as follows:

z SP pxq ¤ ¥ 1 ŗΩpxq x r ¡ |Ωpxq| ¤ θ (127) 
In order to produce stronger cuts, it is noteworthy that the sub-problem may often be decomposed into several independents smaller sub-problems. Let Gpxq be a graph where each node represents a CS and there exists an edge between 2 CSs if there exists a route in Ωpxq with charging operations at these 2 CSs. Let ΥpGpxqq be the connected components of graph Gpxq. The sub-problem can be decomposed into an independent problem for each connected component υ ΥpGpxqq (where we consider only the routes with charging operations associated with CSs in υ). Let Ωpx, υq Ωpxq be the routes visiting the CSs that are part of υ. We can strengthen the cut (125) by replacing it by the following cuts:

ŗΩpx,υq x r ¤ |Ωpx, υq| ¡ 1 dυ ΥpGpxqq (128)
Quite similarly, we can strengthen the cut (127) by replacing it by the following cuts:

£ υU z SP px, υq ¤ ¥ 1 υU ¤ ¥ ŗΩpx,υq x r ¡ |Ωpx, υq| ¤ θ dU P pΥpGpxqqq ztru (129)
Notice that the number of these cuts can become large. In that case, we can generate the cuts (129) only for the sets U such that |U| 1 or U ΥpGpxqq.

Implementation details

From an implementation point of view, we start the second stage by simply forwarding the formulation rHC1s or rHC2s to the MILP solver. The cut generation procedure is implemented inside a callback routine that is invoked by the solver at every node of the branch-and-bound tree. The cuts computed during this stage are provided to the solver as lazy constraints if the node is integer or as classical cuts otherwise. After adding them at a node, the solver also checks the feasibility of the solutions in terms of these constraints.

If the candidate solution is not feasible, the solver discards it and adds the violated lazy constraints or cuts to the active nodes of the branch-and-bound tree.
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Computational results

We tested the different models developed for the E-VRP-NL-C. We used Gurobi 7.0.2 to solve the ILP models through its Java API. All experiments were performed, using a single thread with 12 GB, on a cluster of 27 computers, each of which having 12 cores and two Intel(R) Xeon R X5675 3.07 GHz processors. We set a 3-hour time limit (the CPU times are reported in seconds and rounded to the nearest integer). We performed our tests on 100 instances adapted from the 120-instances testbed proposed by [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] (we adapted only the instances that contained at most 160 customers). We adapted each instance by fixing a number of chargers for each CS. We decided to consider instances in which all the CSs have the same number of chargers (1, 2, or 3). We penalized the waiting time in the objective using K 1.

Mixed integer linear programming formulations

In order to assess the performance of the proposed MILP formulations, we performed our tests on small-sized instances. We restrict our tests on the 20 instances of the 120-instances testbed proposed by [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] that contains 10 customers. For CS replicationbased models, the number of copies of each CS i F is set to β rC i 1, VrN (i.e. β i β, di F ). We assume in our tests that in every instance each CS has only one charger (i.e. C i 1, di F ). Adapting the terminology used in [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF], we refer to each model via "a b c" where a, b, and c refer to the modeling of the SoC and time tracking (A: arc-based tracking constraints), of the charging function (C: CB piecewise linear constraints / R: R piecewise linear constraints), and of the CS capacity constraints (F: flow-based / E: event-based). If the formulation uses the concept of recharging path, we add the prefix "Path". The baseline formulations rF CS s and rF path s correspond to notation "A R" and "Path A R". We refer the reader to [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] for the detailed explanations of formulations "A C" and "Path A C".

Table 1 present the results of the direct solution of the MILP formulations. Specifically, Table 1a and Table 1b show the results obtained when running CS-replication based and recharging path-based formulations on the MILP solver. See AppendixC for the detailed results for each instance. We report for each formulation and each value of β the number of instances optimally solved to the number of instances with a feasible solution (#Opt/#Feas), the average solution time for the instances solved to optimality (Time), and the average gap for the unsolved instances (Gap). We compute the gap pz ¡ z LB q{z where z is the objective of the computed solution and z LB is the lower bound retrieved by the solver running the corresponding model. Moreover, since average values do not provide sufficient information, Figure 4 and Figure 5 show the number of instances optimally solved according to the solution time for all the formulations we tested.

First, we observe that, on the considered instances, the modeling of the charging function and the capacity constraints has very little impact on the results. Second, results tend to show the difficulty to optimally solve even small instances running MILP solver on CS replication-based and recharging path-based formulations. If we compare these results
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A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 Table 1: Computational results of the different models with those obtained by [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF] for the E-VRP-NL, the addition of the CS capacity constraints makes more complex solving the recharging-paths formulations (all the 10-customer instances are optimally solved when dropping these constraints in less than 10 minutes on average). Finally, MILP solver tends to perform slightly better on the path-based models rather than on the classical models based on the replication of the CS nodes. 

β A C E A C F A R E A R F 2 #Opt/#

Two-stage algorithm

Since our contributions are solely focused on the second stage of the matheuristic, we focus our experiments only on this stage. We tested the different strategies presented in Section 4.2. For these strategies, we tested two different cutting schemes: only at every integer node (C1) or at every node 1 (C2). We report in Table 2 the results obtained when using Strategy 1, Strategy 2, or Strategy 3. We also conducted another test (Strategy 4 -Post-processing) in which we solve the second stage in two steps: (1) we solve the SP model rHC1s without taking the capacity constraints into account, yielding an optimal solution x, and then (2) if x violates the capacity constraints, we solve the model rSHC3pxqs to potentially repair it. For each value of the capacity (1, 2, and 3), we report the number of instances for which we obtained a feasible solution (#Feas), the number of best known solution reported (#BKSs), and the average solution time (Time). Notice that the solution time reported takes only the second stage of the matheuristic into account. For a meaningful comparison, we report two different gaps: the gap to the best known solutions considering only the instances for which the solution is different from the BKS (Gap ¦ ) and the gap to the BKSs considering all the instances (Gap). We also show the number of feasibility (#Cuts Feas) and optimality (#Cuts Opt) cuts generated by the algorithm.

First, if the capacity constraints are not binding, it is not very surprising to see that all the different strategies yield very similar results. We observe that Strategy 4 (and to a less extend Strategy 1) do not always provide a feasible solutions to the e-VRP-NL-C. This show the relevance of our Benders' like decomposition algorithm. Checking only the capacity constraints in a third stage could either lead to infeasibility or to worst solutions. For one instance we do not obtain a feasible solution by any of our strategies. It points out the potential need for taking the capacity constraints into account during the first stage of the algorithm. Results show that allowing delays when solving the CS capacity management sub-problem (Strategy 2 and 3) is the most suitable and efficient approach to assemble solutions in the second stage of the matheuristic. In our tests, it can be noticed that it is 1 In the sub-problem, we only consider the routes r such that xr 1 not more computationally expensive than just checking the CS capacity constraints. When all CSs have a unique charger, compared to Strategy 1, using Strategy 2 and 3 improves the BKs for 12 and 14 instances out of 99, respectively. Moreover, the gap can be quite important (up to almost 15% for one instance). Last but not least, although revising the charging amounts improves only slightly the results, results show that using Strategy 3 is the best assembling method on the considered instances.

To allow future comparisons with our method, we report detailed results for each of the 120 instances in AppendixC.

Conclusion and perspectives

In this research, we have extended the E-VRP-NL by introducing capacity constraints at CSs. In the resulting problem (E-VRP-NL-C), the number of vehicles simultaneously charging at every CS is limited by the number of chargers.

We have introduced two modeling approaches of these constraints (flow-based and eventbased). Based on this, we have proposed several CS replication-based and recharging pathbased formulations of the E-VRP-NL-C. Results show that optimally solving small-sized instances is already challenging.

To tackle the E-VRP-NL-C, we have proposed a two-stage matheuristic. During the first stage, we build a set of routes using an existing metaheuristic based on iterated local search. During the second stage, we assemble these routes to build a solution to the problem using a Benders' like decomposition method. While solving the route selection problem, we consider the capacity constraints at the nodes of the branch-and-bound tree. We discard 25 A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 infeasible solutions or solutions for which the objective is underestimated using cuts. We have investigated three different versions of the CS capacity management problem ranging from a simple check of the capacity constraints to the introduction of waiting times to the revision of the charging amounts in the selected routes. Results show that using more complex strategies to solve bottleneck issues at CSs does not increase on the considered instances the solution time while leading to better solutions. Results also show that the algorithm finds some optimal solutions for small-sized instances.

