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We prove that local weak solutions of the orthotropic p-harmonic equation are locally Lipschitz, for every p ≥ 2 and in every dimension. More generally, the result holds true for more degenerate equations with orthotropic structure, with right-hand sides in suitable Sobolev spaces.

1. Introduction 1.1. The problem. In this paper, we pursue the study of the regularity of local minimizers of degenerate functionals with orthotropic structure, that we already considered in [START_REF] Bousquet | C 1 regularity of orthotropic p-harmonic functions in the plane[END_REF][START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problems[END_REF]3] and [START_REF] Brasco | Sobolev and Lipschitz regularity for local minimizers of widely degenerate anisotropic functionals[END_REF]. More precisely, for p ≥ 2, we consider local minimizers of the functional

(1.1) F 0 (u, Ω ) = N i=1 1 p ˆΩ |u x i | p dx, Ω Ω, u ∈ W 1,p loc (Ω ),
and more generally of the functional

F δ (u, Ω ) = N i=1 1 p ˆΩ (|u x i | -δ i ) p + dx + ˆΩ f u dx, Ω Ω, u ∈ W 1,p loc (Ω ).
Here, Ω ⊂ R N is an open set, N ≥ 2, and δ 1 , . . . , δ N are nonnegative numbers.

A local minimizer u of the functional F 0 defined in (1.1) is a local weak solution of the orthotropic p-Laplace equation (1.2)

N i=1 |u x i | p-2 u x i x i = 0.
For p = 2 this is just the Laplace equation, which is uniformly elliptic. For p > 2 this looks quite similar to the usual p-Laplace equation However, as explained in [START_REF] Bousquet | C 1 regularity of orthotropic p-harmonic functions in the plane[END_REF] and [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problems[END_REF], equation (1.2) is much more degenerate. Consequently, as for the regularity of ∇u (i.e. boundedness and continuity), the two equations are dramatically different.

In order to understand this discrepancy between the p-Laplacian and its orthotropic version, let us observe that the map ξ → |ξ| p occuring in the definition (1.3) of I degenerates only at the origin, in the sense that its Hessian is positive definite on R N \ {0}. On the contrary, the definition of the orthotropic functional F 0 in (1.1) is related to the map ξ → N i=1 |ξ i | p , which degenerates on an unbounded set, namely the N hyperplanes orthogonal to the coordinate axes of R N .

The situation is even worse when (1.4) max{δ i : i = 1, . . . , N } > 0, for the lack of ellipticity of the degenerate p-orthotropic functional arises on the larger set

N i=1 {ξ ∈ R N : |ξ i | ≤ δ i }.
As a matter of fact, the regularity theory for these very degenerate functionals is far less understood than the corresponding theory for the standard case (1.3) and its variants. Under suitable integrability conditions on the function f , we can use the classical theory for functionals with p-growth and ensure that the local minimizers of F δ are locally bounded and Hölder continuous, see for example [8, Theorems 7. 5 & 7.6]. This theory also assures that the gradients of local minimizers lie in L r loc (Ω) for some r > p, see [8, Theorem 6.7]. We also point out that for f ∈ L ∞ loc (Ω), local minimizers of F δ are contained in W 1,q loc (Ω), for every q < +∞ (see [3,Main Theorem]).

1.2. Main result. In this paper, we establish the optimal regularity expected for the minimizers of F δ , namely the Lipschitz regularity 1 . More precisely, we establish the following result. 1 Observe that when f ≡ 0, any Lipschitz function u with |∇u| ≤ min{δi : i = 1, . . . , N } is a local minimizer of F δ . Thus in general Lipschitz continuity is the best regularity one can hope for.

Theorem 1.1. Let p ≥ 2, f ∈ W 1,h loc (Ω) for some h > N/2 and let U ∈ W 1,p loc (Ω) be a local minimizer of the functional F δ . Then U is locally Lipschitz in Ω.

Moreover, in the case δ 1 = • • • = δ N = 0, we have the following scaling invariant estimate: for every ball B 2R 0 Ω, it holds

(1.5) ∇U L ∞ (B R 0 /2 ) ≤ C B R 0 |∇U | p dx 1 p + C   R 2 0 B R 0 |∇f | h dx 1 h   1 p-1
, for some C = C(N, p, h) > 1.

Remark 1.2 (Comparison with previous results

). This result unifies and substantially extends the results on the orthotropic functional F δ contained in [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problems[END_REF], where it has been established that the local minimizers of F δ are locally Lipschitz, provided that:

• p ≥ 2, N = 2 and f ∈ W 1,p loc (Ω), see [2, Theorem A]; • p ≥ 4, N ≥ 2 and f ∈ W 1,∞ loc (Ω), see [2, Theorem B].
The second result was based on the so-called Bernstein's technique, see for example [START_REF] Han | Elliptic partial differential equations[END_REF]Proposition 2.19]. This technique had already been exploited in the pioneering paper [11] by Uralt'seva and Urdaletova, for a class of functionals which contains the orthotropic functional F 0 defined in (1.1), but not its more degenerate version F δ . Namely, the result of [11] does not cover the case when condition (1.4) is in force.

Still for the case δ 1 = • • • = δ N = 0, an entirely different approach relying on viscosity methods has been developped in [START_REF] Demengel | Lipschitz interior regularity for the viscosity and weak solutions of the pseudo p-Laplacian equation[END_REF]. To our knowledge, both methods are limited to (at least) bounded lower order terms f . On the contrary, [2, Theorem A] can be considered as the true ancestor to Theorem 1.1 above. Indeed, they both follow the Moser's iteration technique, originally introduced in [10] to establish regularity for uniformly elliptic problems. However, going beyond the two-dimensional setting requires new ideas, that we will explain in Subsection 1.3 below.

In contrast to the partial results of [2, Theorems A & B], the proof of Theorem 1.1 does not depend on the dimension and does not need any additional restriction on p, apart from p ≥ 2. It allows unbounded lower order terms, even if the condition f ∈ W 1,h loc (Ω) for some h > N/2 is certainly not sharp. On this point, it is useful to observe that by Sobolev's embedding we have

W 1,h → L h * ,
with h * larger than N and as close to N as desired, provided h is close to N/2. This means that, in terms of summability, our assumption on f amounts to f ∈ L q loc (Ω) for some q > N . This is exactly the sharp expected condition on f for the local minimizers to be locally Lipschitz, at least if one nurtures the (optimistic) hope that the regularity for the orthotropic p-Laplacian agrees with that for the standard p-Laplacian.

Our strategy to prove Theorem 1.1 relies on energy methods and integral estimates, and more precisely on ad hoc Caccioppoli-type inequalities. This only requires growth assumptions on the Lagrangian and its derivatives and can be adapted to a large class of functionals. For instance, we briefly explain in Appendix A how to adapt our poof to the case of nonlinear lower order terms, i.e. when f u is replaced by a term of the form G(x, u).

Remark 1.3. We collect in this remark some interesting open issues:

(1) one word about the assumption p ≥ 2: as explained in [START_REF] Bousquet | C 1 regularity of orthotropic p-harmonic functions in the plane[END_REF] and [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problems[END_REF], when

δ 1 = • • • = δ N = 0
the subquadratic case 1 < p < 2 is simpler in a sense. In this case, the desired Lipschitz regularity can be inferred from [6, Theorem 2.2] (see also [7, Theorem 2.7]). However, the more degenerate case (1.4) is open;

(2) in [1, Main Theorem], local minimizers were proven to be C 1 , in the two-dimensional case, for 1 < p < ∞ and when δ 1 = • • • = δ N = 0. We do not know whether such a result still holds in higher dimensions;

(3) in [START_REF] Brasco | Sobolev and Lipschitz regularity for local minimizers of widely degenerate anisotropic functionals[END_REF]Theorem 1.4], local Lipschitz regularity is established in the two-dimensional case for an orthotropic functional, with anisotropic growth conditions. Namely, for the functional

2 i=1 1 p i ˆ(|u x i | -δ i ) p i + dx + ˆf u dx, with 2 ≤ p 1 ≤ p 2 .
For such a functional, Lipschitz regularity is open in higher dimensions, even for the case However, steps b) and c) are quite involved, due to the degeneracy of our equation. This makes their concrete realization fairly intricate. Thus in order to smoothly introduce the reader to the proof, we prefer to spend some words. We point out that our proof is not just a mere adaption of techniques used for the p-Laplace equation. Moreover, it does not even rely on the ideas developed in [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problems[END_REF] for the two-dimensional case. In a nutshell, we need new ideas to deal with our functional in full generality.

