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This paper deals with the identification of blind building façades, i.e. façades which have no openings, in
wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness
characterization is in general crucial for real estate estimation and has, at least in France, a particular
importance on the evaluation of legal permission of constructing on a parcel due to local urban planning
schemes.

We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-
track and across-track and a 3D city model of LoD 1, that can have been generated with the input images.
The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by select-
ing for each façade the best available resolution texture seeing the whole façade. We then parse all 3D
façades textures by looking for evidence of openings (windows or doors). This evidence is characterized
by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then
elaborated through an (SVM) supervised classification.

Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on
decimeter resolution imagery with 60� 40% stereo overlap.

On the one hand, we show that the results are very sensitive to the texturing resampling process and to
vegetation presence on façade textures. On the other hand, the most relevant features for our classifica-
tion framework are related to texture uniformity and horizontal aspect and to the maximal contrast of
the opening detections.

We conclude that standard aerial imagery used to build 3D city models can also be exploited to some
extent and at no additional cost for facade blindness characterisation.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Urban areas have been extensively analyzed over the last
twenty years using remote sensing data, with an emphasis on
building detection (Rottensteiner et al., 2014).

Due to local urban planning schemes,1 the existence of openings
(windows or doors) on a façade determines whether a building can
be erected in front of this façade or at a given distance. This informa-
tion can therefore have an important impact on the evaluation of
legal permission of constructing on an area and, more generally,
on the estimation of the potential of an area for urban development.
Such studies can be implemented into urban simulation tools such
as (Brasebin et al., 2011).

This paper describes a method to automatically identify blind
façades, i.e. façades which have no openings, using standard aerial
imagery (without oblique configuration). Compared with terres-
trial acquisition systems, this solution decreases façade occlusions
due to foreground objects. The challenge of this problem is that the
rectified texture of the façades can be stretched by the perspective
transformation: this is mainly due to the opening angle of the cam-
era lens and the location of the façade in aerial images (cf. Sec-
tion 2). Fig. 1 illustrates this issue: the rectified texture of the
openings are dark spots.
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Fig. 1. Impact of the image resolution in rectified images. (a) Image of façades acquired by the Mobile Mapping System Stéréopolis (Paparoditis et al., 2012)), 1 cm GSD. (b) The
same façades acquired by standard aerial imagery, 10 cm GSD: pixels are stretched over 1 m in the vertical direction on several vertical planes.
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The blind façade detection is a task required by the e-PLU project
(http://www.e-plu.fr/), which aims at transforming urban planning
documents into a 3D digital urban simulation platform (Brasebin
et al., 2011). Morphological and urban criteria are both taken into
account to estimate the legal permission of constructing on a par-
cel. Such a system is at high stakes because of the complexity of the
urban planning documents. It can also contribute to sustainable
development and energy management (Bozonnet et al., 2013).

An overview of façade analysis approaches from the literature is
proposed in Section 1.1. Then the general analysis strategy for blind
façades classification is presented in Section 1.2.

1.1. Related work on façade analysis

Image-based façade analysis is a key issue which has been
increasingly important in the two last decades. Many applications
are concerned such as building reconstruction, semantic labeling
or realistic content generation.

Here, two common approaches are discussed about terrestrial
and aerial imagery: scene description by local feature detection
(Section 1.1.1), or by more general features (Section 1.1.2).

1.1.1. Local feature extraction
Mostly, target objects must have structural properties which

accurately match the a priori model in the data so as to be correctly
detected.

Local features are generally extracted in images acquired by
optical terrestrial systems because of their high spatial resolution
(Ground Sample Distance, GSD, of about 2 centimeters). A common
approach is to match the objects of the image scene with a priori
models. A widespread scheme, namely the bottom-up method, con-
sists in starting with very local information, e.g. pixel-level, so as to
independently analyze different elements in the whole image (e.g.
using texture filter banks or semantic features like corners or edges
of specific elements), and then progressively group them into more
sophisticated configurations.

Starting with a set of independent, possibly overlapping win-
dow hypotheses, Korč and Förstner (2008a) found an optimal con-
figuration of non-overlapping windows using a graph-based binary
integer programming solution. They also evaluated the relevance
of graphical models for such an issue (Korč and Förstner, 2008b).
Similarly, Reznik and Mayer (2008) started with an independent
window corner detection process, then inferred individual window
hypothesis localization from this corner set by employing an Impli-
cit Shape Model and finally grouped them into rows and columns.
Haugeard and Philipp-Foliguet (2012) detected image contours
and regions in order to fed adjacency graphs and recognize win-
dows using a Support Vector Machines classifier – SVM, (Cortes
and Vapnik, 1995). Farabet et al. (2012) parsed urban scenes from
a set of multi-scale feature vectors, which provides a classification
of each pixel into object categories such as building, tree, grass or
sky. They showed that both low-level and mid-level features are
relevant for efficient discrimination. A study of texture filter banks
commonly employed in pixel-based urban object classification
frameworks was proposed by Drauschke and Mayer (2010).

Using vertical aerial images, Meixner and Leberl (2011) were
able to extract the façade items (e.g., floors and windows). Their
approach was based on window redundancy and gradient accumu-
lation profiles.

Another way to use local features is to directly start with the
global object scene model and then progressively refine it by ana-
lyzing more and more low-level information (top-down approach).
Müller et al. (2007), for instance, segmented a façade image
according to a hierarchical subdivision pipeline in order to obtain
a textured 3D model including semantic structures. Burochin
et al. (2010) recursively split façade images with a into elementary
models. Generally speaking, a widespread modeling tool consists
in grammars (Ripperda and Brenner, 2009; Teboul et al., 2013),
which is often adopted to introduce a priori information about spe-
cific spatial arrangement of windows. However, this is not suffi-
cient for our specific purpose.

1.1.2. General feature extraction
As mentioned above, openings and façades may not be always

accurately described using local features. Therefore, the latter ones
have limited contribution for subsequent detection and
classification.

General features mainly consist in a more flexible model which
summaries the statistical layout properties. They are used, for
instance, in the classification of image scenes into open–close,
indoor–outdoor, or natural–urban. Instead of specific elements
detection, the point is to extract general information about the
geometrical or the radiometric properties often at different scales
and orientations. Gradient orientation histograms (HOG) are com-
monly used to obtain such descriptions (Dalal and Triggs, 2005).
Contrary to local feature extraction schemes, the use of general fea-
tures does not depend on an accurate element localization but is
based on strong discriminating information statistically contained
in the image. Thus, this additional kind of measurement theoreti-
cally supplies high stability. Furthermore, it does not require high
image resolution (feasible with 10 cm GSD). In terrestrial images,
Kumar and Hebert (2003), for instance, detected man-made struc-
tures with multi-scale gradient orientation features based on intra-
scale and interscale measurements. Zhang and Košecká (2007) also
used HOG to match façade images. Han and Liu (2013) categorized
natural scene spatial layout by a Spatial Envelope which consisted
of a set of output magnitude of a bank of multiscale-oriented
filters.

In oblique aerial images, Nyaruhuma et al. (2012) generated
façade clues by a measure of contour orthogonality and texture
matching. The result was used to update the cadastral building
outline. Similarly, Xiao et al. (2012) generated façade descriptors

http://www.e-plu.fr/
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based on a direction map in order to detect and reconstruct build-
ings. The direction map was generated from the detection of struc-
ture edges of the façade within 10–16 cm images.