Future works include the revision of the first stage to include the capacity constraints and to generate routes that can be better assembled. Finally, it might be interesting to investigate if the two-stage method can provide an efficient heuristic framework to solve routing problems where dependency arise between routes.

AppendixA. Experiments on the feasibility of solutions from the literature when considering capacitated CSs

AppendixA.1. Checking the capacity constraints in a solution to the E-VRP-NL Checking the feasibility of a solution consists in verifying that no more than C i electric vehicles are simultaneously charged at every CS i. Let O i be the list of charging operations occurring at CS i in the solution and C i the number of chargers available at i. We also introduce Spoq and Cpoq that define the starting time and completion time of a charging operation o O i . The feasibility of a solution at CS i can be checked in Op|O i | 2 q time by applying procedure CheckCapacity(O i , C i ).

Procedure CheckCapacity(O,C)

input : -a list of charging operations L numbered from 1 to n (Lpiq denotes the operation at position i in the list L)

-an integer number C ¥ 1 representing the maximum number of operations that can be scheduled simultaneously output: true if no more than C operations overlap, false otherwise 1 Sort the operations in L in non-decreasing order of starting time A.3a presents the results of our experiments where we consider CSs with identical capacity. We observe that, if there exists only one charger at each CS, almost half of the solutions are infeasible. This proportion drops to 11% when considering two chargers per station, and we need to have four chargers at each CS to ensure the feasibility of all solutions. In practice, however, there are usually only one or two chargers available at each CS.

2 k Ð 2 3 Q Ð tLp1qu (Q is a set storing the operations in execution) 4 while k ¤ n do 5 for every operation o Q do 6 if SpLpkqq ¥ Cpoq then 7 Q Ð Qztou 8 end 9 end 10 Q Ð Q tLpkqu 11 if |Q| ¡ C then
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A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 We also conducted another experiment in which we considered CSs with different capacity. We generated the number of chargers at each CS using a two-step procedure. First, we assume that the capacity of each CS independently follows a discrete uniform distribution U pa, bq (we denote as ξ i the random variable associated with the capacity of CS i). We tested different distributions: U p1, 2q, U p1, 3q, U p1, 4q, U p2, 3q, and U p2, 4q. Using a Monte-Carlo scheme, we then generated a sample of n 1000 realizations (i.e., scenarios) of the random vector ξ pξ 1 , ..., ξ nr q, where n r denotes the number of CSs in the instance. Second, we computed the proportion of realizations (in the set of all the possible realizations of ξ) for which the solution is feasible. Table A .3b shows that there is also a significant number of cases for which the solutions are infeasible even if we consider CSs with heterogenous capacity.

Experiment

C [START_REF] Montoya | The electric vehicle routing problem with nonlinear charging function[END_REF] 

AppendixB. Generation of non-dominated recharging paths

To compute the set P ij for each couple of nodes i, j r V , i $ j, we apply the procedure described in Algorithm 1. Let us first introduce some notation. Let p and q be a path and an initial SoC of the EV, we define function SoC q p that maps a duration t R to a final SoC at the destination dppq. Since the charging functions we consider are piecewise linear, the function SoC q p also has this property. To understand the procedure, we recall the following result demonstrated in [START_REF] Froger | New formulations for the electric vehicle routing problem with nonlinear charging function[END_REF]:

Proposition. Let i, j r
V , i $ j be two nodes of the multigraph and p, p I P ij be two paths. Path p dominates path p I if SoC q p ptq ¥ SoC p I q ptq for every t ¥ 0 and for every q te ij |j F piqu.

Using this proposition, we first fix the SoC q at the departure of i before using a labelcorrecting algorithm to compute all the non-dominated paths between i and j if the initial SoC is q. The underlying directed graph simply consists of a graph containing nodes i and j and every CS node. For each CS node l, we create the arcs pl, l I q where l I is another CS different from l and the arcs pi, lq and pl, jq. We also create the arc pi, jq. The idea of the algorithm is to delay the decision about how much energy should be charge at a CS as long
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A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 as we reach j or another CS node. For this purpose, it uses SoC-functions as labels. When the EV traverses an arc, the missing energy (if there is some) is charged retroactively at the previous CS (if possible). Otherwise traversing the edge is impossible when extending the label. When we set a CS node, we create one new label for each supporting point of the current SoC-function in order to explore the possibility of switching over to the new CS at that point.

Algorithm 1: ComputeRechargingPaths(i,j) input : two nodes i, j r V , i $ j output: a set containing all the non-dominated recharging paths between i and j 1 P Ð r (P stores the non-dominated recharging paths)

2 if e ij min lF t0u e li min lF t0u e jl ¤ Q ¨then We write each instance using the symbol tcγ 1 cγ 2 sγ 3 cγ 4 # where γ 1 is the method used to place the customers (i.e., 0: randomization, 1: mixture of randomization and clustering, 2: clustering), γ 2 is the number of customers, γ 3 is the number of the CSs, γ 4 is 't' if we use a p-median heuristic to locate the CSs and 'f' otherwise, and # is the number of the instance for each combination of parameters (i.e., # = 0 , 1 , 2 , 3 , 4). The symbol "Inf" means that the instance has been proven infeasible, whereas the symbol "-" means that no feasible solution has been found by the solver.

AppendixC.1. MILP formulations
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A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 Table C.4: Detailed computational results on the 10-customer instances for the CS replication-based formulations (β 2) Table C.5: Detailed computational results on the 10-customer instances for the CS replication-based formulations (β 3) 

Instance A C E A R E A C F A R
Instance A C E A R E A C F A R

Figure 1 :A

 1 Figure 1: Charging operations at CS i F

Figure 2 :

 2 Figure 2: Structure of the flow network for CS i (left) and a feasible flow (right)

7A

  Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 of a charging operation j and j ¡ 1. Figure 3 illustrates the definition of these variables for Example 1.

Figure 3 :

 3 Figure 3: Illustration of the definition of variables pv jl q jF I i :j¤l for CS i
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  Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 o OpΩq. We define symbols Spoq and Cpoq as the original starting and completion time of charging operation o in the route r o of the pool Ω.
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  Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 Procedure CheckCapacityCut(O,C) input : -a list of charging operations L numbered from 1 to n (Lpiq denotes the operation at position i in the list L)

15A

  Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31

C

  o : 1 for all o O i pxq and rC ε i : r C ε ¡ i : C i .We then introduce continuous variable f oo I representing the quantity of resource (i.e. chargers) that is transferred from charging operation o to charging operation o I . We also define the sequential binary variable u oo I taking the value of 1 if operation o is processed before activity o I . A MILP formulation of SHC2pxq reads:16A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging StationsCIRRELT-2017-31 

  ) is to minimize the waiting time inserted in each route (o last r represents the last charging operation of route r). Constraints (83) state that for two distinct operations o and o I , either o precedes o I , o I precedes o, or o and o I are processed in parallel. Constraints (84) express the transitivity of the precedence relations. Constraints (85) are the disjunctive constraints on the operations related to the same CS. The constraint is active when u oo I 1 and, in that case, it enforces the precedence relation between charging operations o and o I . Constraints (86) enforce the precedence relation and the time lag between the charging operations occurring in the same route. Constraints (87) state that a charger has to be allocated to each charging operation. Constraints (88)-(90) ensure the flow conservation. Constraints (91) couple the flow variables to the sequence variables. Constraints (92) and (94) define the domain of the decision variables.

o

  and y 2 o that represent the SoC of the EV before and after charging operation o. Let AE min o and AE max o be the minimum and maximum possible SoC before the beginning of o. The value of AE min o and AE max o are set considering that the EV charges the minimum (the maximum between the energy to reach the current CS and the energy needed for the detour) and maximum (the EV left the previous CS fully charged or with the energy necessary to finish the route) amount of energy at the previous CSs (if any). Similarly, let DE min o and DE max o be the minimum and maximum possible SoC after the completion of o. The value of DE min o corresponds either to the maximum between the energy to reach the next CS if any or the depot and the energy remaining after leaving the depot fully charged and visiting the previous customers and CSs in the route. The value of DE max o is the minimum between the energy that is needed to 18 A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations CIRRELT-2017-31 finish the route after o and the battery capacity Q. A MILP formulation of SHC3pxq reads:rSHC3pxqs min ŗΩpxq s.t. Oprq$r