δ 1 = • • • = δ N = 0. 1.3.
In order to obtain "good" Caccioppoli-type inequalities for the gradient, we exploit an idea introduced in nuce in [START_REF] Bousquet | C 1 regularity of orthotropic p-harmonic functions in the plane[END_REF]. This consists in differentiating (1.2) in the direction x j and then testing the resulting equation with a test function of the form2 

u x j |u x j | 2s-2 |u x k | 2m , with 1 ≤ s ≤ m.
This leads to an estimate of the type (see Proposition 4.1)

N i=1 ˆΩ |u x i | p-2 u 2 x i x j |u x j | 2 s-2 |u x k | 2 m dx ≤ C N i=1 ˆ|u x i | p-2 |u x j | 2 s+2 m + |u x k | 2 s+2 m dx + N i=1 ˆ|u x i | p-2 u 2 x i x j |u x j | 4 s-2 |u x k | 2 m-2 s dx. (1.6)
Then the idea is the following: let us suppose that we are interested in improving the summability of the component u x k . Ideally, we would like to take s = 1 in (1.6), since in this case the left-hand side boils down to

N i=1 ˆ|u x i | p-2 u 2 x i x j u 2 m x k dx ≥ ˆ|u x k | p-2 u 2 x k x j u 2 m x k dx ˆ |u x k | p 2 +m x j 2
dx.

If we now sum over j = 1, . . . , N , this would give a control on the W 1,2 norms of convex powers of u x k . But there is a drawback here: indeed, this W 1,2 norm is estimated still in terms of the Hessian of u, which is contained in the right-hand side of (1.6). Observe that (1.6) has the following form

(1.7) I(s -1, m) ≤ C N i=1 ˆ|u x i | p-2 |u x j | 2 s+2 m + |u x k | 2 s+2 m dx + I(2 s -1, m -s), where 
I(s, m) = N i=1 ˆΩ |u x i | p-2 u 2 x i x j |u x j | 2 s |u x k | 2 m dx.
This suggests to perform a finite iteration of (1.7) for s = s i and m = m i such that

2 s i -1 = s i+1 -1 s 0 = 1 and m i -s i = m i+1 , for i = 0, . . . , .
The number is chosen so that we stop the iteration when we reach m = 0. The above conditions imply that for every i = 0, . . . , , we have

m i + s i = m 0 + s 0 = 2 .
In this way, after a finite number of steps (comparable to 2 ), the coupling between u x k and the Hessian of u contained in the term I will disappear from the right-hand side. In other words, we will end up with an estimate of the type

ˆ ∇|u x k | 2 + p-2 2 2 dx ≤ C N i,j=1 ˆ|u x i | p-2 |u x j | 2 +1 + |u x k | 2 +1 dx + N i=1 ˆ|u x i | p-2 u 2 x i x j u 2 (2 -1)
x j dx.

(1.8)

Observe that we still have the Hessian of u in the right-hand side (this is the second term), but this time it is harmless. It is sufficient to use the standard Caccioppoli inequality (3.3) for the gradient, which reads

N i=1 ˆ|u x i | p-2 u 2 x i x j u 2 (2 -1) x j dx N i=1 ˆ|u x i | p-2 u 2 +1
x j dx, and the last term is already contained in the right-hand side of (1.8). All in all, by applying Sobolev inequality in the left-hand side of (1.8), we get the following type of self-improving information

∇u ∈ L 2 γ (B R ) =⇒ ∇u ∈ L 2 * γ (B r ), where we set γ = p -2 2 + 2 .
In this way, we obtain an iterative scheme of reverse Holder's inequalities. This is Step 1 in the proof of Proposition 5.1 below. Thus, apparently, we safely landed in step c) of the strategy described above.

We now want to pass to step d) and iterate infinitely many times the previous information. The goal would be to define the diverging sequence of exponents γ by

γ = p -2 2 + 2 , ≥ 1,
and conclude by iterating

(1.9) ∇u ∈ L 2 γ (B R ) =⇒ ∇u ∈ L 2 * γ (B r ).
Once again, there is a drawback. Indeed, observe that by definition 2 * 2 γ = γ +1 .

One may think that this is not a big issue: indeed, it would be sufficient to have

(1.10) γ +1 ≤ 2 * 2 γ ,
then an application of Hölder's inequality in (1.9) would lead us to

∇u ∈ L 2 γ (B R ) =⇒ ∇u ∈ L 2 γ +1 (B r ),
and we could enchain all the estimates. However, since the ratio 2 * /2 tends to 1 as the dimension N goes to ∞, it is easy to see that (1.10) cannot be true in general. More precisely, such a condition holds only up to dimension N = 4. The idea is then to go back to (1.9) and use interpolation in Lebesgue spaces in order to construct a Moser's scheme "without holes". In a nutshell, we interpolate the term

ˆBR |∇u| 2 γ dx, between ˆBR |∇u| 2 γ -1 dx and ˆBR |∇u| 2 * γ dx,
and use an iteration over shrinking radii in order to absorb the last term, see Step 2 of the proof of Proposition 5.1. Once this is done, we end up with the updated self-improving information

∇u ∈ L 2 γ -1 (B R ) =⇒ ∇u ∈ L 2 * γ (B r ).
What we gain is that now 2 * γ > 2 γ > 2 γ -1 , thus by using Hölder's inequality we obtain

∇u ∈ L 2 γ -1 (B R ) =⇒ ∇u ∈ L 2 γ (B r ).
The information comes with a precise iterative estimate and a good control on the relevant constants. We can thus launch the Moser's iteration procedure and obtain the desired L ∞ estimate, see Step 3 of the proof of Proposition 5.1.

There is still a small detail that needs some care: the first exponent of the iteration is

2 γ 0 = p + 2,
which means that on ∇u we obtain a L ∞ -L p+2 local estimate. Finally, in order to obtain the desired L ∞ -L p estimate, one can simply use an interpolation argument (this is Step 4 of the proof of Proposition 5.1).

1.4. Plan of the paper. In Section 2, we define the approximation scheme and settle all the needed machinery. We have dedicated Section 3 to the new Caccioppoli inequalities which mix together the derivatives of the gradient with respect to 2 orthogonal directions. In Section 4, we exploit these Caccioppoli inequalities to establish integrability estimates on power functions of the gradient. In the subsequent section, we rely on these estimates to construct a Moser's iteration scheme which finally leads to the uniform a priori estimate of Proposition 5.1.

For ease of readability, both in Sections 4 and 5, we first consider the case f = 0 and δ = 0, in order to emphasize the main ideas and novelties of our approach. We explain subsequently in Subsections 4.2 and 5.2 respectively the technicalities to cover the general case f ∈ W 1,h loc (Ω) and max{δ

i : i = 1, . . . , N } > 0.
Finally, in Appendix A, we generalize Theorem 1.1 to nonlinear lower order terms.
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Preliminaries

We will use the same approximation scheme as in [2, Section 2]. We introduce the notation

g i (t) = 1 p (|t| -δ i ) p + , t ∈ R, i = 1, . . . , N,
where 0 ≤ δ 1 , . . . , δ N are given real numbers and we also set

(2.1) δ = 1 + max{δ i : i = 1, . . . , N }.
We are interested in local minimizers of the following variational integral

F δ (u; Ω ) = N i=1 ˆΩ g i (u x i ) dx + ˆΩ f u dx, u ∈ W 1,p loc (Ω),
where Ω Ω and f ∈ W 1,h loc (Ω) for some h > N/2. The latter implies that

f ∈ L h * loc (Ω) ⊂ L N loc (Ω) ⊂ L p loc (Ω)
. The last inclusion is a consequence of the fact that p ≥ 2 and N ≥ 2. The condition f ∈ L p loc is exactly the one required in [2, Section 2] to justify the approximation scheme that we now describe.

We set

(2.2) g i,ε (t) = g i (t) + ε 2 t 2 = 1 p (|t| -δ i ) p + + ε 2 t 2 , t ∈ R.
Remark 2.1. For p = 2 and δ i > 0, we have

g i ∈ C 1,1 (R) ∩ C ∞ (R \ {δ i , -δ i }), but g i is not C 2 .
In this case, like in [3, Section 2] one would need to replace g i by a regularized version, in particular for the C 2 regularity result of Lemma 2.2 below. In order not to overburden the presentation, we prefer to avoid to explicitely write down this regularization and keep on using the same symbol g i .