1.2. Proposed strategy

The work presented in this paper is dedicated to very high res-
olution rectified images. Here, the resolution in the vertical direc-
tion is far from the native 10 cm GSD due to perspective
transformation (up to 1 m). These images are noisy and contain
shadows (Fig. 1). Hence, façades cannot be represented with
sophisticated models: statistical radiometric and geometrical anal-
ysis with general features is preferred in conjunction with the
detection of dark rectangular areas. As discussed in Section 1.1,
façade analysis require feature computation at various scales, that
is why our approach is composed of both top-down and bottom-up
extracted information.

An outlook of the full work-flow is presented by Fig. 2. First,
each façade polygon of the 3D model was textured by selecting
the best available resolution texture of the aerial imagery seeing
the whole façade. Then, statistical information was extracted,
namely general features. Additionally, openings were detected by
a stochastic process based on their contrast with the wall back-
ground. Finally, a supervised classifier was trained from all these
general and local features in order to recognize blind façades. This
learning step was required in order to capture the heterogeneity
of urban structures and façade occlusions.

The main contributions of this work are threefold:

1. Façade-based feature extraction in standard airborne imagery.
In this context, general radiometric and geometrical informa-
tion of the images was computed: radiometry uniformity, struc-
turedness, and repetitiveness of the texture. Local information
based on contrasted openings was also inserted.

2. Analysis of the façade features. All these general and local fea-
tures were combined into a blind façade descriptor. For efficient
discrimination, the most relevant ones were selected.

3. Deadlock identification of the problem. The results demon-
strates the sensitivity to the texturing resampling process and
to vegetation presence on façade textures.

In the next section, the aerial image input and pre-process steps
– rectification in façade planes and creation of the reference data
set – are described. The general feature used – radiometry unifor-
mity, structuredness, and repetitiveness of the texture – are
described in Section 3. Besides, Section 4 introduces an energetic
formulation to find the best configuration of opening detections:
the optimization process consists in a combination of a reversible
jump Markov Chain Monte Carlo sampling (rjMCMC) and of simulated
annealing. The classification model used is introduced in Section 5:
Support Vector Machines – SVM, (Cortes and Vapnik, 1995)
– adopted because of its high generalization performance (Abu-
Mostafa et al., 2012).
Fig. 2. Proposed methodology
2. Data

The e-PLU project collaborates with the PLAINE COMMUNE conurba-
tion, in the North-East of Paris, France. Several typical building
blocks were selected within this area for deep analysis.

First, the use of standard imagery is motivated and the acquisi-
tion process is explained in Section 2.1. Typical building blocks in
the study area are then described in Section 2.2. The resampling
process into the façade plane is presented in Section 2.3. Finally,
these resampled façade images were visually interpreted to build
a reference data set as described and discussed in Section 2.4.

2.1. Relevance of standard airborne imagery

The acquisition of urban images by aerial platforms with verti-
cally directed cameras represents a widespread solution to cover
large areas with reduced economical costs.

Compared with terrestrial acquisition systems, this solution
decreases façade occlusions due to foreground objects (vegetation,
vehicles, urban furniture, etc.). Furthermore all façades are of inter-
est, including those inside building blocks, which are often not eas-
ily accessible by terrestrial means. A comparison between oblique
aerial imagery and vertical imagery is provided by Meixner and
Leberl (2010b). They showed that vertical imagery with high over-
lap is sufficient to façade analysis.

Images were acquired by an opening angle of 60� and a ground
sample distance of 10 cm. The overlap is about 60% in the flight
direction and about 40% across this direction. Fig. 3 shows two
extreme situations. When the acquisition angle is about 30�, the
image texture is properly acquired with a distortion factor of 2 in
the vertical direction. The worst situation occurs with a sharp graz-
ing angle of about 6� with a distortion factor of 10: a 10� 10 meter
façade is represented by a texture of 100� 10 pixels. Under this
limit angle, the façade can be analyzed in the neighboring image
(with an angle of 30�).

2.2. Typical building block selection

An expert selected 70 typical building blocks which refer to sev-
eral urban constructions corresponding to different administrative
area types (based on urban densities and activities, building shapes
and sizes, etc.).

These building blocks are characteristic of a large-scale urban
variety. Indeed several architectural periods were selected, old dis-
tricts as well as modern amenities and infrastructures under con-
struction. Different activities are represented: individual and
community residential houses, industrial areas, car parks, gardens,
schools, etc. The road network is diversified: boulevards, streets,
dead ends, squares, etc.

Areas that are prone to change in the forthcoming years were
also selected. Projects, such as tramway line construction, new
malls, consist in challenging insertion issues inside existing
constructions. Opening location knowledge on such changeable
for blind façade detection.



Fig. 3. Acquisition protocol: each façade is acquired with a minimum angle of 6�

and a maximum angle of 30� .

Fig. 4. Projection of the best viewing image in the façade plane: (a) Bounding
rectangle in the façade plane; (b) rectification of the texture in the bounding
rectangle; and (c) façade rectification mask.

Fig. 5. Image rectification problems (circled in red lines): (a) Border alignment; (b)
geometrical occlusion: a close building projected inside the rectified façade texture;
and (c) contour axis alignment. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

196 J.-P. Burochin et al. / ISPRS Journal of Photogrammetry and Remote Sensing 96 (2014) 193–209
constructions is an important issue to show how the project e-PLU

can help urban planners and architects to estimate the impact of
urban regulation.

2.3. Façade image rectification

The selected representative building blocks contained 735 faç-
ades. For each façade polygon of the 3D Model,2 a bounding rectan-
gle in the façade plane was defined, aligned with the vertical
direction (Fig. 4a). The best viewing aerial image – i.e. the image in
which the façade was acquired with the largest angle – was rectified
in this rectangle (Fig. 4b). For non rectangular façades, masks were
created so as to indicate which pixels actually belong to the façade
(Fig. 4c).

Because of the imperfections of the 3D model – (Durupt and
Taillandier, 2006), precision: 1 m – the resulting rectified façade
images may be negatively impacted:

Border alignment
Building edges in the images might not fit exactly with the model
edges. In this case, several building edges may appear within the
2 BATI-3D�, http://professionnels.ign.fr/bati-3d.
rectangle, that might be confused with opening edges (Fig. 5a).
Conversely, meaningful edges within the façade might fall outside
the rectangle.

Contour axis alignment
If the façade in the model is not perfectly parallel to the real façade,
horizontal/vertical contours may not be axis-aligned in the image
(Fig. 5c).

Both problems will hinder the opening detection process and
the horizontal/vertical gradient accumulation. Note that close
buildings or trees might be projected inside the rectified façade
texture, which also disrupts the analysis (Fig. 5b).
2.4. Reference data set

A reference data set is required in order to evaluate the analysis
results (see Section 5). Hence, an expert (a town planning consul-
tant) visually located openings (doors and windows) as rectangular
boxes inside the resampled images.3 862 openings were then iden-
tified in 271 façades and 182 façades were considered blind (not con-
taining any opening).

The operator had to cope with two kinds of problems. On the
one hand, several images were acquired with a very small angle
(6� in the worst situations), which implies a great distortion of
the façade textures. On the other hand, there also are radiometric
problems related to shadows and under-exposition. Therefore, all
façade textures which cannot be interpreted by a human eye were
considered non classifiable. This referred to 282 separate façades.