Figure 4 :

 4 Figure 4: the different CS replication-based formulations for different values of β

Figure 5 :

 5 Figure 5: the different recharging path-based formulations
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  Detailed results of the experiments on the best known solutions to the E-VRP-NL Table

3P

  Ð P tp 0 ij u 4 end 5 for l F piq do 6Use a label-correcting algorithm to compute all the non-dominated paths with respect of an initial SoC of e il .7for each non-dominated label at j do 8Let p be the recharging path associated with the label

  Let us denote n p as the number of CSs in path p and let L p t0, 1..., n p ¡ 1u N be the set of CS positions in the path p. Let ipp, lq be the CS at position l L p in path p. Additionally, if an EV can travel from i to j without visiting any CS, we create the corresponding path (denoted p 0 ij ) and add it to P ij .A recharging path-based formulation of the E-VRP-NL-C involves the following decisions variables. Binary variable x p is 1 if and only if an EV travels recharging path p P .Continuous variables τ p and y p track the time and SoC of an EV when it departs from node oppq to dppq using path p. Continuous variables q pl and o pl specify (according to the piecewise linear approximation of the charging function) the SoC of an EV when it arrives at and departs from ipp, lq (i.e. the CS at position l L p ). Continuous variable ∆ pl

  ¡ e ipp,l¡1q,ipp,lq x p q pl , dp P, dl L p zt0u q pl φ plk ¤ a ipp,lq,k ω plk Qp1 ¡ ω plk q, dp P, dl L p , dk B ipp,lq zt0u ¡ a ipp,lq,k¡1 qω plk , dp P, dl L p , dk B ipp,lq zt0u ω plk ¤ x p , dp P, dl L p , dk B ipp,lq zt0u plk {ρ i l k , dp P, dl L p pl q ¤ T max ¡ t p ¡ p dppq ¡ t dppq,0 ¨xp , dp P ipp,l¡1q,ipp,lq x p ∇ pl s pl , dp P, dl L p , l $ 0 (59) ∆ pl d pl ¡ s pl , dp P, dl L p pl , s pl , d pl , ∆ pl , ∇ pl ¥ 0, dp P, dl L p 1u dp P, dl L p , dk B ipp,lq zt0u
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				¤		
		i r V ,i$0 p Pi0	¥ y p ¡ e p x p ¡	ļ Lp	po pl ¡ q pl q	¥ 0, di I	(48)
	y p ¤ Qx p , dp P			(49)
							(50)
	φ plk ¤ pa ipp,lq,k (51) ķB ipp,lq zt0u ω plk ¥ x p , dp P, dl L p (52)
	o pl q pl	ķB	ķB ipp,lq zt0u	φ plk , dp P, dl L p	(53) (54)
	∆ pl	ipp,lq zt0u			¤	(55)
	τ p	i V zt0u,i$j p r Pij ļ Lp p∆ pl ∇ (57) τ p iV,i$j p Pij ¥ t p x p ļ Lp p∆ pl ∇ pl q p j ļ r V ,l$j p τ p , dj I (56) P jl
	τ p t oppq,ipp,0q x p ∇ p0 s p0 , dp P	(58)
	d p,l¡1 t (60)
	x p t0, 1u, dp P τ p ¥ 0, y p ¥ 0 dp P		(61) (62)
	q pl , o (63)
	φ plk ¥ 0 dp P, dl L p , dk B ipp,lq zt0u	(64)
	ω plk t0, (65)
							l$j p P jl	y p , dj I	(45)
	y p ¡ e oppq,ipp,0q x p q p0 , dp P	(46)
	o p,l¡1 (47)
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φ

  alse 6 while k ¤ n do

	7 8	for every operation o U do if SpLpkqq ¥ Cpoq then
	9 10 11	if excess then U Ð U tUu excess Ð f alse
	12 13	end U Ð U ztou
	14	end
	15 16 17 18	end U Ð U tLpkqu if |U| ¡ C then excess Ð true
	19	end
	20 end
	21 if excess then 22 U Ð U tUu
	23 end
	24 return U

Table 2 :

 2 Computational results according to the strategy used for the second stage of the matheuristic

	Capacity		Strategy 1 C1 C2	Strategy 2 C1 C2	Strategy 3 C1 C2 Post-processing Strategy 4
		#Feas	97	97	99	99	99	99	90
		#BKS	83	83	95	95	99	99	77
		Time (s)	23	20	6	5	6	5	2
	1	Gap Gap ¦	0.24% 0.24% 0.02% 0.02% 1.65% 1.65% 0.41% 0.41%	--	--	0.12% 0.82%
		#Cuts Feas	20.2	27.2	9.4	8.5	4	2.4	-
		#Cuts Opt	-	-	32	26 38.1 30.3	-
		#Feas	99	99	99	99	99	99	99
		#BKS	97	97	99	99	99	99	97
		Time (s)	3	3	3	3	2	2	2
	2	Gap Gap ¦	0.01% 0.01% 0.29% 0.29%	--	--	--	--	0.01% 0.42%
		#Cuts Feas	0.5	0.7	0.1	0.1	0	0	-
		#Cuts Opt	-	-	0.7	0.6	0.7	0.7	-
		#Feas	100	100	100	100 100 100	100
		#BKS	100	100	100	100 100 100	100
	3	Time (s)	3	2	2	3	2	2	2
		#Cuts Feas	0.1	0.1	0	0	0	0	-
		#Cuts Opt	-	-	0.3	0.3	0.3	0.3	-

  All CSs have the same number of chargers. The number of chargers at each CS are generated according to an uniform distribution Table A.3: Results of the feasibility tests performed on the best solutions obtained in

		1	C 2	C 3	C 4	
	Proportion of feasible solutions 54% 89% 98% 100%
	(a) Experiment	C 12	C 13	C 14	C 23	C 24
	Average proportion of simula-	69% 76% 81% 92% 94%
	tions with feasible solutions					
	(b)					