From now on, we fix U a local minimizer of F δ . We also fix a ball

B Ω such that 2 B Ω as well.

Here λ B denotes the ball having the same center as B, scaled by a factor λ > 0. For every 0 < ε 1 and every x ∈ B, we set

U ε (x) = U * ε (x)
, where ε is a smooth convolution kernel, supported in a ball of radius ε centered at the origin.

Finally, we define

F δ,ε (v; B) = N i=1 ˆB g i,ε (v x i ) dx + ˆB f ε v dx,
where f ε = f * ε . The following preliminary result is standard, see [2, Lemma 2.5 and Lemma 2.8].

Lemma 2.2 (Basic energy estimate).

There exists ε 0 > 0 such that for every 0 < ε ≤ ε 0 < 1, the problem

(2.3) min F ε (v; B) : v -U ε ∈ W 1,p 0 (B)
, admits a unique solution u ε . Moreover, there exists a constant C = C(N, p) > 0 such that the following uniform estimate holds

ˆB |∇u ε | p dx ≤ C ˆ2 B |∇U | p dx + |B| p N ˆ2 B |f | p dx + (ε 0 + (δ -1) p )|B| . Finally, u ε ∈ C 2 (B).
We also rely on the following stability result, which is slightly more precise than [2, Lemma 2.9].

Lemma 2.3 (Convergence to a minimizer).

With the same notation as before, there exists a sequence {ε k } k∈N ⊂ (0, ε 0 ) converging to 0, such that

lim k→∞ u ε k -u L p (B) = 0, where u is a solution of min F δ (v; B) : v -U ∈ W 1,p 0 (B) .
We also have

(2.4) u x i -U x i ≤ 2 δ i , for a. e. x ∈ B, i = 1, . . . , N.
In the case δ = 1, i.e. when δ 1 = • • • = δ N = 0, then u = U and we have the stronger convergence

(2.5) lim k→∞ u ε k -U W 1,p (B) = 0.
Proof. The first part is proven in [2, Lemma 2.9], while (2.4) is proven in [2, Lemma 2.3]. For the case δ = 1, we observe that u = U follows from the strict convexity of the functional, together with the local minimality of U . In order to prove (2.5), we observe that

N i=1 1 p ˆB |(u ε k ) x i | p dx - N i=1 ˆB |U x i | p dx ≤ |F δ,ε k (u ε k ) -F δ (U )| + ε k 2 ˆB |∇u ε k | 2 dx + ˆB f ε k u ε k dx -ˆB f U dx .
We now use that {u ε k } k∈N strongly converges in L p (B), is bounded in W 1,p (B) and that {f ε k } k∈N strongly converges in L p (B) to f . By further using that

lim k→∞ |F δ,ε k (u ε k ) -F δ (U )| = 0, we finally get lim k→∞ N i=1 ˆB |(u ε k ) x i | p dx = N i=1 ˆB |U x i | p dx, i = 1, . . . , N.
This and the uniform convexity of L p (B) gives (2.5).

Remark 2.4. Observe that the functional F δ is not strictly convex when δ > 1. Thus property (2.4) is useful in order to transfer a Lipschitz estimate for the minimizer u selected in the limit, to the chosen one U .

Finally, we will repeatedly use the following classical result, see [8, Lemma 6.1] for a proof.

Lemma 2.5. Let 0 < r < R and let Z(t) : [r, R] → [0, ∞) be a bounded function. Assume that for r ≤ t < s ≤ R we have Z(t) ≤ A (t -s) α 0 + B (t -s) β 0 + C + ϑ Z(s), with A, B, C ≥ 0, α 0 ≥ β 0 > 0 and 0 ≤ ϑ < 1. Then we have Z(r) ≤ 1 (1 -λ) α 0 λ α 0 λ α 0 -ϑ A (R -r) α 0 + B (R -r) β 0 + C ,
where λ is any number such that

ϑ 1 α 0 < λ < 1.

Caccioppoli-type inequalities

The solution u ε of the regularized problem (2.3) satisfies the Euler-Lagrange equation

(3.1) N i=1 ˆg i,ε ((u ε ) x i ) ϕ x i dx + ˆfε ϕ dx = 0, ϕ ∈ W 1,p 0 (B).
From now on, in order to simplify the notation, we will systematically forget the subscript ε on u ε and f ε and simply write u and f respectively. We now insert a test function of the form ϕ = ψ x j ∈ W 1,p 0 (B) in (3.1), compactly supported in B. Then an integration by parts yields

(3.2) N i=1 ˆg i,ε (u x i ) u x i x j ψ x i dx + ˆfx j ψ dx = 0,
for j = 1, . . . , N . This is the equation solved by u x j .

We refer to [2, Lemma 3.2] for a proof of the following Caccioppoli inequality: Lemma 3.1. Let Φ : R → R + be a C 1 convex function. Then there exists a constant C = C(p) > 0 such that for every function η ∈ C ∞ 0 (B) and every j = 1, . . . , N , we have

N i=1 ˆg i,ε (u x i ) Φ(u x j ) x i 2 η 2 dx ≤ C N i=1 ˆg i,ε (u x i ) |Φ(u x j )| 2 η 2 x i dx + C ˆ|f x j | |Φ (u x j )| |Φ(u x j )| η 2 dx. (3.3) 
We need a more elaborate Caccioppoli-type inequality, which is reminiscent of [1, Proposition 3.1]. Proposition 3.2 (Weird Caccioppoli inequality). Let Φ, Ψ : [0, +∞) → [0, +∞) be two nondecreasing continuous functions. We further assume that Ψ is convex and

C 1 . Let η ∈ C ∞ 0 (B) and 0 ≤ θ ≤ 2, then for every k, j = 1, . . . , N , N i=1 ˆg i,ε (u x i ) u 2 x i x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx ≤ C N i=1 ˆg i,ε (u x i ) u 2 x j Φ(u 2 x j ) Ψ(u 2 x k ) |∇η| 2 dx + C N i=1 ˆg i,ε (u x i ) u 2 x i x j u 2 x j Φ(u 2 x j ) 2 Ψ (u 2 x k ) θ η 2 dx 1 2 ×   N i=1 ˆg i,ε (u x i ) |u x k | 2θ Ψ(u 2 x k ) 2-θ |∇η| 2 dx 1 2 + E 1 (f ) 1 2   + C E 2 (f ) (3.4)
where

E 1 (f ) := ˆ|f x k | |u x k | θ+1 Ψ(u 2 x k ) Ψ (u 2 x k ) 1-θ 2 η 2 dx, E 2 (f ) := ˆ|f x j | |u x j | Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx.
Proof. By a standard approximation argument, one can assume that Φ and Ψ are C 1 . We take in (3.2)

ϕ = u x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 .
This gives

N i=1 ˆg i,ε (u x i ) u 2 x i x j Φ(u 2 x j ) + 2u 2 x j Φ (u 2 x j ) Ψ(u 2 x k ) η 2 dx = -2 N i=1 ˆg i,ε (u x i ) u x i x j u x j Φ(u 2 x j ) Ψ(u 2 x k ) η η x i dx -2 N i=1 ˆg i,ε (u x i ) u x i x j u x j u x i x k u x k Ψ (u 2 x k ) Φ(u 2 x j ) η 2 dx -ˆfx j u x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx =: A 1 + A 2 + A 3 . (3.5) 
We now proceed to estimating the three terms A . We have

A 1 ≤ 1 2 N i=1 ˆg i,ε (u x i ) u 2 x i x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx + 2 N i=1 ˆg i,ε (u x i ) u 2 x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 x i dx
and the Hessian of u can be absorbed in the left-hand side of (3.5). Using also that 2 u 2

x j Φ (u 2 x j ) ≥ 0, this yields 1 2 N i=1 ˆΩg i,ε (u x i ) u 2 x i x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx ≤ 2 N i=1 ˆg i,ε (u x i ) u 2 x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 x i dx + A 2 + A 3 .
(3.6)

We now estimate A 2 , which is the most delicate term: writing Ψ (u

2 x k ) = Ψ (u 2 x k ) θ 2 Ψ (u 2
x k ) 1-θ 2 and using Cauchy-Schwarz inequality, we get

A 2 ≤ 2 N i=1 ˆg i,ε (u x i ) u 2 x i x j u 2 x j Φ(u 2 x j ) 2 Ψ (u 2 x k ) θ η 2 dx 1 2 × N i=1 ˆg i,ε (u x i ) u 2 x i x k u 2 x k Ψ (u 2 x k ) 2-θ η 2 dx 1 2
.