Moreover, as mentioned above, even if images were acquired
from an aerial platform, above main street objects, façade textures
are often occluded by vegetation and close building projection.
Consequently, the operator also located those occlusion areas as
3 An editor was especially implemented so as to carry out this task. It is available as
a sample of the GILVIEWER free open-source library (https://code.google.com/p/
gilviewer).

http://professionnels.ign.fr/bati-3d
http://https://code.google.com/p/gilviewer
http://https://code.google.com/p/gilviewer
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rough rectangular inputs. Thus, the analysis process was oriented
to the façade area only.

Although these occlusion masks were manually built in this
study, automatic alternatives exist to large scale purposes. Stan-
dard Normalized Difference Vegetation Index, NDVI (Kriegler et al.,
1969) could be used to generate the vegetation mask (after a cor-
rect threshold fitting). The visibility problem could be solved by
computer graphics approaches such as z-buffering based on the
building 3D model (Vallet and Houzay, 2011).

The analysis of these data is presented in the three next sec-
tions: feature extraction in Sections 3 and 4, and blind façade clas-
sification in Section 5.
3. General Blindness Indicators

As detailed in Section 1.1, several general features were used in
the literature to analyze façade images. Some of them were used in
this study. The façade texture uniformity was measured with radi-
ometry statistics (Section 3.1), the structuredness with gradient ori-
entation histogram (Section 3.2), and the repetitiveness by gradient
accumulation profiles (Section 3.3).

Only the façade area outside the occlusion mask was analyzed
(see Section 2.4). Furthermore, the image was cropped. Indeed a
margin was added at each side of the façade rectangle in order to
cope with the border projection issue (see Section 2.3). The width
of this margin was empirically set to 20 cm. It is represented by a
line of the same color as the mask (cyan) on the illustrations of this
paper.
Fig. 6. Radiometry histograms of façade image A
3.1. Uniformity indicator

If openings are assumed to be contrasted with wall background,
the radiometry distribution is more likely uniform with blind faç-
ade textures than with the textures of façade with openings.
Fig. 6 shows radiometric histograms of a blind façade and a façade
with openings.

The uniformity indicator is defined by the intensity standard
deviation of the resampled image I:

r2
I ¼

X
p2MðIÞ

IðpÞ � I
� �2

; ð1Þ

where p 2 MðIÞ is a pixel inside the mask MðIÞ of the façade area. I is
the intensity mean defined by:

I ¼ 1
#MðIÞ

X
p2MðIÞ

IðpÞ: ð2Þ
3.2. Structuredness Indicators

A blind façade is likely to have a poor structuredness look.
Structuredness refers to the man-made structure detection studied
by Kumar and Hebert (2003). They noted that the gradients seem
to be low in smooth areas whereas the distribution of its magni-
tude is likely to be approximately high and uniform in textured
ones. Furthermore, in an area that contains few straight edges
embedded in a smooth background, the gradient orientation
(blind) and façade image B (with openings).
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histogram contains significant peaks. Hence, the average spikeness
of the gradient orientation histogram was computed, under the
assumption that the main contrasts of façade textures are grouped
in opening areas. Let � ðiÞ be the magnitude of the orientation his-
togram at the bin i. These measurements consisted of heaved cen-
tral-shift moments. The pth ordered moment mp was heaved
because only positive differences were accumulated (values
greater than the mean):

mp ¼
P

i � ðiÞ � m0ð Þpþ1
1� ðiÞ�m0P

i � ðiÞ � m0ð Þ1� ðiÞ�m0

; ð3Þ

where m0 is the mean of the orientation distribution and 1x is the
unit step function such that 1x ¼ 1 for x > 0, and 0, otherwise. In
this work, the histogram was not smoothed as proposed in
(Kumar and Hebert, 2003), but it was weighted by gradient module
in order to reduce noise effect as they recommended. The three first
moments were used (m0; m1 and m2).

For façade with openings, orientation histograms exhibit two
main peaks that correspond to horizontal and vertical directions.
Consequently, features have been derived in order to evaluate
the significance of such peaks (Kumar and Hebert, 2003). This
information was commonly used in the literature: Benedek et al.
(2013) modeled vertical and horizontal orientations peaks by the
correlation of the histogram with a bimodal Gaussian mixture.
Here, the histogram was split into three parts: horizontal orienta-
tion, vertical orientation and other directions. Magnitude differ-
ences between these parts were computed. Let � ½a;b� be the
magnitudes of the histogram between the orientation a and the
orientation b. The indicator Dhorizontal of horizontal orientations is
defined by the difference between the horizontal orientation mean,
� ½0� ;/�, and the mean of other orientations, � ½/;90��/�:

Dhorizontal ¼
1
m0

� ½0� ;/� � � ½/;90��/�
� �

; ð4Þ

where the parameter / is the orientation tolerance. It was empiri-
cally set to 10� (sufficient value to isolate the peaks). This indicator
was normalized by the moment m0. In the same way, an indicator
Dvertical of vertical orientations was computed by the difference
between the vertical orientation mean, � ½90��/;90� �, and the mean of
other orientations:

Dvertical ¼
1
m0

� ½90��/;90�� � � ½/;90��/�
� �

: ð5Þ
Fig. 7. Weighted gradient orientation histogram of façade image A (blind) and
façade image B (with openings). All orientation values are fitted between 0�

(horizontal) and 90� (vertical).
Fig. 7 shows the orientation histograms of a blind façade and a
façade with openings. A sixth structuredness indicators was finally
computed with the standard deviation of the orientation
histogram:

r2
� ¼

X
i

ð� ðiÞ � m0Þ2: ð6Þ

Low values indicate low contour orientation in the texture and
high values occurs for structured textures (i.e. façade with
openings).
3.3. Repetitiveness Indicators

An indicator of structure repetitiveness was also experimented
similarly to (Meixner and Leberl, 2010a). Here openings are
assumed to appear vertically and horizontally aligned in the façade
texture. Gradient accumulation profiles of blind façades are more
uniform than those of façade with openings. Therefore, the profiles
VðryÞ and HðryÞ were respectively computed from the y-gradient
accumulations in rows and columns, and, in the same way, VðrxÞ
and HðrxÞ from x-gradients (Fig. 8).

The periodicity of these profiles is analyzed with Fast Fourier
Transform, FFT, as introduced by the window width estimation
(Liu and Gagalowicz, 2010). If a periodicity exists in the structure
alignment, then the FFT contains one significant peak. This was
measured by computing the entropy N of the spectrum, which pro-
vided us with four repetitiveness indicators. In this work, only the
entropy of the profile NðVðrxÞÞ was analyzed.
3.4. Discussion

The computing time of the extraction of the set of these nine
general features was about a fraction of a second for an image of
100,000 pixels with a single-core processor of 2.83 GHz.

Here gradient-based features were mainly used. In further
work, an advanced signal processing method would be useful in
order to better analyze the histograms and in particular detect spe-
cific cases such as vegetation occlusion, shadows, dirty spots, etc.
Fig. 8. (a) Gradient accumulation profiles of façade image A (blind). (b) Gradient
accumulation profiles of façade image B (with openings). Top, left, bottom and right
profiles: VðryÞ;HðryÞ;VðrxÞ and HðrxÞ respectively.
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With a more general purpose, the noise influence could be
reduced by using a pre-segmentation result as input of the whole
feature extraction. The features could be inferred from the analysis
of a set of segments, such as the one generated by ultimate opening
introduced by (Hernández and Marcotegui, 2008; Marcotegui and
Hernández, 2011) or by the elementary models of Burochin et al.
(2010).