Table C

 C Table C.8: Number of routes considered during the second stage

	A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations	
	AppendixC.2. Two-stage matheuristic tc0c80s12cf0 tc2c10s2ct0 17.45 0.1 17.45 tc0c160s16ct2 143.43 0.8 143.43 tc2c20s4ct0 36.25 0.2	0.3 1.3 36.25	431 17.45 143.43	4	0.3 1.1 36.22	17.45 143.43 7.1	2 2
	tc2c10s3cf0 tc0c160s16ct4 163.23 Inf tc0c40s5cf0	0.1 137.3 53.04	tc0c80s12cf1 27.67 162.57 0.1	427 27.58 48.3 162.51 0.8 53.04 0.1	0.6 84.3 53.04	27.81 Inf 0.1	5 39
	tc2c10s3ct0 tc0c160s24cf2 tc0c40s5cf4 16.54 140.59	0.1 0.8 51.24	tc0c80s12ct0 16.54 140.59 0.1	0.1 1.4 51.24	442 16.54 140.59 0.1	0.1 1.3 51.24	16.54 140.59 0.1	0 2
	.6: Detailed computational results on the 10-customer instances for the CS replication-based formu-tc0c80s12ct1 468 tc0c20s3cf2 37.81 0.2 37.81 0.5 37.81 0.5 38.00 10 tc0c160s24cf4 163.40 231.8 162.75 102 162.75 125.6 Inf 22 tc0c40s5ct0 49.23 0.1 49.23 0.1 49.23 0.1
	lations (β 4) Table C.7: Detailed computational results on the 10-customer instances for the recharging path-based Instance A C E A R E A C F A R F Obj Time Obj Time Obj Time Obj Time tc0c10s2cf1 24.75 164 24.75 161 24.75 116 24.75 228 tc0c10s2ct1 17.30 90 17.30 269 17.30 106 17.30 164 tc0c10s3cf1 24.75 10800 24.75 10800 24.75 10800 24.75 10800 tc0c10s3ct1 15.80 28 15.80 109 15.80 39 15.80 82 tc1c10s2cf2 14.03 10 14.03 13 14.03 15 14.03 21 tc1c10s2cf3 21.37 106 21.37 74 21.37 361 21.37 97 tc1c10s2cf4 21.10 40 21.10 23 21.10 49 21.10 106 tc1c10s2ct2 15.75 144 15.75 340 15.75 290 15.75 470 tc1c10s2ct3 18.24 25 18.24 44 18.24 151 18.24 48 tc1c10s2ct4 18.83 31 18.83 6 18.83 18 18.83 16 tc1c10s3cf2 14.03 13 14.03 15 14.03 28 14.03 27 tc1c10s3cf3 21.37 421 21.37 4881 21.37 4726 21.37 6999 tc1c10s3cf4 19.90 127 19.90 75 19.90 197 19.90 180 tc1c10s3ct2 14.20 494 14.20 366 14.20 350 14.20 329 tc1c10s3ct3 18.02 2371 18.02 345 18.02 2693 18.02 507 tc1c10s3ct4 18.21 83 18.21 44 18.21 224 18.21 50 tc2c10s2cf0 26.83 10800 26.83 10800 26.83 10800 26.83 10800 tc2c10s2ct0 17.45 2474 17.45 1402 17.45 2151 17.45 2909 tc2c10s3cf0 26.83 10800 26.83 10800 27.26 10800 26.83 10800 tc2c10s3ct0 16.51 10800 16.51 6338 16.51 10800 16.51 10800 formulations Instance Path A C F Path A R F Obj Time Obj Time tc0c10s2cf1 24.75 148 24.75 100 tc0c10s2ct1 17.30 951 17.30 1431 tc0c10s3cf1 24.75 190 24.75 92 tc0c10s3ct1 15.80 229 15.80 176 tc1c10s2cf2 14.03 95 14.03 54 tc1c10s2cf3 21.37 863 21.37 699 tc1c10s2cf4 21.10 1376 21.10 486 tc1c10s2ct2 15.75 5324 15.75 10800 tc1c10s2ct3 18.24 309 18.24 294 tc1c10s2ct4 18.83 131 18.83 84 tc1c10s3cf2 14.03 68 14.03 52 tc1c10s3cf3 21.37 4965 21.37 1227 tc1c10s3cf4 19.90 486 19.90 648 tc1c10s3ct2 14.20 6195 14.20 10800 tc1c10s3ct3 18.02 1655 18.02 1246 tc1c10s3ct4 18.21 499 18.21 310 tc2c10s2cf0 26.83 10800 26.83 10800 tc2c10s2ct0 17.45 10800 17.45 10800 tc2c10s3cf0 26.83 10800 26.83 10800 tc2c10s3ct0 16.51 10800 16.51 10800 Instance tc0c80s8cf0 375 tc0c20s3ct2 27.11 0.1 27.11 0.1 27.11 0.1 27.11 1 tc0c160s24ct2 139.84 0.5 139.84 0.5 139.84 0.4 139.85 8 tc0c40s5ct4 48.70 0.1 48.70 0.2 48.70 0.1 #Routes tc0c10s2cf1 tc0c80s8cf1 547 tc0c20s4cf2 37.81 0.2 37.81 0.5 37.81 0.4 37.85 11 tc0c160s24ct4 163.69 327.9 162.60 72.2 162.58 81.6 Inf 26 tc0c40s8cf0 53.31 0.1 53.18 0.2 53.18 0.2 22 tc0c10s2ct1 tc0c80s8ct0 385 tc0c20s4ct2 26.99 0.1 26.99 0.1 26.99 0.1 26.99 1 tc1c160s16cf0 162.03 88.6 160.95 12.7 160.83 7.4 160.83 86 tc0c40s8cf4 49.25 0.1 49.25 0.1 49.25 0.1 35 tc0c10s3cf1 tc0c80s8ct1 635 tc1c20s3cf1 27.53 0.1 27.53 0.2 27.53 0.2 27.53 0 tc1c160s16cf3 153.13 26.1 153.13 23 153.13 24.1 153.37 21 tc0c40s8ct0 46.79 0.1 46.79 0.1 46.79 0.1 22 tc0c10s3ct1 tc1c80s12cf2 512 tc1c20s3cf3 26.86 0 26.86 0.1 0.2 26.86 0 tc1c160s16ct0 159.90 18.3 159.76 3.1 159.74 2.8 159.79 46 tc0c40s8ct4 49.24 0.1 49.24 0.1 49.24 0.1 40 tc1c10s2cf2 tc1c80s12ct2 474 tc1c20s3cf4 27.00 0.1 27.00 0.1 27.00 0.1 27.00 0 tc1c160s16ct3 156.19 2.8 156.19 10.7 154.74 1.2 154.74 18 tc1c40s5cf1 Inf 0.1 Inf 3 Inf 191.5 91 tc1c10s2cf3 tc1c80s8cf2 506 tc1c20s3ct1 29.41 0.1 29.41 0.1 29.41 0.1 29.41 0 tc1c160s24cf0 161.20 118.6 158.80 13.9 158.66 12.1 Inf 13 tc1c40s5ct1 72.92 0.1 72.92 0.2 72.92 0.2 25 tc1c10s2cf4 tc1c80s8ct2 509 tc1c20s3ct3 22.68 0.1 22.68 0.1 22.68 0.1 22.68 0 tc1c160s24cf3 150.79 30.2 150.79 42.6 150.79 34 150.79 1 tc1c40s8cf1 63.64 0.4 62.71 1.3 62.71 1.8 42 tc1c10s2ct2 tc2c80s12cf3 372 tc1c20s3ct4 26.25 0.1 26.25 0.1 26.25 0.2 26.25 1 tc1c160s24ct0 160.26 38 159.94 24.3 159.77 22.1 159.77 39 tc1c40s8ct1 61.62 0.2 61.46 0.6 61.46 0.9 97 tc1c10s2ct3 tc2c80s12cf4 642 tc1c20s4cf1 26.39 0.1 26.39 0.2 26.39 0.1 26.39 1 tc1c160s24ct3 