(3.7)

We observe that

N i=1 ˆg i,ε (u x i ) u 2 x i x k u 2 x k Ψ (u 2 x k ) 2-θ η 2 = 1 4 N i=1 ˆg i,ε (u x i ) (G(u x k )) x i 2 η 2 ,
where G is the convex nonnegative C 1 function defined by

G(t) = ˆt2 0 Ψ (τ ) 1-θ 2 dτ.
Thus by Caccioppoli inequality (3.3), we get

N i=1 ˆg i,ε (u x i ) u 2 x i x k u 2 x k Ψ (u 2 x k ) 2-θ η 2 ≤ C N i=1 ˆg i,ε (u x i ) G(u x k ) 2 η 2 x i dx + C ˆ|f x k | G(u x k ) G (u x k ) η 2 dx. By Jensen's inequality 0 ≤ G(u x k ) ≤ |u x k | θ ˆu2 x k 0 Ψ (τ ) dτ 1-θ 2 ≤ |u x k | θ Ψ(u 2 x k ) 1-θ 2 .
Together with the fact that G (u

x k ) = 2 u x k Ψ (u 2 x k ) 1-θ 2 , this implies N i=1 ˆg i,ε (u x i ) u 2 x i x k u 2 x k Ψ (u 2 x k ) 2-θ η 2 ≤ C N i=1 ˆg i,ε (u x i ) |u x k | 2θ Ψ(u 2 x k ) 2-θ η 2 x i dx + C ˆ|f x k | |u x k | θ+1 Ψ(u 2 x k ) Ψ (u 2 x k ) 1-θ 2 η 2 dx,
which in turn yields by (3.6) and (3.7),

1 2 N i=1 ˆΩg i,ε (u x i ) u 2 x i x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx ≤ 2 N i=1 ˆg i,ε (u x i ) u 2 x j Φ(u 2 x j ) Ψ(u 2 x k ) η 2 x i dx + C N i=1 ˆg i,ε (u x i ) u 2 x i x j u 2 x j Φ(u 2 x j ) 2 Ψ (u 2 x k ) θ η 2 dx 1 2 ×   N i=1 ˆg i,ε (u x i ) |u x k | 2θ Ψ(u 2 x k ) 2-θ η 2 x i dx 1 2 + ˆ|f x k | |u x k | θ+1 Ψ(u 2 x k ) Ψ (u 2 x k ) 1-θ 2 η 2 dx 1 2 + A 3 .
Here, we have also used the inequality

(A + B) 1/2 ≤ A 1/2 + B 1/2 .
Finally,

A 3 ≤ C ˆΩ |f x j | |u x j | Φ(u 2 x j ) Ψ(u 2 x k ) η 2 dx.
This completes the proof.

Local energy estimates for the regularized problem

In order to emphasize the main ideas of the proof, we have divided this section in two parts. In the first one, we explain how (3.4) leads to higher integrability estimates for the gradient when f = 0 and δ = 1. This allows to ignore a certain amount of technicalities. In the second part, we then detail the modifications of the proof to obtain the corresponding estimates in the general case.

4.1. The homogeneous case. In this subsection, we assume that f = 0 and δ = 1. Then the two terms E 1 (f ) and E 2 (f ) in (3.4) vanish. Also observe that in this case from (2.2) we have

g i,ε (t) = (p -1) |t| p-2 + ε.
Let us single out a particular case by taking 

≤ s ≤ m N i=1 ˆΩ g i,ε (u x i ) u 2 x i x j |u x j | 2 s-2 |u x k | 2 m η 2 dx ≤ C N i=1 ˆg i,ε (u x i ) |u x j | 2 s+2 m |∇η| 2 dx + C (m + 1) N i=1 ˆg i,ε (u x i ) |u x k | 2 s+2 m |∇η| 2 dx + N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x j | 4 s-2 |u x k | 2 m-2 s η 2 dx. (4.2) 
Proof. We use (3.4) with the choices (4.1) above and

θ =        m -s m -1 ∈ [0, 1] if m > 1, 1 if m = 1.

This gives

N i=1 ˆΩg i,ε (u x i ) u 2 x i x j |u x j | 2 s-2 |u x k | 2 m η 2 dx ≤ C N i=1 ˆg i,ε (u x i ) |u x j | 2 s |u x k | 2 m |∇η| 2 dx + C m θ N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x j | 4 s-2 |u x k | 2 m-2 s η 2 dx 1 2 × N i=1 ˆΩ g i,ε (u x i ) |u x k | 2 m+2 s |∇η| 2 dx 1 2
.

We use Young's inequality in the form C √ a b ≤ C 2 b/4 + a for the product in the right-hand side to get

N i=1 ˆΩg i,ε (u x i ) u 2 x i x j |u x j | 2 s-2 |u x k | 2 m η 2 dx ≤ C N i=1 ˆg i,ε (u x i ) |u x j | 2 s |u x k | 2 m |∇η| 2 dx + C m θ N i=1 ˆΩ g i,ε (u x i ) |u x k | 2 m+2 s |∇η| 2 dx + N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x j | 4 s-2 |u x k | 2 m-2 s η 2 dx.
In the first term of the right-hand side, we use Young's inequality with the exponents

2 m + 2 s 2 s , 2 m + 2 s 2 m .
We also observe for the second term that m θ ≤ m. This gives the desired estimate.

Proposition 4.2 (Caccioppoli for power functions of the gradient). We fix an exponent q = 2 0 -1, for a given 0 ∈ N \ {0}.

Let η ∈ C ∞ 0 (B), then for every k = 1, . . . , N we have

ˆ ∇ |u x k | q+ p-2 2 u x k 2 η 2 dx ≤ C q 5 N i,j=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C q 5 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx, (4.3) 
for some C = C(N, p) > 0.

Proof. We define the two finite families of indices {s } and {m } such that

s = 2 , m = q + 1 -2 , ∈ {0, . . . , 0 }.
Observe that s + m = q + 1, ∈ {0, . . . , 0 },

and 4 s -2 = 2 s +1 -2, 2 m -2 s = 2 m +1 , and 
s 0 = 1, m 0 = q, s 0 = 2 0 , m 0 = 0.
In terms of these families, inequality (4.2) implies

N i=1 ˆΩg i,ε (u x i ) u 2 x i x j |u x j | 2 s -2 |u x k | 2 m η 2 dx ≤ C N i=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C (m + 1) N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx + N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x j | 4 s -2 |u x k | 2 m -2 s η 2 dx,
for some C > 0 universal. By starting from = 0 and iterating up to = 0 -1 so that 1 ≤ s ≤ m , we then get

N i=1 ˆΩg i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≤ C q 2 N i=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C q 2 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx + N i=1 ˆg i,ε (u x i ) u 2 x i x j u 2 q x j η 2 dx,
for a universal constant C > 0. For the last term, we apply the Caccioppoli inequality (3.3) for the gradient, thus we get

N i=1 ˆΩ g i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≤ C q 2 N i=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C q 2 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx + C (q + 1) 2 N i=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx; that is, N i=1 ˆΩ g i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≤ C q 2 N i=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C q 2 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx. (4.4) We now observe that g i,ε (u x i ) = (p -1) |u x i | p-2 + ε and thus N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≥ ˆ|u x k | p-2 u 2 x k x j |u x k | 2 q η 2 dx = 2 2 q + p 2 ˆ |u x k | q+ p-2 2 u x k x j 2 η 2 dx,
thus when we sum over j = 1, . . . , N we get N i,j=1

ˆ|u x i | p-2 u 2 x i x j |u x k | 2 q η 2 dx ≥ 2 2 q + p 2 ˆ ∇ |u x k | q+ p-2 2 u x k 2 η 2 dx.
This proves the desired inequality.

4.2.