The two façade textures shown here are ideal cases. Other tex-
tures in the data are not so clear and easy to analyze on the basis of
such general features. Thus, additional features are introduced in
Section 4 based on the façade opening detection.
4. Opening detection

In addition to the general features described above, some indi-
cators were computed so as to directly detect façade opening areas.

The aerial image resolution does not allow the use of specific
models to represent them. Indeed, they often consist of mere dark
spots. Thus, the opening detection was formulated as the genera-
tion of a set of dark rectangles on the image. A rectangular shape
was used because it represents a suitable trade-off between sim-
plicity and reality-fitting. This geometry also provides computation
simplifications in order to independently work in horizontal and
vertical directions.

Section 4.1 introduces an energetic formulation to evaluate the
relevance of such an opening detection configuration. Section 4.2
describes the optimization process to find the best configuration
which consists in a combination of a reversible jump Markov Chain
Monte Carlo sampling (rjMCMC) (Hastings, 1970; Green, 1995) and
of simulated annealing (such as described by Salamon et al.
(2002)). This top-down approach can solve the problem of the
low resolution by including a regularization component. Section 4.3
presents detection results.

As described in Section 3, the façade area is analyzed only out-
side the vegetation mask and outside the margins. In the illustra-
tions of this paper, the margins are represented by same color
than the area outside the façade (cyan).
4.1. Energetic formulation

Let the configuration R be composed of non-overlapping rectan-
gles which are darker than the wall pane. This problem was formu-
lated as the minimization of a configuration energy EðRÞ of any
configuration R:

EðRÞ ¼ EdataðRÞ þ hEregðRÞ: ð7Þ

The configuration energy E is the linear combination of a data
term (Section 4.1.1), which depends on image radiometry inside
each rectangle, and a regularization term (Section 4.1.2), which is
related to the rectangle layout relevance a priori independent of
image data. The h coefficient balances the two terms.
Fig. 9. Weight of contrast in function of the gradient orientation mean. (a) Vertical
direction and (b) horizontal direction.
4.1.1. Data term
The data energy term is related to the relevance of each opening

detection. A contrast energy Erect (Eq. (9 and a constant term Emin
rect

are associated for each one:

EdataðRÞ ¼
X
r2R

Emin
rect � ErectðrÞ

� �
: ð8Þ

The constant term Emin
rect prevents the process from generating

noisy dark rectangles, in a same way as the Minimum Description
Length (MDL, (Rissanen, 1983)). This threshold is empirically fixed
at a value greater than the façade wall radiometry noise (see Sec-
tion 4.3.2 in order to get further information).
Let ErectðrÞ be the cost of rectangle r depending on contrast Eedge

of its four edges.
The process analyzes the four edges independently of each

other. This was essential in the problem as only the rectangles that
really had four contrasted edges were required. The contrast prod-
uct was used according to Eq. (9) so as to give the same weight to
each edge and to set the cost to zero if one of the edges has a too
low contrast.

ErectðrÞ ¼
Y

e2edgeðrÞ
EedgeðeÞ: ð9Þ

A contrast measurement close to the one defined by Benedek
et al. (2013) was used in order to robustly characterize rectangles
by edge orthogonality. It was adapted to the problem of this
work where horizontal and vertical directions were known. The
x-gradient mean �Gx was used to compute vertical contrasts
according to Eq. (10) (respectively y-gradient mean �Gy to compute
horizontal ones).

EedgeðeÞ ¼ �GxðeÞqvðOðeÞÞ: ð10Þ

The vertical contrast was weighted by a factor qvðOÞ which lin-
early decreases with the gradient orientation mean O along the
edge according to Eq. (11) (Fig. 9a).

qv :
½0; p2� �! ½0;1�
O # maxð0;1� 4

p OÞ

(
ð11Þ

Note that vertical gradient orientation ðO ¼ p=2Þ does not affect
the contrast and that an edge with an orientation superior to p=4 is
set to zero.

In the same way, the horizontal contrast was computed with a
weight qhðOÞ expressed by Eq. (12) (Fig. 9b).

qh :
½0; p2� �! ½0;1�
x # max 0; 4

p x� 1
� �

(
ð12Þ

Conversely to Benedek et al. (2013), whose analysis concerned
aerial images of building roofs, the contrast measurement was
not normalized because of local noise inside wall textures. Then
façades was assumed to be acquired with correct illumination con-
ditions: too dark façades were visually classified as non classifiable
(cf. Section 2.4).

4.1.2. Regularization term
All opening detection were independently generated in the

image. The regularization term prevents them from overlapping.
This consists in the sum of all intersections according to Eq. (13).

EregðRÞ ¼
X
r2R

X
s2R;s–r

r \ s ð13Þ

The h coefficient was fixed to a large value in Eq. (7) in order to
remove any opening detection overlapping.



200 J.-P. Burochin et al. / ISPRS Journal of Photogrammetry and Remote Sensing 96 (2014) 193–209
4.2. Configuration optimization

4.2.1. Related work
This subsection describes the generation process of the best

non-overlapping opening detection configuration. It could not be
performed by iteratively studying all configurations without using
a very long computing time. Indeed, if L is the image length (width
or height) and N is the maximal opening detection number, then
the complexity of such an algorithm is exponential: OðL4NÞ, which
is not possible in the current application.

The configuration energy E does not have any interesting prop-
erties such as convexity but there are optimization solutions for
this kind of problem. First, deterministic methods could be used,
such as greedy approaches: recursively detecting the darkest rect-
angle and removing its area from the search space until there are
no more rectangles with a contrast energy greater than the thresh-
old Emin

rect . The result of such an algorithm is not globally optimal
because there is a risk of under-segmentation (one big dark rectan-
gle located on several small less contrasted openings) but com-
plexity is polynomial ðOðNL4ÞÞ. There are also heuristics, inspired
by natural processes, such as evolutionary algorithms (cf. (Jong,
2006)) that may converge more quickly toward interesting
solutions.

The solution of the reversible jump Markov Chain Monte Carlo
(rjMCMC) sampling scheme (Hastings, 1970; Green, 1995) was cho-
sen combined with simulated annealing (Salamon et al., 2002)
because of its rigorous stochastic scheme. This consisted of a detec-
tion method of objects modeled by geometrical parameters in a
large dimension search space. The reversible jumps were required
because the number of openings is unknown. The complexity
was independent from the image area and the opening detection
number (about a few million of configuration energy computa-
tions). The use of such a process has been developed in the litera-
ture during the last decade (Alegre and Dellaert, 2004; Ortner et al.,
2007; Ripperda and Brenner, 2009; Tournaire et al., 2010).

The generic and efficient implementation of Brédif and
Tournaire (2012)4 was used: see (Casella and Robert, 2004;
Descombes, 2011) for additional information on the theoretical
background.

This scheme consists in a marked point process which is a
Markov Chain Monte Carlo sampling (MCMC) of unordered object
sets. The process iteratively generates, moves and removes several
points in the image. Each point corresponds to an opening detec-
tion offset (top left corner ðx; yÞ), to which two marks are associ-
ated (a width w and a height h). Each state of the Markov Chain
contains parameters of the whole configuration (points and
marks). Transitions between states are the proposition kernels of
the process (called reversible jumps Kið Þ). At each iteration, the
probability of accepting or rejecting the new configuration R0 from
the configuration R is determined by the acceptance Green ratio
CðR;R0Þ.