149.38 0.8 149.38 0.6 149.38 0.6 149.38 1 tc2c40s5cf2 47.63 0.1 47.63 0.2 47.63 0.1 28 tc1c10s2ct4 tc2c80s12ct3 373 tc1c20s4cf3 26.81 0.1 26.81 0.1 26.81 0.1 26.81 0 tc2c160s16cf1 141.06 0.6 141.06 0.4 141.06 0.5 141.14 7 tc2c40s5cf3 40.20 0.1 40.20 0.1 40.20 0.2 31 tc1c10s3cf2 tc2c80s12ct4 616 tc1c20s4cf4 27.00 0.1 27.00 0.1 27.00 0.1 27.00 0 tc2c160s16ct1 141.43 0.8 141.39 0.6 141.39 0.5 141.39 3 tc2c40s5ct2 47.03 0.1 47.03 0.5 46.99 0.5 91 tc1c10s3cf3 tc2c80s8cf3 370 tc1c20s4ct1 28.25 0.1 28.25 0.1 28.25 0.1 28.25 0 tc2c160s24cf1 141.18 0.4 141.18 0.4 141.18 0.4 141.29 5 tc2c40s5ct3 43.80 0.1 43.80 0.2 43.80 0.1 25 tc1c10s3cf4 tc2c80s8cf4 641 tc1c20s4ct3 24.43 0.1 24.43 0.2 24.43 0.1 24.43 0 tc2c160s24ct1 141.15 1.6 141.15 1.8 141.15 1.6 141.15 1 tc2c40s8cf2 47.31 0.1 47.28 0.1 47.28 0.1 36 tc1c10s3ct2 tc2c80s8ct3 335 tc1c20s4ct4 27.01 0.1 27.01 0.1 27.01 0.1 27.01 0 tc2c40s8cf3 39.70 0.1 39.70 0.3 39.70 0.1 97 tc1c10s3ct3 tc2c80s8ct4 681 tc2c20s3cf0 34.68 0.2 34.68 0.4 34.68 0.4 35.49 19 tc2c40s8ct2 46.66 0.1 46.66 0.1 46.66 0.1 45 tc1c10s3ct4 31 tc2c10s2cf0 28 tc2c10s2ct0 tc0c160s16cf2 1014 tc0c160s16cf4 1318 tc0c160s16ct2 860 tc2c20s3ct0 35.80 0.1 35.80 0.3 35.80 0.3 36.39 11 tc2c20s4cf0 34.74 0.2 34.74 0.3 34.74 0.4 34.98 13 tc2c20s4ct0 36.25 0.2 36.25 6.2 36.22 6.7 36.40 8 tc2c40s8ct3 42.67 0 42.67 0 42.67 0 Table C.10: Detailed computational results on the 10-customer instances for the two-stage matheuristic tc0c80s12cf0 76.18 0.1 76.18 0.2 76.18 0.1 (Capacity = 1) tc0c80s12cf1 85.41 0.1 85.41 0.2 85.41 0.2 71 tc2c10s3cf0 28 tc2c10s3ct0 62 tc0c20s3cf2 tc0c160s16ct4 1254 tc0c160s24cf2 918 tc0c160s24cf4 1308 tc0c40s5cf0 53.04 0.1 53.04 0.1 53.04 0.2 53.04 1 tc0c40s5cf4 51.24 0.1 51.24 0.1 51.24 0.1 51.24 1 tc0c40s5ct0 49.23 0.2 49.23 0.1 49.23 0.1 49.23 1 Instance Strategy 1 (C2) Strategy 2 (C2) tc0c80s12ct0 79.87 0.1 79.87 0.2 79.87 0.1 Strategy 3 (C2) Obj Time (s) Obj Time (s) Obj tc0c80s12ct1 83.42 0.1 83.42 0.1 83.42 0.1 Time (s) tc0c80s8cf0 79.64 0.1 79.64 0.1 79.64 0.1 93 tc0c20s3ct2 tc0c160s24ct2 953 tc0c40s5ct4 48.70 0.1 48.70 0.1 48.70 0.1 48.70 1 tc0c10s2cf1 25.22 0.1 25.22 0.2 25.22 0.1 tc0c80s8cf1 85.77 0.2 85.77 0.3 85.77 0.3 117 tc0c20s4cf2 tc0c160s24ct4 1280 tc0c40s8cf0 53.31 0.1 53.18 0.3 53.18 0.2 53.18 10 tc0c10s2ct1 17.30 0.1 17.30 0.2 17.30 0.1 tc0c80s8ct0 81.83 0.1 81.83 0.2 81.83 0.2 110 tc0c20s4ct2 tc1c160s16cf0 1282 tc0c40s8cf4 49.25 0.1 49.25 0.1 49.25 0.1 49.29 8 tc0c10s3cf1 25.22 0.1 25.22 0.1 25.22 0.1 tc0c80s8ct1 86.69 0.2 86.69 0.3 86.69 0.2 128 tc1c20s3cf1 tc1c160s16cf3 1031 tc0c40s8ct0 46.79 0.1 46.79 0.1 46.79 0.1 46.79 1 tc0c10s3ct1 15.80 0 15.80 0 15.80 0 tc1c80s12cf2 69.20 0.1 69.20 0.1 69.20 0.1 145 tc1c20s3cf3 tc1c160s16ct0 1277 tc0c40s8ct4 49.24 0.1 49.24 0.1 49.24 0.1 49.24 1 tc1c10s2cf2 14.07 0.1 14.07 0.1 14.07 0.1 tc1c80s12ct2 70.67 0.1 70.67 0.2 70.67 0.1 127 tc1c20s3cf4 tc1c160s16ct3 854 tc1c40s5cf1 Inf 0.1 -10800 -10800 Inf 7 tc1c10s2cf3 21.37 0.1 21.37 0.2 21.37 0.1 tc1c80s8cf2 71.94 0.2 71.94 0.3 71.94 0.2 95 tc1c20s3ct1 tc1c160s24cf0 1236 tc1c40s5ct1 72.92 0.1 72.92 0.3 72.92 0.2 72.92 1 tc1c10s2cf4 21.10 0.1 21.10 0.2 21.10 0.1 tc1c80s8ct2 72.49 0.2 72.49 0.2 72.49 0.2 151 tc1c20s3ct3 tc1c160s24cf3 1095 tc1c40s8cf1 63.64 0.6 62.71 1.7 62.71 1.5 Inf 4 tc1c10s2ct2 15.78 0.1 15.78 0.1 15.78 0.1 tc2c80s12cf3 72.53 0.1 72.53 0.2 72.53 0.1 185 tc1c20s3ct4 tc1c160s24ct0 1210 tc1c40s8ct1 61.62 0.3 61.46 1.4 61.46 1 Inf 4 tc1c10s2ct3 21.40 0.1 18.24 0.1 18.24 0.1 tc2c80s12cf4 85.63 0.4 85.63 1.1 85.63 0.6 125 tc1c20s4cf1 tc1c160s24ct3 974 tc2c40s5cf2 47.63 0.1 47.63 0.4 47.63 0.2 47.99 6 tc1c10s2ct4 18.85 0.1 18.85 0.1 18.85 0.1 tc2c80s12ct3 71.61 0.1 71.61 0.2 71.61 0.1 156 tc1c20s4cf3 tc2c160s16cf1 930 tc2c40s5cf3 40.20 0.1 40.20 0.3 40.20 0.2 40.20 1 tc1c10s3cf2 14.07 0.1 14.07 0.1 14.07 0.1 tc2c80s12ct4 83.70 0.3 83.70 0.3 83.70 0.3 158 tc1c20s4cf4 tc2c160s16ct1 794 tc2c40s5ct2 47.03 0.1 47.03 0.8 46.99 0.5 46.99 8 tc1c10s3cf3 21.37 0.1 21.37 0.2 21.37 0.1 tc2c80s8cf3 72.76 0.1 72.76 0.1 72.75 0.1 101 tc1c20s4ct1 tc2c160s24cf1 773 tc2c40s5ct3 43.8 0.1 43.80 0.2 43.80 0.1 43.80 0 tc1c10s3cf4 19.90 0.1 19.90 0.1 19.90 0.1 tc2c80s8cf4 90.43 0.5 90.43 0.6 90.43 0.6 153 tc1c20s4ct3 tc2c160s24ct1 855 tc2c40s8cf2 47.31 0.2 47.28 0.2 47.28 0.2 47.28 6 tc1c10s3ct2 15.62 0 15.62 0 15.62 0 tc2c80s8ct3 72.47 0.1 72.47 0.2 72.47 0.1 125 tc1c20s4ct4 tc2c40s8cf3 39.70 0.1 39.70 0.1 39.70 0.1 39.70 0 tc1c10s3ct3 18.02 0.1 18.02 0.1 18.02 0.1 tc2c80s8ct4 85.83 0.3 85.83 0.4 85.83 0.3 97 tc2c20s3cf0 tc2c40s8ct2 46.66 0.1 46.66 0.2 46.66 0.2 46.66 0 tc1c10s3ct4 18.21 0.1 18.21 0.2 18.21 0.1 