The non-homogeneous case. In the general case where f = 0 and/or δ > 1, we can prove the following analogue of (4.2), in a similar way:

N i=1 ˆΩ g i,ε (u x i ) u 2 x i x j |u x j | 2 s-2 |u x k | 2 m η 2 dx ≤ N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x j | 4 s-2 |u x k | 2 m-2 s η 2 dx + C m N i=1 ˆg i,ε (u x i ) (|u x j | 2 (s+m) + |u x k | 2 (s+m) ) |∇η| 2 dx + C m 2 ˆ|∇f | (|u x k | 2 (s+m)-1 + |u x j | 2 (s+m)-1 ) η 2 dx. (4.5)
We then deduce the following analogue of Proposition 4.2:

Proposition 4.3. We fix an exponent q = 2 0 -1, for a given 0 ∈ N \ {0}.

Let η ∈ C ∞ 0 (Ω), then for every k = 1, . . . , N we have

ˆ ∇ (|u x k | -δ k ) p 2 + |u x k | q 2 η 2 dx ≤ C q 5 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 + N j=1 |u x j | 2 q+2 |∇η| 2 dx + C q 5 ˆ|∇f | |u x k | 2 q+1 + N j=1 |u x j | 2 q+1 η 2 dx, (4.6) 
for some C = C(N, p) > 0.

Proof. Using the same notation and the same strategy as in the proof of (4.3), except that we start from (4.5) instead of (4.2), we get the following analogue of (4.4):

N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≤ C q 2 N i=1 ˆg i,ε (u x i ) (|u x j | 2 q+2 + |u x k | 2 q+2 ) |∇η| 2 dx + C q 3 ˆ|∇f | (|u x k | 2 q+1 + |u x j | 2 q+1 ) η 2 dx.
We now observe that

N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≥ (p -1) ˆ(|u x k | -δ k ) p-2 + u 2 x k x j |u x k | 2 q η 2 dx.

Noting that (|u

x k | -δ k ) p + ≤ (|u x k | -δ k ) p-2 + |u x k | 2 , we have (|u x k | -δ k ) p 2 + |u x k | q x j 2 ≤ 2 (|u x k | -δ k ) p 2 + x j 2 |u x k | 2 q + 2 (|u x k | -δ k ) p + (|u x k | q ) x j 2 ≤ C q 2 (|u x k | -δ k ) p-2 + |u x k | 2 q u 2 x k x j . We deduce therefrom N i=1 ˆg i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≥ C q 2 ˆ (|u x k | -δ k ) p 2 + |u x k | q x j 2 η 2 dx,
thus when we sum over j = 1, . . . , N, we get

N i,j=1 ˆg i,ε (u x i ) u 2 x i x j |u x k | 2 q η 2 dx ≥ C q 2 ˆ ∇ (|u x k | -δ k ) p 2 + |u x k | q 2 η 2 dx.
This proves the desired inequality (4.6).

Proof of Theorem 1.1

Proof. The core of the proof of Theorem 1.1 is the uniform Lipschitz estimate of Proposition 5.1 below. Its proof, which is postponed for ease of readability, uses the integrability estimates of Section 4. Once we have this uniform estimate, we can reproduce the proof of [2, Theorem A] and prove that ∇U ∈ L ∞ (Ω ), for every Ω Ω. We now detail how to obtain the scaling invariant local estimate (1.5) in the case δ 1 = • • • = δ N = 0. We take 0 < r 0 < R 0 ≤ 1 and a ball B 2R 0 Ω. We then consider the sequence of miminizers {u ε k } k∈N of (2.3) obtained in Lemma 2.3, with B a ball slightly larger than B R 0 so that 2 B Ω. By using the uniform Lipschitz estimate (5.3) below, taking the limit as k goes to ∞ and using the strong convergence of Lemma 2.3, we obtain

∇U L ∞ (Br 0 ) ≤ C (R 0 -r 0 ) σ 2 1 + ∇f σ 2 L h (B R 0 ) ∇U σ 1 L p (B R 0 ) + 1 .
Without loss of generality, we can assume that ∇U L p (B R 0 ) > 0. Hence, by Young's inequality, (5.1)

∇U L ∞ (Br 0 ) ≤ C (R 0 -r 0 ) σ 2 1 + ∇f 2 σ 2 L h (B R 0 ) + ∇U 2 σ 1 L p (B R 0 ) ,
possibly for a different C = C(N, p, h) > 0. We now observe that for every λ > 0, λ U is still a solution of the orthotropic p-Laplace equation, with the right hand side f replaced by λ p-1 f . We can use (5.1) for λ U and get

λ ∇U L ∞ (Br 0 ) ≤ C (R 0 -r 0 ) σ 2 1 + λ 2 σ 2 (p-1) ∇f 2 σ 2 L h (B R 0 ) + λ 2 σ 1 ∇U 2 σ 1 L p (B R 0 ) .
Dividing by λ, we obtain

∇U L ∞ (Br 0 ) ≤ C (R 0 -r 0 ) σ 2 1 λ + λ 2 σ 2 (p-1)-1 ∇f 2σ 2 L h (B R 0 ) + λ 2 σ 1 -1 ∇U 2 σ 1 L p (B R 0 ) .
We take

λ := 1 ∇U L p (B R 0 ) + ∇f 1 p-1 L h (B R 0 ) , and observe that if ∇f L h (B R 0 ) > 0, then λ 2 σ 2 (p-1)-1 ∇f 2σ 2 L h (B R 0 ) ≤ 1 ∇f 1 p-1 L h (B R 0 ) 2 σ 2 (p-1)-1 ∇f 2σ 2 L h (B R 0 ) = ∇f 1 p-1 L h (B R 0 )
while the inequality is obvious when ∇f L h (B R 0 ) = 0. Similarly,

λ 2 σ 1 -1 ∇U 2 σ 1 L p (B R 0 ) ≤ 1 ∇U 2 σ 1 -1 L p (B R 0 ) ∇U 2 σ 1 L p (B R 0 ) = ∇U L p (B R 0 ) .
It thus follows that

(5.2) ∇U L ∞ (Br 0 ) ≤ C (R 0 -r 0 ) σ 2 ∇f 1 p-1 L h (B R 0 ) + ∇U L p (B R 0 ) .
We now make this estimate dimensionally correct. Given R 0 > 0, we consider a ball B 2R 0 Ω. Then the rescaled function

U R 0 (x) = U (R 0 x), for x ∈ R -1 0 Ω,
is a solution of the orthotropic p-Laplace equation, with right-hand side f R 0 (x) := R p 0 f (R 0 x). We can use for it the estimate (5.2) with radii 1 and 1/2. By scaling back, we thus obtain

R 0 ∇U L ∞ (B R 0 /2 ) ≤ C R -N p +1 0 ∇U L p (B R 0 ) + R h (p+1)-N h (p-1) 0 ∇f 1 p-1 L h (B R 0 ) , for some constant C = C(N, p, h) > 1. Dividing by R 0 , we get ∇U L ∞ (B R 0 /2 ) ≤ C B R 0 |∇U | p dx 1 p + C R 2 p-1 -N h (p-1) 0 ˆBR 0 |∇f | h dx 1 h (p-1)
. This concludes the proof.

Proposition 5.1 (Uniform Lipschitz estimate). Let p ≥ 2, h > N/2 and 0 < ε ≤ ε 0 . For every B r 0 ⊂ B R 0 B with 0 < r 0 < R 0 ≤ 1, we have (5.3) ∇u ε L ∞ (Br 0 ) ≤ C 1 + ∇f ε σ 2 L h (B R 0 ) (R 0 -r 0 ) σ 2 ∇u ε σ 1 L p (B R 0 ) + 1 ,
where C = C(N, p, h, δ) > 1 and σ i = σ i (N, p, h) > 0, for i = 1, 2.

5.1. Proof of Proposition 5.1: the homogeneous case. In this subsection, we assume that f = 0 and δ = 1.

For simplicity, we assume throughout the proof that N ≥ 3, so in this case the Sobolev exponent 2 * is well-defined. The case N = 2 can be treated with minor modifications. For ease of readability, we divide the proof into four steps.