These successive rectangle configurations is sampled
according to a Gibbs target probability distribution pT at tempera-
ture T (See Section 4.2.2) and with a reference probability distribu-
tion pref :
pTðRÞ ¼
1
Z
prefðRÞe�EðRÞ=T ; ð14Þ
where Z is an unknown normalization constant.
Algorithm 1 summarizes this method at a relative constant

temperature T and from a configuration R.
4 http://logiciels.ign.fr/?-librjmcmc,19-.
Algorithm 1. Pseudocode of the Metropolis–Hastings–Green sam-
pling (Green, 1995).
repeat
Select a proposition kernel Ki according to probability pkk0 ;
Generate the sequence ukk0 according to probability ukk0 ðuÞ;
Build the candidate configuration ðR0;vk0kÞ ¼ Tkk0 ðR;ukk0 Þ;
Accept or reject R0 according to probability CðR;R0Þ;

until stationary regime

A suitable decrease of temperature T leads to an optimal config-
uration R� ¼ arg maxREðRÞ as described in Section 4.2.2. The refer-
ence probability distribution pref is explained in Section 4.2.3.
Kernels and their respective Green ratio CðR;R0Þ computation are
detailed in Appendix A.
4.2.2. Simulating annealing
In order to minimize the configuration energy E, the simulated

annealing principle (Salamon et al., 2002) is the progressive penalty
of the acceptance rate C toward a higher state of energy. This pro-
cess is obtained by decreasing the temperature parameter T. At sys-
tem initial state, T is the Infinite (a large initial value T0 in practice).
The sampling distribution pT is then totally independent of the
configuration energy E and follows the reference distribution pref .
At the end of the process, T is nearly zero and the distribution pT

converges toward a Dirac distribution centered on global minima
of the configuration energy E. This scheme provides an exploration
of the largest possible part of search space so as to detect global
minima.

Salamon et al. (2002) pointed out that the process convergence
toward a global optimal is assured by a logarithmic temperature
decrease and a high enough initial temperature (in order to let
the process explore the whole search space and not to exclusively
focus in a local optimum at the beginning). Yet, this theoretical
scheme is too slow. In this work, a geometrical temperature was
used to decrease Tn ¼ anT0, with the real a is related to the
decrease speed and n is the iteration of the process. This choice
was a good compromise between theory and practice and ensure
us to reach the minimum close to the optimal one.

4.2.3. Reference distribution
The probability distribution function pT (Eq. (14)), which sam-

ples opening detection configurations, depends on a reference dis-
tribution function pref . This reference distribution must sample
the whole configuration search space and not to be zero on global
minima of the configuration energy E.

In the application of this work, the opening detection number k
was sampled by a Poisson process PðkÞ ¼ kke�k=k!, which only
depends on a parameter k, related to an a priori opening number
mean (k ¼ 5 in the implementation: there are few openings). In
addition, each opening detection r ¼ R½i� 2 R;1 6 i 6 k was uni-
formly and independently sampled according to Eq. (15).

prefðRÞ ¼ PðkÞ
Yk

i¼1

Pðr ¼ R½i�Þ: ð15Þ

Finally, both parameter pairs ðx;wÞ and ðy;hÞ : PðrÞ ¼
Pðx;wÞPðy;hÞ were uniformly and independently sampled so as to
generate each opening detection r.

4.3. Results

The quality of the results depends on the value of contrast
threshold Emin

rect (Section 4.1.1) and on the evaluation method. Both

http://logiciels.ign.fr/?-librjmcmc,19-


Fig. 11. Detection evaluation results as a function of contrast threshold Emin
rect.
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choices are respectively discussed in Sections 4.3.1 and 4.3.2. The
performance of the detection is showed in Section 4.3.3.

4.3.1. Evaluation method
There are different object detection evaluation methods. The

simplest one consists in comparing an opening detection mask
with a reference one. Bel-Hadj-Ali (2001) analyzed evaluation
methods in the situation of precise geometrical data. He especially
defined distances between detections and reference objects based
on their intersection area.

Those methods are dedicated to very precise geometrical eval-
uation. In the application of this work, image textures were so
stretched that even the reference data set was very inaccurate
(about a third of the data set was considered non classifiable).
Therefore, the evaluation was based on opening centers of the
detections: an opening detection is a true positive if its center
lay inside a reference opening (Fig. 10).

4.3.2. Contrast threshold
The influence of the contrast threshold, Emin

rect (Section 4.1.1, Eq.
(8)) was analyzed based on the evolution of the precision and
the recall. These two measures are well described in (Fawcett,
2006), and refer to the ratio between the true positive number –
respectively the reference opening number – and the opening
detection number. Precision linearly decreases with the recall until
one threshold, then drastically falls, as shown in Fig. 11.

The contrast threshold was empirically set to the value 0:1 in
order to obtain a suitable tradeoff between a relatively large recall
and a sufficient precision.

4.3.3. Performance
The recall and the precision were about 64% and 42% respec-

tively. This performance was relatively low mainly due to border
problems (consequence of the rectification process, Section 2.3):
it is discussed in Section 4.3.4.

In order to relax the constraint of the temperature decrease by
reducing energy gaps between the bad detection location and the
good one, the square root

ffiffiffiffiffiffiffiffiffi
Erect
p

of rectangle energy was used in
the contrast energy Erect (Eq. (9)). It was a good compromise to fas-
ten the detection process. The computing time was about twenty
minutes per image with a single-core processor of 2.83 GHz, which
Fig. 10. Detection result. Reference openings are shown by blue rectangles (false negativ
contain a center of a reference opening). Dashed green rectangles are false positives. The
of the references to color in this figure legend, the reader is referred to the web version
is time-consuming with regard to the extraction time of the gen-
eral features. The implementation was not especially optimized
but the Section 4.3.5 propose future work.

4.3.4. Quality assessment
The recall and the precision are low but these results are biased

by border problems which refer to the two thirds of the errone-
ously segmented images. On the one hand, the margin added to
reduce the rectification problem is often not large enough to com-
pensate for the texture overhang of outside elements (see Fig. 12a).
On the other hand, reference openings have edges located inside
the margin (see Fig. 12b). Therefore, these openings are not acces-
sible by the sampling which only detects openings with enough
gradient at each edge (Eq. (9)).

These two problems are linked with each other and the choice
of the margin width seems not to significantly impact the quality
of the result.

Remaining problems are due to the contrast. First, several faç-
ade textures contain dark spots which are not openings (because
of the façade structure or piece of dirt or occlusion). When these
spots are rectangular shapes, they may cause false alarms
es are shown in dashed lines). Continuous green rectangles are true positives (they
occlusions (vegetation) are shown by hatched yellow rectangles. (For interpretation
of this article.)



Fig. 12. Border problems: the reference data set consists of the continuous blue
rectangles (false negatives are shown in dashed lines), the continuous green
rectangle is a true positive whereas the dashed green ones are false positives. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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(Fig. 13a). Besides, several reference openings are very low-con-
trasted with the wall background (Fig. 13b). Hence their detection
by the gradient-based approach was not ensured. Finally, there are
few images with bright openings on a dark wall background
(Fig. 13c). Contrary to the misleading contrast and the low-con-
trasted opening problems, this situation is relatively uncommon
(note that even if the opening texture is brighter than the wall
background, there are often perspective effects which result in
dark shadows).