tc0c160s16cf2 143.65 2.6 143.36 1 143.34 0.9 92 tc2c20s3ct0 171 tc2c20s4cf0 110 tc2c20s4ct0 tc2c40s8ct3 42.67 0 42.67 0.1 42.67 0.1 42.67 1 tc2c10s2cf0 Inf 0.1 27.67 0.5 27.58 0.6 tc0c160s16cf4 165.72 1077.8 164.04 112 164.02 91.3 Table C.9: Detailed computational results on the 10-customer instances for the two-stage matheuristic tc0c80s12cf0 76.18 0.2 76.18 0.2 76.18 0.1 76.18 1 tc2c10s2ct0 17.45 0.1 17.45 0.2 17.45 0.1 tc0c160s16ct2 143.43 0.6 143.43 1.1 143.43 1 (Capacity = 1) tc0c80s12cf1 85.41 0.2 85.41 0.3 85.41 0.2 85.41 8 tc2c10s3cf0 Inf 0.1 27.67 0.9 27.58 0.5 tc0c160s16ct4 163.23 94.4 162.57 71.2 162.51 78.7 129 tc0c40s5cf0 166 tc0c40s5cf4 367 tc0c40s5ct0 Instance Strategy 1 (C1) Strategy 2 (C1) Strategy 3 (C1) tc0c80s12ct0 79.87 0.1 79.87 0.2 79.87 0.1 79.87 2 tc2c10s3ct0 16.54 0.1 16.54 0.1 16.54 0.1 tc0c160s24cf2 140.59 0.7 140.59 1.5 140.59 1.1 Strategy 4 Obj Time (s) Obj Time (s) Obj Time (s) Obj tc0c80s12ct1 83.42 0.1 83.42 0.2 83.42 0.1 83.42 6 tc0c20s3cf2 37.81 0.1 37.81 0.4 37.81 0.5 tc0c160s24cf4 163.40 294.7 162.75 129.7 162.75 108.1 Time (s) tc0c80s8cf0 79.64 0.1 79.64 0.2 79.64 0.1 79.76 9 tc0c20s3ct2 27.11 0.1 27.11 0.1 27.11 0.1 tc0c160s24ct2 139.84 0.4 139.84 0.5 139.84 0.4 127 tc0c40s5ct4 tc0c10s2cf1 25.22 0.1 25.22 0.1 25.22 0.1 25.22 51 tc0c80s8cf1 85.77 0.2 85.77 0.3 85.77 0.3 85.83 22 tc0c20s4cf2 37.81 0.1 37.81 0.4 37.81 0.4 tc0c160s24ct4 163.69 199.4 162.60 65.7 162.58 111.4 281 tc0c40s8cf0 tc0c10s2ct1 17.30 0.1 17.30 0.1 17.30 0.1 17.30 1 tc0c80s8ct0 81.83 0.1 81.83 0.3 81.83 0.2 81.83 1 tc0c20s4ct2 26.99 0.1 26.99 0.1 26.99 0.1 tc1c160s16cf0 162.03 71.1 160.95 10.2 160.83 7.2 177 tc0c40s8cf4 tc0c10s3cf1 25.22 0.1 25.22 0.1 25.22 0.1 25.22 1 tc0c80s8ct1 86.69 0.2 86.69 0.3 86.69 0.3 86.72 3 tc1c20s3cf1 27.53 0.1 27.53 0.2 27.53 0.1 tc1c160s16cf3 153.13 24.2 153.13 19.5 153.13 13.9 342 tc0c40s8ct0 tc0c10s3ct1 15.80 0 15.80 0 15.80 0.1 15.80 2 tc1c80s12cf2 69.20 0.1 69.20 0.2 69.20 0.2 69.20 0 tc1c20s3cf3 26.86 0 26.86 0.2 26.86 0.1 tc1c160s16ct0 159.90 19.3 159.76 3 159.74 2.8 146 tc0c40s8ct4 tc1c10s2cf2 14.07 0.1 14.07 0.1 14.07 0.1 14.07 0 tc1c80s12ct2 70.67 0.1 70.67 0.2 70.67 0.1 70.67 0 tc1c20s3cf4 27.00 0.1 27.00 0.1 27.00 0.1 tc1c160s16ct3 156.19 2.2 156.19 9.5 154.74 1.2 316 tc1c40s5cf1 tc1c10s2cf3 21.37 0.1 21.37 0.2 21.37 0.1 21.37 0 tc1c80s8cf2 71.94 0.2 71.94 0.3 71.94 0.2 71.94 0 tc1c20s3ct1 29.41 0.1 29.41 0.2 29.41 0.1 tc1c160s24cf0 161.20 67.4 158.80 11.4 158.66 8.5 274 tc1c40s5ct1 tc1c10s2cf4 21.10 0.1 21.10 0.2 21.10 0.1 Inf 1 tc1c80s8ct2 72.49 0.2 72.49 0.2 72.49 0.2 72.49 1 tc1c20s3ct3 22.68 0.1 22.68 0.1 22.68 0.1 tc1c160s24cf3 150.79 25.8 150.79 34.1 150.79 27.4 333 tc1c40s8cf1 tc1c10s2ct2 15.78 0.2 15.78 0.1 15.78 0.1 15.78 0 tc2c80s12cf3 72.53 0.1 72.53 0.2 72.53 0.1 72.53 1 tc1c20s3ct4 26.25 0.1 26.25 0.1 26.25 0.1 tc1c160s24ct0 160.26 28.4 159.94 14.6 159.77 18.2 233 tc1c40s8ct1 tc1c10s2ct3 21.40 0.2 18.24 0.2 18.24 0.1 18.24 5 tc2c80s12cf4 85.63 0.5 85.63 1.3 85.63 0.5 Inf 13 tc1c20s4cf1 26.39 0.1 26.39 0.1 26.39 0.1 tc1c160s24ct3 149.38 0.5 149.38 0.5 149.38 0.5 310 tc2c40s5cf2 tc1c10s2ct4 18.85 0.2 18.85 0.2 18.85 0.2 18.85 0 tc2c80s12ct3 71.61 0.1 71.61 0.1 71.61 0.1 71.61 0 tc1c20s4cf3 26.81 0.1 26.81 0.1 26.81 0.1 tc2c160s16cf1 141.06 0.5 141.06 0.4 141.06 0.4 212 tc2c40s5cf3 tc1c10s3cf2 14.07 0.1 14.07 0.2 14.07 0.1 14.07 0 tc2c80s12ct4 83.70 0.4 83.70 0.4 83.70 0.4 83.82 2 tc1c20s4cf4 27.00 0.1 27.00 0.1 27.00 0.1 tc2c160s16ct1 141.43 0.7 141.39 0.5 141.39 0.4 231 tc2c40s5ct2 tc1c10s3cf3 21.37 0.1 21.37 0.2 21.37 0.1 21.37 0 tc2c80s8cf3 72.76 0.1 72.76 0.1 72.75 0.2 72.75 2 tc1c20s4ct1 28.25 0.1 28.25 0.1 28.25 0.1 tc2c160s24cf1 141.18 0.3 141.18 0.4 141.18 0.3 224 tc2c40s5ct3 tc2c40s8cf2 tc2c40s8cf3 tc2c40s8ct2 tc2c40s8ct3 235 tc2c10s2cf0 Inf 0.1 27.67 1 27.58 0.8 27.81 6 tc0c160s16cf4 165.72 1170.6 164.04 163.9 164.02 231.3 164.1 135 tc2c20s4cf0 34.74 0.1 34.74 0.2 34.74 0.3 255 tc1c10s3ct4 18.21 0.1 18.21 0.1 18.21 0.1 18.21 0 tc0c160s16cf2 143.65 4 143.36 1.1 143.34 0.9 143.34 33 tc2c20s3ct0 35.80 0.1 35.80 0.3 35.80 0.3 260 tc1c10s3ct3 18.02 0.1 18.02 0.1 18.02 0.1 18.02 0 tc2c80s8ct4 85.83 0.3 85.83 0.4 85.83 0.3 85.83 1 tc2c20s3cf0 34.68 0.1 34.68 0.3 34.68 0.4 223 tc1c10s3ct2 15.62 0 15.62 0 15.62 0.1 15.62 1 tc2c80s8ct3 72.47 0.1 72.47 0.2 72.47 0.1 72.47 1 tc1c20s4ct4 27.01 0.1 27.01 0.1 27.01 0.1 274 tc1c10s3cf4 19.90 0.2 19.90 0.2 19.90 0.1 20.32 5 tc2c80s8cf4 90.43 0.6 90.43 0.5 90.43 0.7 Inf 1 tc1c20s4ct3 24.43 0.1 24.43 0.1 24.43 0.1 tc2c160s24ct1 141.15 1.3 141.15 2.6 141.15 1.9
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Table C .