Step 1: a first iterative scheme. We add on both sides of inequality (4.3) the term

ˆ|∇η| 2 |u x k | 2 q+p dx.
We thus obtain

ˆ ∇ |u x k | q+ p-2 2 u x k η 2 dx ≤ C q 5 N i,j=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C q 5 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx + C ˆ|∇η| 2 |u x k | 2 q+p dx.
An application of Sobolev inequality leads to

ˆ|u x k | 2 * 2 (2 q+p) η 2 * dx 2 2 * ≤ C q 5 N i,j=1 ˆg i,ε (u x i ) |u x j | 2 q+2 |∇η| 2 dx + C q 5 N i=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx + C ˆ|∇η| 2 |u x k | 2 q+p dx.
We now sum over k = 1, . . . , N and use that by Minkowski inequality,

N k=1 ˆ|u x k | 2 * 2 (2 q+p) η 2 * dx 2 2 * = N k=1 |u x k | 2 q+p η 2 L 2 * 2 ≥ N k=1 |u x k | 2 q+p η 2 L 2 * 2 .
This implies

   ˆ N k=1 |u x k | 2 q+p 2 * 2 η 2 * dx    2 2 * ≤ C q 5 N i,k=1 ˆg i,ε (u x i ) |u x k | 2 q+2 |∇η| 2 dx + C ˆ|∇η| 2 N k=1 |u x k | 2 q+p dx. (5.4) 
We now introduce the function U(x) := max k=1,...,N

|u x k (x)|.
We use that

U 2 q+p ≤ N k=1 |u x k | 2 q+p ≤ N U 2 q+p ,
and also that g i,ε (u

x i ) |u x k | 2 q+2 ≤ C U 2 q+p + ε U 2 q+2 for every 1 ≤ i, k ≤ N . This yields ˆU 2 * 2 (2 q+p) η 2 * 2 2 * ≤ C q 5 ˆU2 q+p |∇η| 2 dx + Cq 5 ε ˆU2q+2 |∇η| 2 dx
for a possibly different C = C(N, p) > 1. By using that U 2 q+2 ≤ 1 + U 2 q+p , we obtain (for ε < 1)

(5.5) ˆU 2 * 2 (2 q+p) η 2 * dx 2 2 * ≤ C q 5 ˆ|∇η| 2 U 2q+p + 1 dx.
We fix two concentric balls B r ⊂ B R B and 0 < r < R ≤ 1. Let us assume for simplicity that all the balls are centered at the origin. Then for every pair of radius r ≤ t < s ≤ R we take in (5.5) the cut-off function

(5.6) η(x) = min 1, (s -|x|) + s -t .
This yields

(5.7) ˆBt U 2 * 2 (2 q+p) dx 2 2 * ≤ C q 5 (s -t) 2 ˆBs U 2 q+p + 1 dx.
We define the sequence of exponents

γ j = p + 2 j+2 -2, j ∈ N,
and take in (5.7) q = 2 j+1 -1. This gives ˆBt U

2 * 2 γ j dx 2 2 * ≤ C 2 5 j (s -t) 2 ˆBs U γ j + 1 dx, (5.8) for a possibly different constant C = C(N, p) > 1.
Step 2: filling the gaps. We now observe that

γ j-1 < γ j < 2 * 2 γ j , for every j ∈ N \ {0}.
By interpolation in Lebesgue spaces, we obtain ˆBt

U γ j dx ≤ ˆBt U γ j-1 dx τ j γ j γ j-1 ˆBt U 2 * 2 γ j dx (1-τ j ) 2 2 *
where 0 < τ j < 1 is given by

τ j = 2 * 2 -1 2 * 2 γ j γ j-1 - 1 
.

We now rely on (5.8) to get ˆBt

U γ j dx ≤ ˆBt U γ j-1 dx τ j γ j γ j-1 C 2 5 j (s -t) 2 ˆBs U γ j + 1 dx 1-τ j =   C 2 5 j (s -t) 2 1-τ j τ j ˆBt U γ j-1 dx γ j γ j-1   τ j ˆBs U γ j + 1 dx 1-τ j .
The sequence (τ j ) j≥1 is decreasing, which implies

τ j > lim n→∞ τ n = 1 2 2 * -2 2 * -1 =: τ for every j ∈ N \ {0}. Hence, 1 -τ j τ j ≤ 1 -τ τ =: β.
Using that s ≤ 1 and C > 1, this implies that

C 2 5 j (s -t) 2 1-τ j τ j ≤ C 2 5 j (s -t) 2 β . By Young's inequality, ˆBt U γ j dx ≤ (1 -τ j ) ˆBs U γ j + 1 dx + τ j C 2 5 j (s -t) 2 β ˆBt U γ j-1 dx γ j γ j-1 ≤ (1 -τ ) ˆBs U γ j dx + C 2 5 j β (s -t) 2 β ˆBt U γ j-1 dx γ j γ j-1 + |B R |.
By applying Lemma 2.5 with

Z(t) = ˆBt U γ j dx, α 0 = 2 β, and ϑ = 1 -τ ,
we finally obtain (5.9)

ˆBr U γ j dx ≤ C 2 5 j β (R -r) -2 β ˆBR U γ j-1 dx γ j γ j-1 + 1 ,
for some C = C(N, p) > 1.

Step 3: Moser's iteration. We now want to iterate the previous estimate on a sequence of shrinking balls. We fix two radii 0 < r < R ≤ 1, then we consider the sequence

R j = r + R -r 2 j-1 , j ∈ N \ {0},
and we apply (5.9) with R j+1 < R j instead of r < R. Thus we get (5.10)

ˆBR j+1 U γ j dx ≤ C   2 7 j β (R -r) -2 β ˆBR j U γ j-1 dx γ j γ j-1 + 1  
where the constant C > 1 depends on N and p only.

We introduce the notation

Y j = ˆBR j U γ j-1 dx,
thus (5.10) rewrites as

Y j+1 ≤ C 2 7 j β (R -r) -2 β Y γ j γ j-1 j + 1 ≤ C 2 7 j β (R -r) -2 β (Y j + 1) γ j γ j-1 .
Here, we have used again that R ≤ 1. By iterating the previous estimate starting from j = 1, we obtain

Y n+1 ≤ C 2 7 β (R -r) -2 β n-1 j=0 (n-j) γn γ n-j Y 1 + 1 γn γ 0 .
We take the power 1/(γ n ) on both sides:

Y 1 γn n+1 ≤ C 2 7 β (R -r) -2 β n-1 j=0 n-j γ n-j Y 1 + 1 1 γ 0 = C 2 7 β (R -r) -2 β n j=1 j γ j Y 1 + 1 1 γ 0 .
We observe that γ j ∼ 2 j+1 as j goes to ∞. This implies the convergence of the series above and we thus get

U L ∞ (Br) = lim n→∞ ˆBR n+1 U γ n+1 dx 1 γ n+1 ≤ C (R -r) -β ˆBR U p+2 dx + 1 1 p+2
, for some C = C(N, p) > 0 and β = β (N, p) > 0. We also used that γ 0 = p + 2. By recalling the definition of U, we finally obtain (5.11)

∇u L ∞ (Br) ≤ C (R -r) -β ˆBR |∇u| p+2 dx + 1 1 p+2
.

Step 4: L ∞ -L p estimate We fix two concentric balls B r 0 ⊂ B R 0 B with R 0 ≤ 1. Then for every r 0 ≤ t < s ≤ R 0 from (5.11) we have

∇u L ∞ (Bt) ≤ C (s -t) β ˆBs |∇u| p+2 dx 1 p+2 + C (s -t) β ,
where we also used the subadditivity of τ → τ 1/(p+2) . We now observe that

C (s -t) β ˆBs |∇u| p+2 dx 1 p+2 ≤ C (s -t) β ˆBs |∇u| p dx 1 p+2 ∇u 2 p+2 L ∞ (Bs) ≤ 2 p + 2 ∇u L ∞ (Bs) + p p + 2 C (s -t) β p+2 p ˆBs |∇u| p dx 1 p
.

We can apply again Lemma 2.5, this time with the choices

Z(t) = ∇u L ∞ (Bs) , A = p p + 2 C p+2 p ˆBs |∇u| p dx 1 p , α 0 = p + 2 p β .
This yields

∇u L ∞ (Br 0 ) ≤ C   1 (R 0 -r 0 ) β p+2 p ˆBR 0 |∇u| p dx 1 p + 1 (R 0 -r 0 ) β   ,
for every R 0 ≤ 1. This readily implies the desired estimate (5.3) in the homogeneous case. Step 1: a first iterative scheme. This times, we add on both sides of inequality (4.6) the term ˆ|∇η| 2 (|u

x k | -δ k ) p + |u x k | 2 q dx.
The left-hand side then becomes ˆ ∇ (|u

x k | -δ k ) p 2 + |u x k | q η 2 dx
which by Sobolev inequality is greater, up to a constant, than

ˆ(|u x k | -δ k ) 2 * p 2 + |u x k | 2 * q η 2 * dx 2 2 *
.