In order to significantly increase the quality of the detection,
perspectives are proposed:
Fig. 13. Contrast challenge (the occlusions are shown by hatched yellow rectangles, o
contrasted openings; and (c) reverse-contrasted openings. (For interpretation of the refe
article.)
� To increase the recall, the contrast energy Erect (Eq. (9)) could be
adapted to weight the product of the contrast energies by the
number of edges inside the façade area (instead of simply set-
ting 0 at edges inside the margins). Border masks (more precise
than the margin) also could be visually or automatically gener-
ated on a pre-processing step.
� This precision rate could be increased by the use of model fit-

ting techniques or coarse classifier so as to reject non relevant
detections once the configuration is built. Note that the model
used in the generation step has to be as simple as possible in
order to sample the space without spending a lot of time on
sophisticated computation.

4.3.5. Computing time
The computing time of the detection process is twenty minutes

per image (with a single-core processor of 2.83 GHz), which is
highly superior to the general features extraction step. The imple-
mentation was not optimized but several hints on how to do it for
larger scale purposes are developed.

First, initial temperature of the simulated annealing was delib-
erately set at a value higher than required. Indeed, because of a
variety of exposure conditions, the process was configured to sam-
ple the whole radiometry dynamic without normalizing the con-
trast energy Erect . For instance, opening detections in the image in
Fig. 10a were validated sooner than the ones in the image in
Fig. 10c. In the first case, the detection was nearly entirely obtained
in the first iteration phase (in 1 min). Thanks to the high initial
temperature, detection locations are relevant (global optimal con-
figuration). No more opening detection were generated for some
time. In the other case, the process waited until it reached a low
enough temperature to keep the opening detections at high con-
trast location (maybe after fifteen minutes without detecting any-
thing). In order to shorten the execution time of the detection
technique, the decisive improvement would be to automatically
set the initial temperature with regard to the statistical content
of the whole texture as explained in (Salamon et al., 2002).

Furthermore, the efficient implementation (Verdié and Lafarge,
2014) is particularly well suited to the issue because each façade
ther legend elements are explained in Fig. 12): (a) Misleading contrast; (b) low-
rences to color in this figure legend, the reader is referred to the web version of this
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texture is independent from each other. In addition, a rough classi-
fication of the façades using one of the method mentioned in Sec-
tion 1.1 could be used to narrow the detection process. Other
sampling approaches might also improve the results such as the
Multiple Birth and Death scheme – MBD, (Descombes, 2011;
Benedek et al., 2013) since we deal with simple patterns.

The data term E�data of the optimal configuration and the contrast
energy E�rect of the most contrasted rectangle were used as local
indicators. Despite the limited relevance of their location, they
were proved to provide meaningful blind façade indicators to this
study, as described in the following section.

5. Blind façade classification

Blind façades are those without an opening. This section intro-
duces a classification approach to identify them. First, the feature
set (Section 5.1) is represented by a space X related to all the faç-
ade features which have been described above. The choice of a
supervised learning process is motivated in Section 5.2 and the
partition of the data set is explained. The evaluation method is also
introduced in this section. Section 5.3 introduces the classification
model: Support Vector Machines – SVM, (Cortes and Vapnik, 1995) –
and the kernel and the parameter selection are described. An opti-
mization is added to this classification framework (Pal and Foody,
2010) by selecting features that are relevant and removing the
other ones, as explained in Section 5.4. The trained classifier is then
tested on the test set as demonstrate in Section 5.5: about 85% of
correct classification. Finally, this result is discussed in Section 5.6
and perspectives are proposed.

5.1. Data representation

A representation of façade images is proposed by using features
previously introduced: number of opening detections and their
contrast as described in Section 4 and general features explained
in Section 3. Each image is related to a vector x in a feature space
X11 according to Eq. (16):

x ¼

I ðradiometry mean; Equation 2Þ
rI ðuniformity; Equation 1Þ
m0 structuredness ðSection 3:2Þ
m1 structuredness ððEquation 3Þ
m2 structuredness ðEquation 3Þ
Dvertical ðvertical aspect; Equation 5Þ
Dhorizontal ðhorizontal aspect; Equation 4Þ
r� structuredness ðEquation 6Þ
NðVðrxÞÞ ðrepetitiveness; ðSection 3:3Þ
E�rect ðopening contrast max; Equation 9Þ
E�data ðopening contrast sum; Equation 8Þ

0
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1
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2 X11 ð16Þ
Fig. 14. Cross-validation error of each feature singleton ðX1Þ.
5.2. Supervised learning

The high variety of the façade and their representation in the
images require a supervised approach in order to better capture
this high heterogeneity. Indeed there exists human rules which
cannot be automatically inferred from the images without addi-
tional information. Sometimes blind façades look like façades with
openings because of local noise (vegetation, dirt, ornament, shad-
ows, etc.): see Fig. 18 for example. Therefore the classifier was
fed by a reference data set visually built by an expert (see
Section 2.4).

As training set, the 80% of the classifiable façade set were
selected, which corresponds to 363 façade images. The process
was tested with the other classifiable façades (90 images). This pro-
portion is a good compromise between generalization capacity and
reliability of the error estimate, as explained in (Abu-Mostafa et al.,
2012). Both façade types are equally represented in each set.

In this paper, the proportion of correctly classified blind façades
was practically as critical as the proportion of correctly classified
façades with openings. Thus, rates such as recall, precision or
F-measures could not been used without adding a bias in the eval-
uation. Only the classification accuracy (overall accuracy) was used
with the cross validation, that is to say, the ratio between the num-
ber of correctly classified images (blind or with openings) and the
total number of images (Fawcett, 2006).

5.3. Model parameter setting

A standard solution is to adopt Support Vector Machines – SVM)
(Cortes and Vapnik, 1995). This classifier projects the feature space
into a higher-dimensional space where an hyperplane was com-
puted so as to separate the two classes. Its main assets is to max-
imize the margin between these two classes, which theoretically
reduces the generalization error. A review of such a tool is pro-
posed by Mountrakis et al. (2011).

The regularized-classification implementation (C-SVC) of Chang
and Lin (2011) was chosen and both polynomial and radial basis
kernel function were tested. These two kernels are considered in
(Hsu et al., 2010) to be the most appropriate ones when the feature
space geometry is unknown.

The kernel parameters and the regularization parameter were
selected by a 10-fold cross-validation in the training set. This step
simply sampled the values in a finite set in order to select an
approximate solution. The cross validation error of both kernels
where approximately the same. The radial basis kernel function
was selected because it has only one parameter.

5.4. Feature selection in forward search

In order to reduce the generalization error (Pal and Foody,
2010), a feature selection step was implemented so as to retrieve
the best feature space X�. A forward search was used by iteratively
adding the features in the SVM, starting by the most relevant one.

At the first step, all the feature singleton spaces X1 were tested.
Fig. 14 shows the cross validation error of each of them: the unifor-
mity feature obtained the best result.

Next, each feature couple space X2 ¼ X�1 �X01 was tested based
on the best feature singleton space X�1 of the previous step and
another one X01–X�1.

The best feature space X�i was recursively extended in order to
test each X iþ1 ¼ X�i �X01 in this way until testing the full feature
space X11. Finally, Fig. 15 shows the evolution of the cross valida-
tion error at each step of the feature selection.



Fig. 15. Feature selection in forward search based on the cross validation error.

Fig. 16. Correct classification of blind façades. The dashed green rectangles are
opening detections (false positives).
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For the training set, the best feature space was obtained at the
fourth step with both radiometric features, horizontal aspect
(Dhorizontal, Eq. (4)) and maximal contrast (E�rect). With this best fea-
ture set, cross validation error was decreased at less than 16%.

x ¼

uniformity
Dhorizontal

E�rect

radiometry mean

0
BBB@

1
CCCA 2 X�: ð17Þ

No other feature could be added without increasing the cross
validation error.