 C 11: Detailed computational results on the 10-customer instances for the two-stage matheuristic (Capacity = 2) TableC.12: Detailed computational results on the 10-customer instances for the two-stage matheuristic (Capacity = 2)

	A Matheuristic for the Electric Vehicle Routing Problem with Capacitated Charging Stations		
	tc2c40s8ct3 tc2c20s4cf0	42.67 34.73	0 0.1	42.67 34.73	0 0.1	42.67 34.73	0.1 0.1	42.67 34.73	0 0
	tc0c80s12cf0 tc2c20s4ct0	76.18 36.03	0.1 0.1	76.18 36.03	0.1 0.1	76.18 36.03	0.2 0.1	76.18 36.03	0.1 0
	tc0c80s12cf1 tc0c40s5cf0	85.41 53.04	0.2 0.2	85.41 53.04	0.1 0.1	85.41 53.04	0.2 0.1	85.41 53.04	0.1 0
	tc0c80s12ct0 tc0c40s5cf4 Instance tc0c80s12ct1 tc0c40s5ct0	Strategy 1 (C1) 79.87 0.1 51.24 0 Obj Time (s) 83.42 0 49.23 0	Strategy 2 (C1) 79.87 0.2 51.24 0.1 Obj Time (s) 83.42 0 49.23 0	Strategy 3 (C1) 79.87 0.1 51.24 0.1 Obj Time (s) 83.42 0.1 49.23 0.1	Strategy 4 79.87 51.24 Obj Time (s) 0 0 83.42 0 49.23 0
	tc0c10s2cf1 tc0c80s8cf0 tc0c40s5ct4	25.22 79.64 48.70	0.1 0.1 0	25.22 79.64 48.70	0.1 0.2 0	25.22 79.64 48.70	0.1 0.1 0.1	25.22 79.64 48.70	0.1 0 0
	tc0c10s2ct1 tc0c80s8cf1 tc0c40s8cf0	17.30 85.69 53.14	0 0.2 0	17.30 85.70 53.14	0 0.2 0.2	17.30 85.70 53.14	0.1 0.2 0.1	17.30 85.70 53.14	0 0.1 0
	tc0c10s3cf1 tc0c80s8ct0 tc0c40s8cf4	25.22 81.83 49.25	0.1 0.1 0	25.22 81.83 49.25	0.1 0.2 0	25.22 81.83 49.25	0.1 0.1 0.1	25.22 81.83 49.25	0 0 0
	tc0c10s3ct1 tc0c80s8ct1 tc0c40s8ct0	15.80 86.64 46.79	0 0.2 0	15.80 86.64 46.79	0 0.3 0	15.80 86.64 46.79	0.1 0.2 0.1	15.80 86.64 46.79	0 0.1 0
	tc1c10s2cf2 tc1c80s12cf2 tc0c40s8ct4	14.07 69.20 49.24	0 0 0	14.07 69.20 49.24	0 0.1 0.1	14.07 69.20 49.24	0.1 0.1 0.2	14.07 69.20 49.24	0 0 0
	tc1c10s2cf3 tc1c80s12ct2 tc1c40s5cf1	21.37 70.67 85.37	0.1 0.2 0.1	21.37 70.67 85.37	0.1 0.1 0.5	21.37 70.67 85.37	0.1 0.1 0.5	21.37 70.67 85.43	0 0.1 0.1
	tc1c10s2cf4 tc1c80s8cf2 tc1c40s5ct1	21.10 71.94 72.92	0.1 0.2 0.1	21.10 71.94 72.92	0.1 0.3 0.1	21.10 71.94 72.92	0.1 0.3 0.1	21.10 71.94 72.92	0 0.1 0
	tc1c10s2ct2 tc1c80s8ct2 tc1c40s8cf1	15.78 72.49 61.59	0.1 0.2 0.1	15.78 72.49 61.59	0.1 0.2 0.3	15.78 72.49 61.59	0.1 0.2 0.3	15.78 72.49 61.59	0 0.1 0
	tc1c10s2ct3 tc2c80s12cf3 tc1c40s8ct1	18.17 72.53 61.29	0.1 0.1 0.1	18.17 72.53 61.30	0.2 0.2 0.1	18.17 72.53 61.30	0.1 0.1 0.2	18.17 72.53 61.30	0 0 0.1
	tc1c10s2ct4 tc2c80s12cf4 tc2c40s5cf2	18.85 85.59 47.60	0.1 0.4 0	18.85 85.59 47.60	0.1 0.8 0	18.85 85.59 47.60	0.1 0.7 0.1	18.85 85.59 47.60	0 0.4 0
	tc1c10s3cf2 tc2c80s12ct3 tc2c40s5cf3	14.07 71.61 40.20	0 0 0.1	14.07 71.61 40.20	0 0.1 0.2	14.07 71.61 40.20	0.1 0.1 0.1	14.07 71.61 40.20	0 0 0
	tc1c10s3cf3 tc2c80s12ct4 tc2c40s5ct2	21.37 83.67 46.97	0.1 0.3 0.2	21.37 83.67 46.97	0.1 0.4 0.1	21.37 83.67 46.97	0.1 0.3 0.1	21.37 83.67 46.97	0 0.2 0
	tc1c10s3cf4 tc2c80s8cf3 tc2c40s5ct3	19.90 72.75 43.80	0 0.2 0.1	19.90 72.75 43.80	0 0.1 0.2	19.90 72.75 43.80	0.1 0.1 0.1	19.90 72.75 43.80	0 0 0
	tc1c10s3ct2 tc2c80s8cf4 tc2c40s8cf2	15.62 90.37 47.19	0 0.6 0	15.62 90.38 47.19	0 0.6 0	15.62 90.38 47.19	0.1 0.7 0.1	15.62 90.38 47.19	0 0.4 0
	tc1c10s3ct3 tc2c80s8ct3 tc2c40s8cf3	18.02 72.47 39.70	0.1 0.1 0	18.02 72.47 39.70	0.2 0.1 0.1	18.02 72.47 39.70	0.1 0.1 0.1	18.02 72.47 39.70	0 0 0
	tc1c10s3ct4 tc2c80s8ct4 tc2c40s8ct2	18.21 85.83 46.66	0 0.3 0.1	18.21 85.83 46.66	0 0.4 0.1	18.21 85.83 46.66	0.1 0.3 0.1	18.21 85.83 46.66	0 0.2 0
	tc2c10s2cf0 tc0c160s16cf2 tc2c40s8ct3	26.77 143.20 42.67	0.1 0.6 0	26.77 143.20 42.67	0.1 0.9 0	26.77 143.20 42.67	0.1 0.8 0.1	26.77 143.20 42.67	0 0.5 0
	tc2c10s2ct0 tc0c160s16cf4 tc0c80s12cf0	17.45 163.76 76.18	0.1 62.6 163.74 17.45 0.1 76.18	0.2 72.4 163.74 17.45 0.1 76.18	0.1 54.6 163.74 17.45 0.1 76.18	0 48.7 0.1
	tc2c10s3cf0 tc0c160s16ct2 143.43 26.77 tc0c80s12cf1 85.41	0.1 1.1 0.1	26.77 143.43 85.41	0.1 1.4 0.1	26.77 143.43 85.41	0.1 1.2 0.2	26.77 143.43 85.41	0 1 0.1
	tc2c10s3ct0 tc0c160s16ct4 161.74 16.54 tc0c80s12ct0 79.87	0.1 30.8 161.74 16.54 0.1 79.87	0 5.4 0.1	16.54 161.74 79.87	0.1 5.4 0.1	16.54 161.74 79.87	0 18 0
	tc0c20s3cf2 tc0c160s24cf2 tc0c80s12ct1	37.60 140.59 83.42	0.1 0.7 0	37.60 140.59 83.42	0.1 1.4 0	37.60 140.59 83.42	0.1 1.3 0.1	37.60 140.59 83.42	0 0.7 0
	tc0c20s3ct2 tc0c160s24cf4 tc0c80s8cf0	27.11 162.19 79.64	0 44.9 162.19 27.11 0.1 79.64	0 46.2 162.19 27.11 0.1 79.64	0.1 41.5 162.19 27.11 0.1 79.64	0 41.4 0
	tc0c20s4cf2 tc0c160s24ct2 139.83 37.68 tc0c80s8cf1 85.69	0.1 0.4 0.2	37.68 139.83 85.70	0.1 0.3 0.2	37.68 139.83 85.70	0.1 0.4 0.2	37.68 139.83 85.70	0 0.3 0.1