By summing over k = 1, . . . , N and using Minkowski inequality, we obtain the analogue of (5.4), namely

ˆ N k=1 (|u x k | -δ k ) p + |u x k | 2 q 2 * 2 η 2 * dx 2 2 * ≤ Cq 5 N i,k=1 ˆg i,ε (u x i ) |u x k | 2q+2 |∇η| 2 dx + C q 5 N k=1 ˆ|∇f | |u x k | 2 q+1 η 2 dx + C ˆ|∇η| 2 N k=1 (|u x k | -δ k ) p + |u x k | 2 q dx.
We now introduce the function

U(x) := 1 2 δ max k=1,...,N |u x k (x)|,
where the parameter δ is defined in (2.1). We use that

N k=1 (|u x k | -δ k ) p + |u x k | 2 q ≥ (2 δ U -δ) p + |2 δ U| 2 q ≥ (2 δ) 2 q+p U - 1 2 p + U 2 q ,
and also that for every 1 ≤ i, k ≤ N ,

g i,ε (u x i ) = (p -1) (|u x i | -δ i ) p-2 + + ε ≤ C δ p-2 U p-2 + ε.
This yields

  ˆ U - 1 2 2 * 2 p + U 2 * q η 2 * dx   2 2 * ≤ C q 5 ˆU2 q+p |∇η| 2 dx + C q 5 ε ˆU2 q+2 |∇η| 2 dx + C q 5 ˆ|∇f | U 2 q+1 η 2 dx for a possibly different C = C(N, p, δ) > 1.
With the balls B r ⊂ B t ⊂ B s ⊂ B R and the function η as defined in (5.6), an application of Hölder's inequality leads to

  ˆBt U - 1 2 2 * 2 p + U 2 * q dx   2 2 * ≤ C q 5 (s -t) 2 ˆBs U 2 q+p dx + C q 5 (s -t) 2 ε ˆBs U 2 q+2 dx + C q 5 ∇f L h (B R ) ˆBs U (2 q+1) h dx 1 h
.

(5.12)

From now on, we assume that

(5.13) q ≥ max p -2 h 2 (h -1) , 2 * p 4 h -1 .
This in particular implies that 2 q + 2 ≤ 2 q + p ≤ (2 q + 2) h , then by using Hölder's inequality and taking into account that s ≤ 1, we get

  ˆBt U - 1 2 2 * 2 p + U 2 * q dx   2 2 * ≤ C q 5 (s -t) 2 ˆBs U (2 q+2) h dx 2 q+p (2 q+2) h + C q 5 (s -t) 2 ε ˆBs U (2 q+2) h dx 1 h + C q 5 ∇f L h (B R ) ˆBs U (2 q+2) h dx 2 q+1 (2 q+2) h .
Thanks to the relation on the exponents, this gives (recall that ε < 1 and s ≤ 1)

  ˆBt U - 1 2 2 * 2 p + U 2 * q dx   2 2 * ≤ C q 5 (s -t) 2 1 + ∇f L h (B R ) × ˆBs U (2 q+2) h dx + 1 2 q+p (2 q+2) h . (5.14) We now estimate ˆBs U (2 q+2) h dx = ˆBs∩{U≥1} U (2 q+2) h dx + ˆBs∩{U≤1} U (2 q+2) h dx ≤ ˆBs∩{U≥1} U (2 q+2) h dx + C.
Observe that on the set {U ≥ 1}, we have U ≤ 2 (U -1/2) + . Hence, (5.15)

ˆBs U (2 q+2) h dx ≤ C ˆBs U - 1 2 2 * 2 p + U (2 q+2) h -2 * 2 p dx + C.
We deduce from (5.14) that

  ˆBt U - 1 2 2 * 2 p + U 2 * q dx   2 2 * ≤ C q 5 (s -t) 2 1 + ∇f L h (B R ) ×   ˆBs U - 1 2 2 * 2 p + U (2 q+2) h -2 * 2 p dx + 1   2 q+p (2 q+2) h , (5.16)
for a constant C = C(N, p, h, δ) > 1. We now take q = 2 j+1 -1 for j ≥ j 0 , where j 0 ∈ N is chosen so to ensure condition (5.13). Then we define the sequence of positive exponents

γ j = (2 q + 2) h - 2 * 2 p = 2 j+2 h - 2 * 2 p, j ≥ j 0 ,
and γ j = 2 * q = 2 * (2 j+1 -1), j ≥ j 0 . In order to simplify the notation, we also introduce the measure

d µ := U - 1 2 2 * 2 p + dx.
From (5.16), we get

ˆBt U γ j dµ 2 2 * ≤ C 2 5 j (s -t) 2 1 + ∇f L h (B R ) ˆBs U γ j dµ + 1 2 2 * γ j + 2 * 2 p γ j + 2 * 2 p .
We now observe that 2 h < (2 * p)/2, which implies (5.17)

γ j γ j ≥ 2 * 2 h > 1, j ≥ j 0 .
It follows that

γ j + 2 * 2 p γ j + 2 * 2 p ≤ γ j γ j .
Hence, we obtain

(5.18) ˆBt U γ j dµ 2 2 * ≤ C 2 5 j (s -t) 2 1 + ∇f L h (B R ) ˆBs U γ j dµ + 1 2 2 * γ j γ j
.

Step 2: filling the gaps. Since γ j-1 < γ j < γ j , for every j ≥ j 0 , we obtain by interpolation in Lebesgue spaces, ˆBt

U γ j dµ ≤ ˆBt U γ j-1 dµ τ j γ j γ j-1 ˆBt U γ j dµ (1-τ j ) γ j γ j
, where 0 < τ j < 1 is given by (5.19)

τ j = γ j γ j - 1 
γ j γ j γ j γ j-1 - 1 
.

We now rely on (5.18) to get ˆBt

U γ j dµ ≤ ˆBt U γ j-1 dµ τ j γ j γ j-1 ×   C 2 5 j (s -t) 2 (1 + ∇f L h (B R ) ) 2 * γ j 2 γj ˆBs U γ j dµ + 1   1-τ j =   C 2 5 j (s -t) 2 (1 + ∇f L h (B R ) ) 2 * γ j (1-τ j ) 2 γj τ j ˆBt U γ j-1 dµ γ j γ j-1   τ j × ˆBs U γ j dµ + 1 1-τ j .
(5.20)

We claim that (5.21)

τ j ≥ τ := 2 * -2 h 4 • 2 * -2 h
for every j ≥ j 0 .

We already know by (5.17) that (γ j /γ j ) ≥ 2 * /(2h ). Moreover, relying on the fact that (2 * p)/2 ≤ 2 j 0 h (this follows from the definition of j 0 ), we also have

2 ≤ γ j γ j-1 ≤ 4, j ≥ j 0 .
By recalling the definition (5.19) of τ j , we get

τ j = ζ γj γ j , γ j γ j-1 , where ζ(x, y) = x -1 x y -1 . Observe that on [2 * /(2 h ), +∞) × [2, 4], the function x → ζ(x, y) is increasing, while y → ζ(x, y) is decreasing. Thus we get τ j ≥ ζ 2 * 2 h , 4 ,
which is exactly claim (5.21). We deduce from (5.21) and (5.17) that

2 * γ j (1 -τ j ) 2 γj τ j ≤ 1 -τ τ h =: β.
In particular, we have

C 2 5 j (s -t) 2 (1 + ∇f L h (B R ) ) 2 * γ j (1-τ j ) 2 γj τ j ≤ C 2 5 j (s -t) 2 (1 + ∇f L h (B R ) ) β ,
since the quantity inside the parenthesis is larger than 1 (here, we use again that s ≤ 1). In view of (5.20), this implies ˆBt Step 3: Moser's iteration. Estimate (5.22) is the analogue of (5.9), except that the Lebesgue measure dx is now replaced by the measure dµ, and the index j is assumed to be larger than some j 0 , instead of j ≥ 0 as in (5.9). Following the same iteration argument, we are led to (5.23)

U γ j dµ ≤ C 2 5 j (s -t) 2 (1 + ∇f L h (B R ) ) β ˆBt U γ j-1 dµ γ j γ j-1 τ j × ˆBs U γ j dµ + 1 1-τ j . By Young's inequality, ˆBt U γ j dµ ≤ (1 -τ j ) ˆBs U γ j dµ + 1 + τ j C 2 5 j (s -t) 2 (1 + ∇f L h (B R ) ) β ˆBt U γ j-1 dµ γ j γ j-1 ≤ (1 -τ ) ˆBs U γ j dµ + C 2 5 j β (s -t) 2 β (1 + ∇f L h (B R ) ) β ˆBR U γ j-1 dµ γ j γ j-1 + 1,
U L ∞ (Br, dµ) ≤ C 1 + ∇f L h (B R ) R -r β ˆBR U γ j 0 dµ + 1 1 γ j 0 ,
for some C = C(N, p, h, δ) > 1, β = β (N, p, h) > 0.