5.5. Results

The images of the test set were classified with the best feature
set (in about one second with a single processor of 2.83 GHz). The
accuracy was about 86% and the algorithm classified better the
façades with openings than blind façades as shown in the contin-
gency table (Table 1).

74% of the blind façades was correctly classified and 90% of the
façade classified as blind were actually blind (Figs. 4b and 16). Note
that it may happens that a façade is classified as blind even if sev-
eral openings were detected (see Fig. 16).

Generally, when the façade has openings, then these latter are
detected but are not correctly delineated (opening detection preci-
sion of 42%). Correct classification results of this kind of façades
are presented in Fig. 17. Three façades with openings were classi-
fied as blind because their texture was as uniform as the basic blind
façades and the contrast of their openings was less than the major-
ity of the contrast of the openings in the train sample (Figs. 18 and
21). Regarding blind façades, the process failed because of border
problems (Figs. 5a and 19) and vegetation (Fig. 20). On Fig. 19, it
does not really detect any opening but the features related to the
radiometric features and the horizontal aspect were biased by the
projection of close buildings at the border.

5.6. Discussion

5.6.1. Generalization performance
The generalization performance of the classifier can be esti-

mated by the two error measures described above:

� The 10-fold cross validation error in the training set: about 16%.
� The validation accuracy in the test set: about 14%.

Note that the proportion of support vectors is about 40%, which
predicts a theoretical generalization performance lower than these
Table 1
Contingency table of the classification of the test set: number of façades.

Blind Not blind

classified as blind 28 3
classified as not blind 10 49
two empirical estimates (Cortes and Vapnik, 1995). Misclassifi-
cation are mainly due to pre-processing problems: vegetation
and border problems but an improvement could be added to the
classification framework itself, as discussed in Section 5.6.2.
5.6.2. Feature selection consistency
The generalization error was decreased by the feature selection.

Features which have been set apart are discussed in this paragraph.
First, Repetitiveness was a poor discriminative feature by itself in
this situation (Fig. 14) because the data contained few repetitive
structures. But, when the situation occurs, this measure must be
adapted in order to focus on façade which really do have regular
opening repetitions such as the one shown in Fig. 21.

The process genuinely detected all the openings but the classi-
fier took in consideration only the highest contrast. If this highest
contrast is lower than the contrast of other openings and if it has
the same value than the contrast of occlusions (shadows, vegeta-
tion, dirt or little structures such as Fig. 16), then the classifier
failed without further analysis. An interesting solution would be
to carry on the whole opening set if the façade have several ones.
Indeed, the repetitiveness measure is currently based on the entropy
of the FFT spectrum, which is maybe too progressive among the
façade features. The distinction between very repetitive openings
and façades with few openings is too soft. A harder repetitiveness
measure would probably be accepted by the feature selection pro-
cess and would have prevent the classifier from failing (by a mode
extraction technique, for example, such as Gaussian regression).

Apart from this feature, the accumulated contrast of the open-
ing detections was not selected: this probably means that several
blind façades have an accumulated contrast noise as high as the
contrast of most openings. Regarding structuredness and gradient
orientation, these features might have redundancy with the hori-
zontal aspect feature.

Naturally, once the resampling border problems are fixed and
the vegetation detected, different features than these ones will cer-
tainly be selected.



Fig. 17. Correct classification of façades with openings. The reference opening location consists of the continuous blue rectangles (opening false negatives are shown in
dashed lines), the continuous green rectangles are opening true positives whereas the dashed green ones are false positives. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Classification error due to low contrast. A façade with a uniform
background and one opening with very low contrast will not lead to a successful
detection.

Fig. 19. Classification error due to geometrical occlusion. The projection of close
buildings may hinder the classification of the blind façade.
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5.6.3. Non classifiable façades and probability estimate
Finally, the non classifiable façade image set (cf. Section 2.4) was

not analyzed in details because of its very bad classification capac-
ity: about 40% with SVM and three-classes (blind, not blind, non
classifiable) and about 30% for the two-classes problem (classifiable
vs non classifiable). Additionally, we can note that:

� None of the features has sufficient discrimination power.
� Neither the direction of the camera, nor the direction of the the-

oretical sunlight with regard to the façade plane seemed to have
an impact on the nature of this third class.
For further work, a probability distribution on the classification
result could be generated from the non classifiable façade set by
merging the classifiable score with a blindness score provided by
the bagging framework or the distance to the hyperplane described
in (Wu et al., 2004). Thus, when the blindness probability is less
than a fixed probability, the process would ask an operator to



Fig. 20. Classification error due to vegetation occlusion. The occlusion mask
(hatched yellow rectangle) is not large enough to cover the entire vegetation area
on the blind façade. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 21. Classification error: façade with a uniform background and repetitive
openings with low contrast. Gradient accumulation computations are explained in
Section 3.3. The process detects all the openings but fails in the classification: the
repetitiveness measure must then be adapted so as to prevent this situation.
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classify the border line façade. In this sense, Li et al. (2012) pro-
posed an active learning approach based on an interesting SVM
extension: HintSVM. This latter locates a query boundary among
the unlabeled instances according to a measure of uncertainty
and a measure of representativeness.
6. Conclusion

A supervised approach for detecting blind façades (i.e. without
opening –window or door), was proposed in this paper using wide
angle yet vertical aerial images with a decimeter pixel size
acquired by standard nadir looking cameras. Such discrimination
is highly at stake for urban planners so as to estimate the potential
impact of urban regulations and setting up public polices.

Two complementary façade feature sets were designed in this
very specific context, namely general and local features. The first
one corresponded to general radiometric and geometrical informa-
tion about the façade texture, tailored to deal with the lack of con-
tour sharpness. The second one was extracted by a stochastic
opening detection based on the local contrast in the images. This
study demonstrated that the combination of these features is
highly relevant in order to provide meaningful supervised
classification results. Indeed, the classification accuracy was about
85%, using such challenging data containing a large number of
stretched façade textures. These results were very sensitive to
the texturing resampling process and to vegetation presence on
façade textures.

The execution time of the full work-flow was about twenty
minutes per image, mainly due to the opening detection step. In
particular, it can be reduced by further tuning the initial tempera-
ture of the simulated annealing step with regard to the statistical
content of the whole texture as explained in (Salamon et al., 2002).

Furthermore, other relevant façade features could be added
such as those proposed by Yang et al. (2012) based on more sophis-
ticated statistical information about the color space, the geometry
and the texture. Finally, various camera configurations and posi-
tions (oblique VS vertical) can be tested so as to find the most rel-
evant configurations for such façade analysis.
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Appendix A. Reversible jump implementation

In order to detect openings, the rectangle configuration energy
E was minimized (Eq. (7)). A reversible jump Markov Chain Monte
Carlo (rjMCMC) sampling scheme (Hastings, 1970; Green, 1995)
was combined with a simulated annealing (Salamon et al., 2002).
This appendix provides the definition of reversible jumps and Green
ratio in Section A.1 and their computation in Section A.2.