	tc0c20s4ct2 tc0c160s24ct4 162.40 26.99 tc0c80s8ct0 81.83	0.1 42.1 162.40 26.99 0.1 81.83	0.2 48.3 162.40 26.99 0.1 81.83	0.1 44.1 162.40 26.99 0.1 81.83	0 40.1 0
	tc1c20s3cf1 tc1c160s16cf0 tc0c80s8ct1	27.53 160.78 86.64	0.2 25.3 160.45 27.53 0.1 86.64	0.1 2.4 0.2	27.53 160.45 86.64	0.1 2.4 0.3	27.53 160.45 86.64	0 1.6 0.1
	tc1c20s3cf3 tc1c160s16cf3 tc1c80s12cf2	26.86 152.99 69.20	0 6.6 0	26.86 152.99 69.20	0.2 17.6 152.99 26.86 0.1 69.20	0.1 8.9 0.1	26.86 152.99 69.20	0 5.1 0
	tc1c20s3cf4 tc1c160s16ct0 159.73 27.00 tc1c80s12ct2 70.67	0 21 0.1	27.00 159.73 70.67	0 7.3 0.1	27.00 159.73 70.67	0.10 6.4 0.1	27.00 159.73 70.67	0 18.2 0.1
	tc1c20s3ct1 tc1c160s16ct3 154.64 29.41 tc1c80s8cf2 71.94	0.2 0.8 0.2	29.41 154.64 71.94	0.2 1.1 0.2	29.41 154.64 71.94	0.1 0.9 0.2	29.41 154.64 71.94	0 0.7 0.1
	tc1c20s3ct3 tc1c160s24cf0 tc1c80s8ct2	22.68 158.36 72.49	0 2.4 0.1	22.68 158.36 72.49	0 3.8 0.2	22.68 158.36 72.49	0.1 4.1 0.2	22.68 158.41 72.49	0 1.9 0.1
	tc1c20s3ct4 tc1c160s24cf3 tc2c80s12cf3	26.25 150.79 72.53	0 26.6 150.79 26.25 0.1 72.53	0 20.9 150.79 26.25 0.1 72.53	0.1 20.7 150.79 26.25 0.1 72.53	0 24 0
	tc1c20s4cf1 tc1c160s24ct0 160.26 26.39 tc2c80s12cf4 85.59	0.1 28.4 159.71 26.39 0.5 85.59	0.2 9.9 0.8	26.39 159.66 85.59	0.1 9.1 0.7	26.39 159.66 85.59	0 18 0.4
	tc1c20s4cf3 tc1c160s24ct3 149.38 26.81 tc2c80s12ct3 71.61	0.1 0.7 0	26.81 149.38 71.61	0.1 0.7 0	26.81 149.38 71.61	0.1 0.5 0.2	26.81 149.38 71.61	0 0.5 0
	tc1c20s4cf4 tc2c160s16cf1 tc2c80s12ct4	27.00 140.94 83.67	0 0.5 0.3	27.00 140.94 83.67	0 0.6 0.4	27.00 140.94 83.67	0.10 0.4 0.3	27.00 140.94 83.67	0 0.3 0.2
	tc1c20s4ct1 tc2c160s16ct1 141.32 28.25 tc2c80s8cf3 72.75	0.1 0.5 0.1	28.25 141.32 72.75	0.1 0.4 0.1	28.25 141.32 72.75	0.1 0.4 0.1	28.25 141.32 72.75	0 0.4 0
	tc1c20s4ct3 tc2c160s24cf1 tc2c80s8cf4	24.43 141.16 90.37	0 0.3 0.5	24.43 141.16 90.38	0.1 0.3 0.6	24.43 141.16 90.38	0.1 0.3 0.6	24.43 141.16 90.38	0 0.2 0.4
	tc1c20s4ct4 tc2c160s24ct1 141.15 27.01 tc2c80s8ct3 72.47	0 1.5 0	27.01 141.15 72.47	0 1.8 0	27.01 141.15 72.47	0.1 1.5 0.1	27.01 141.15 72.47	0 1.2 0
	tc2c20s3cf0 tc2c80s8ct4	34.68 85.83	0.1 0.3	34.68 85.83	0.4 0.3	34.68 85.83	0.4 0.3	34.88 85.83	0 0.2
	tc2c20s3ct0 tc0c160s16cf2	35.80 143.2	0.2 0.6	35.80 143.20	0.3 0.7	35.80 143.20	0.2 0.8	35.89 143.20	0 0.5
	tc2c20s4cf0 tc0c160s16cf4	34.73 163.69	0.1 52.3 163.69 34.73	0.1 46.4 163.69 34.73	0.1 42.4 163.69 34.73	0 48.6
	tc2c20s4ct0 tc0c160s16ct2 143.43 36.03	0.1 1.3	36.03 143.43	0.1 1.3	36.03 143.43	0.1 1.1	36.03 143.43	0 1
	tc0c40s5cf0 tc0c160s16ct4 161.74 53.04	0.2 20.3 161.74 53.04	0.1 5.9	53.04 161.74	0.1 5.3	53.04 161.74	0 18
	tc0c40s5cf4 tc0c160s24cf2	51.24 140.59	0.2 0.7	51.24 140.59	0.1 1.3	51.24 140.59	0.1 1.3	51.24 140.59	0 0.7
	tc0c40s5ct0 tc0c160s24cf4	49.23 162.19	0 44.7 162.19 49.23	0 76.2 162.19 49.23	0.2 73.3 162.19 49.23	0 41.4
	tc0c40s5ct4 tc0c160s24ct2 139.83 48.70	0.1 0.3	48.70 139.83	0.2 0.3	48.70 139.83	0.1 0.4	48.70 139.83	0 0.3
	tc0c40s8cf0 tc0c160s24ct4	53.14 162.4	0.1 46.9 162.40 53.14	0.2 50.3 162.40 53.14	0.1 50.2 162.40 53.14	0 40.1
	tc0c40s8cf4 tc1c160s16cf0	49.25 160.44	0.1 2.1	49.25 160.44	0.2 2.4	49.25 160.44	0.2 2.3	49.25 160.44	0 1.6
	tc0c40s8ct0 tc1c160s16cf3	46.79 152.99	0.1 6.4	46.79 152.99	0.1 10	46.79 152.99	0.1 9	46.79 152.99	0 5.1
	tc0c40s8ct4 tc1c160s16ct0 159.73 49.24	0.1 19	49.24 159.73	0.1 6.3	49.24 159.73	0.1 6.6	49.24 159.73	0 18.2
	tc1c40s5cf1 tc1c160s16ct3 154.64 Inf	0.2 0.8	-154.64	10800 0.8	-154.64	10800 0.8	Inf 154.64	0 0.7
	tc1c40s5ct1 tc1c160s24cf0	72.92 158.36	0.1 2.4	72.92 158.36	0.1 3.6	72.92 158.36	0.3 3	72.92 158.36	0 1.8
	tc1c40s8cf1 tc1c160s24cf3	61.59 150.79	0.1 27.4 150.79 61.59	0.2 22.9 150.79 61.59	0.3 20.4 150.79 61.59	0 24
	tc1c40s8ct1 tc1c160s24ct0 159.60 61.29	0.2 20.7 159.60 61.30	0.3 9	61.30 159.60	0.3 9.2	61.30 159.60	0.1 18
	tc2c40s5cf2 tc1c160s24ct3 149.38 47.60	0.1 0.6	47.60 149.38	0.1 0.5	47.60 149.38	0.1 0.5	47.60 149.38	0 0.5
	tc2c40s5cf3 tc2c160s16cf1	40.20 140.94	0.1 0.4	40.20 140.94	0.3 0.3	40.20 140.94	0.2 0.4	40.20 140.94	0 0.3
	tc2c40s5ct2 tc2c160s16ct1 141.32 46.97	0.1 0.4	46.97 141.32	0.1 0.3	46.97 141.32	0.1 0.4	46.97 141.32	0 0.4
	tc2c40s5ct3 tc2c160s24cf1	43.80 141.16	0.2 0.2	43.80 141.16	0.2 0.2	43.80 141.16	0.1 0.3	43.80 141.16	0 0.2
	tc2c40s8cf2 tc2c160s24ct1 141.15 47.19	0 1.4	47.19 141.15	0 1.5	47.19 141.15	0.1 1.6	47.19 141.15	0 1.2
	tc2c40s8cf3	39.70	0.1	39.70	0.1	39.70	0.1	39.70	0
	tc2c40s8ct2	46.66	0.1	46.66	0.1	46.66	0.1	46.66	0
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