A.1. Definitions

Casella and Robert (2004) formalized the following reversible
jump structure:

A probability pkk0 to the kernel selection from state ðk;RÞ
toward state ðk0;R0Þ. Let pk0k be the reciprocal probability
(pk0k ¼ 1� pkk0 ).
A variable sequence ukk0 . If the starting and ending configura-
tion spaces do not have the same dimensions, Green (1995)
proposed to add additional random variables inside the
lower-dimension space. Thus, a sequence ukk0 of such variables
was defined which completed other parameters of the k rectan-
gles of configuration R. Respectively, an additional random var-
iable sequence vkk0 of the k0 rectangles of configuration R0 was
defined. In addition, the probability density functions ukk0 ðuÞ
and uk0kðvÞ respectively were defined, related to these
sequences.



Fig. A.22. Right edge translation kernel.
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A bijection Tkk0 between the current state and the candidate
state such that Tkk0 ðR;ukk0 Þ ¼ ðR

0;vk0kÞ. Let Tk0k ¼ T�1
kk0 be the

inverse bijection.

Then the kernel theoretically satisfies the reversibility condition
if the configuration R0 from configuration R is selected according to
acceptance rate CðR;R0Þ expressed by Eq. (A.1).

CðR;R0Þ ¼ min 1;
pref ðR0Þ
prefðRÞ

pk0kuk0kðvk0kÞ
pkk0ukk0 ðukk0 Þ

dTkk0 ðR; ukk0 Þ
dðR; ukk0 Þ

����
����eEðRÞ�EðR0 Þ

T

� 	
ðA:1Þ
A.2. Computations

The number of opening detections is unknown. Transition ker-
nels of type birth and death iteratively modified it by respectively
adding and removing rectangles (Appendix A.2.1). This is theoret-
ically sufficient to explore the entire search space (Geyer and
Møller, 1994). This succession of proposals yields an ergodic Mar-
kov Chain which.

Other local modification kernels were also used to speed up the
convergence: a kernel type in order to stretch and contract rectan-
gles (Appendix A.2.2) and another one in order to split and merge
them (Appendix A.2.3). These two kinds of kernels allow for local
variations to a rectangle in one iteration (instead of two: a death,
then a birth).

Let r ¼ ðx; y;w;hÞ be the rectangle with top left corner ðx; yÞ, the
width w and the height h.

Linear transformations r̂#r̂0 are expressed related to each ker-
nel, which locally disrupt one object r̂ to obtain a candidate r̂0. Their
ratio CðR;R0Þ also is computed so as to accept or reject this transfor-
mation according to Eq. (A.1).

A.2.1. Birth and death kernels
The birth kernel generates a rectangle candidate r̂0 in the k-rect-

angle configuration R. Then a sequence of four additional variables
ukk0 ½i� 2 ½0;1�;1 6 i 6 4 is required to generate this candidate from
an additional object r̂ ¼ ðukk0 ½1�;ukk0 ½2�;ukk0 ½3�;ukk0 ½4�Þ.

Let W be the image width and H be its height. A new
k0 ¼ ðkþ 1Þ-rectangle configuration candidate R0 is then generated,
containing the new rectangle r̂0, according to Eq. (A.2). Note that
additional variables are sampled such that ukk0 ½1� þ ukk0 ½3� < 1 and
ukk0 ½2� þ ukk0 ½4� < 1 in order to constraint the candidate r̂0 in the
image area.

r̂0 ¼ ðukk0 ½1�W;ukk0 ½2�H;ukk0 ½3�W;ukk0 ½4�HÞ ðA:2Þ

Eq. (A.3) then expresses the acceptance rate CbirthðR;R0Þ of a con-
figuration candidate R0 proposed by this kernel.

CbirthðR;R0Þ ¼min 1;
k

kþ 1
pk0k

pkk0
e

EðRÞ�EðR0 Þ
T

� 	
ðA:3Þ

The reciprocal operation is obtained by the death kernel. Its
acceptance rate can be deduced in an analogous way.

A.2.2. Edge translation kernels
One way to move a rectangle or to resize it is to translate one of

its edges. Four kernels are used to make such shifts. This paragraph
describes the computation of the right edge; translation of other
edges can be deduced in an analogous way.

The problem is to horizontally translate the right edge of a can-
didate r̂ (Fig. A.22).

An additional variable u ¼2 ½0;W� in the rectangle
r̂ ¼ ðx; y;w;h;uÞ is required to obtain the new width w0 ¼ u of the
candidate r̂0 ¼ ðx; y;u;h;wÞ. Note that the reciprocal operation is
the same as the direct one.
Eq. (A.4) expresses the acceptance rate CtransðR;R0Þ of a configu-
ration candidate R0 proposed by this kernel.

CtransðR;R0Þ ¼min 1; e
EðRÞ�EðR0 Þ

T

� �
ðA:4Þ

with

pref ðR0 Þ
pref ðRÞ

¼ 1
pk0k
pkk0
¼ 1

uk0kðvk0kÞ
ukk0 ðvkk0 Þ

¼ 1

dTkk0 ðR;ukk0 Þ
dðR;ukk0 Þ

��� ��� ¼ 1

8>>>>>>><
>>>>>>>:
A.2.3. Split and merge kernels
When the contrast energy Erectðr0Þ of a rectangle r0 is lower than

the contrast energy sum such that
P

nEmin
rect � ErectðrnÞ

� �
<

Emin
rect � Erectðr0Þ of smaller rectangles rnð Þn inside r0, the optimal pro-

cess is to split the latter. Reciprocally, when an opening is over-
segmented by several rectangles, the optimal process is to merge
them in order to cover the whole opening area if its contrast energy
is higher. Thus, two split–merge kernel pairs are introduced so as
to favor this optimization shortcut.

For the split kernel, two fixed corners are kept: each one deter-
mines the location of one of the two new rectangles (Fig. A.23).

Here the first version of the split kernel is described with fixed
top-left and bottom-right corners. The demonstration for the other
kernel is similar.

From a k-rectangle configuration R, a rectangle r̂ is split into a
rectangle pair r̂0. A ðk0 ¼ kþ 1Þ-rectangle configuration R0 is
obtained with a dimension bigger than the first one: there were
four more parameters. Then a 4-additional variables sequence

ukk0 ¼ ða1;a2; b1; b2Þ 2 ½0;w�
2 � ½0;h�2 is required in the candidate

r̂ ¼ ðx; y;w;h;a1;a2; b1; b2Þ. Here the latter is split into a top rectan-
gle r1 and a bottom one r2 according to Eq. (A.5).

r1 ¼

x

y

a1

b1

0
BBB@

1
CCCAr2 ¼

xþw� a2

yþ h� b2

a2

b2

0
BBB@

1
CCCA ðA:5Þ

Note that the additional variables are constrained according to
Eq. (A.6) in order to ban overlapping candidates.

a1 þ a2 < w or b1 þ b2 < h ðA:6Þ

Thus, Eq. (A.7) expresses the acceptance rate CsplitðR;R0Þ of a
configuration candidate R0 proposed by this kernel.

CsplitðR;R0Þ ¼min 1;12wh
k

kþ 1
pk0k

pkk0
e

EðRÞ�EðR0 Þ
T

� 	
ðA:7Þ



Fig. A.23. Split and merge kernels.
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In an analogous way, the merging operation from two rectan-
gles r1 ¼ ðx1; y1;w1;h1Þ and r2 ¼ ðx2; y2;w2;h2Þ can be realized by
Eq. (A.8).

r̂0 ¼ ðx1; y1; x2 � x1 þw2; y2 � y1 þ h2;w1;w2; h1;h2Þ ðA:8Þ
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