Step 4: L ∞ -L p estimate. We now want to replace the norm L γ j 0 of U in the right-hand side of (5.23) by its norm L p . Let q 1 := 2 j 1 +1 -1 where j 1 := min j ≥ j 0 : j + 1 ≥ log 2 1 + γ j 0 2 * .

Then γ j 0 ≤ 2 * q 1 and thus, by using that U γ j 0 ≤ 2 2 * q 1 -γ j 0 U 2 * q 1 , whenever U ≥ 1 2 , we have (5.24) U L γ j 0 (B R , dµ) ≤ C U 2 * q 1 γ j 0 L 2 * q 1 (B R , dµ) .

We rely on (5.14) with q = q 1 to get for every 0 < r < t < s < R

(5.25) U 2 q 1 L 2 * q 1 (Bt, dµ) ≤ C (s -t) 2 1 + ∇f L h (B R ) U 2 q 1 +p L 2 (q 1 +1) h (Bs)

+ 1 ,
for some new constant C = C(N, p, h, δ) > 1.

Since j ≥ j 0 , we have p < (2 q 1 + 2) h < 2 * /2 (2 q 1 + p), and thus, by interpolation in Lebesgue spaces (5.26) U L 2 (q 1 +1) h (Bs) ≤ U θ L 2 * q 1 + 2 * 2 p (Bs)

U 1-θ L p (Bs) ,
where θ ∈ (0, 1) is determined as usual by scale invariance. As in the proof of (5.15), we have

U L 2 * q 1 + 2 * 2 p (Bs)
≤ C U 2 q 1 2 q 1 +p L 2 * q 1 (Bs, dµ) + C.

Inserting this last estimate into (5.26), we obtain U 2 q 1 +p L 2 (q 1 +1) h (Bs) ≤ C U 2 q 1 θ L 2 * q 1 (Bs, dµ) U

(1-θ) (2 q 1 +p) L p (Bs)

+ C U (1-θ) (2 q 1 +p) L p (Bs)
, up to changing the constant C = C(N, p, h, δ) > 1. In view of (5.25), this gives U 2 q 1 L 2 * q 1 (Bt, dµ) ≤ C (s -t) 2 1 + ∇f L h (B R ) U 2 q 1 θ L 2 * q 1 (Bs, dµ) U

(1-θ) (2 q 1 +p) L p (Bs)

+ U

(1-θ) (2 q 1 +p) L p (Bs) + 1 .

By Young's inequality, we get U 2 q 1 L 2 * q 1 (Bt, dµ) ≤ θ U 2 q 1 L 2 * q 1 (Bs, dµ) + (1 -θ)

C (s -t) 2 (1 + ∇f L h (B R ) ) 1 1-θ U (2 q 1 +p) L p (Bs) + C (s -t) 2 1 + ∇f L h (B R )
U

(1-θ) (2 q 1 +p) L p (Bs) + 1 .

By Lemma 2.5, this implies

U 2 q 1 L 2 * q 1 (Br, dµ) ≤ C 1 (R -r) 2 (1 + ∇f L h (B R 0 ) ) 1 1-θ U (2 q 1 +p) L p (B R ) + 1 .
Coming back to (5.23) and taking into account (5.24), we obtain

U L ∞ (Br 0 , dµ) ≤ C 1 + ∇f L h (B R 0 ) R 0 -r 0 σ 2 U σ 1 L p (B R 0 ) + 1 ,
where C = C(N, p, h, δ) > 1 and σ i = σ i (N, p, h) > 0, for i = 1, 2. By definition of U, we have

|∇u| ≤ 2 δ √ N U ≤ 2 δ √ N |∇u|.
Since U L ∞ (Br 0 , dµ) + 1 ≥ U L ∞ (Br 0 ) , it follows that

∇u L ∞ (Br 0 ) ≤ C 1 + ∇f L h (B R 0 ) R 0 -r 0 σ 2 ∇u σ 1 L p (B R 0 ) + 1 .
This completes the proof.

where

G ε (v; B) = N i=1 ˆB g i,ε (v x i ) dx + ˆB G ε (x, v) dx
and U ε = U * ρ ε . Moreover, by [8, Remark 7.6] we have u ε ∈ L ∞ (B), with a bound on the L ∞ norm uniform in ε > 0. In order to simplify the notation, we simply write as usual u and f instead of u ε and f ε . The Euler equation is now N i=1 ˆg i,ε (u x i ) ϕ x i dx + ˆf (x, u) ϕ dx = 0, ϕ ∈ W 1,p 0 (B).

When we differentiate the Euler equation with respect to some direction x j , we obtain

N i=1 ˆg i,ε (u x i ) u x i x j ψ x i dx + 1 p -1 ˆ f x j (x, u) + f ξ (x, u) u x j ψ dx = 0, ψ ∈ W 1,p 0 (B).
We can then repeat the proof of Proposition 5.1 with this additional term f ξ (x, u)u x j which leads to the following analogue of (5.12):

  ˆBt U - 1 2 2 * 2 p + U 2 * q dx   2 2 * ≤ C q 5 (s -t) 2 ˆBs U 2 q+p dx + C q 5 (s -t) 2 ε ˆBs U 2 q+2 dx + C q 5 ∇ x f L h ˆBs U (2 q+1) h dx 1 h + C q 5 f ξ L h ˆBs U (2 q+2) h dx 1 h
.

Using again Hölder's inequality for the first three terms, we obtain inequality (5.14) where ∇f now represents the full gradient of f with respect to both x and ξ. The rest of the proof is the same and leads to a uniform Lipschitz estimate, as desired.

  2 u x i x i = 0, whose local weak solutions are local minimizers of the functional(1.3) I(u, Ω ) = 1 p ˆΩ |∇u| p dx, Ω Ω, u ∈ W 1,p loc (Ω ).
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Proposition 4 . 1 (

 41 ) = t m , for t ≥ 0, with 1 ≤ s ≤ m. Staircase to the full Caccioppoli). Let p ≥ 2 and let η ∈ C ∞ 0 (B), then for every k, j = 1, . . . , N and 1

5. 2 .

 2 Proof of Proposition 5.1: the non-homogeneous case. We follow step by step the proof of the homogeneous case and we only indicate the main changes, which essentially occur in Step 1 and Step 2.

  where C = C(N, p, h, δ) > 1 as usual. By applying again Lemma 2.5, this times with the choicesZ(t) = ˆBt U γ j dµ, α 0 = 2 β, and ϑ = 1 -τ ,we finally obtain(5.22)ˆBr U γ j dµ ≤ C 2 5 j β (R -r) 2 β (1 + ∇f L h (B R ) ) β ˆBR U γ j-1 dµ

This test function is not really admissible, since it is not compactly supported. Actually, to make it admissible we have to multiply it by a cut-off function. However, this gives unessential modifications, we prefer to avoid it in order to neatly present the idea of the proof.

Appendix A. Lipschitz regularity with a nonlinear lower order term

In this section, we consider the functional

The lower order term f u of the functional F δ is thus replaced by a more general term G(x, u). We assume that for almost every x ∈ Ω, the map

We denote f (x, ξ) := G ξ (x, ξ) and we assume that f ∈ W 1,h loc (Ω × R), for some h > N/2. Finally, we assume that G(x, ξ) satisfies the inequality

where 1 < p ≤ γ < p * and a, b are two non-negative functions belonging respectively to L s loc (Ω) and L σ loc (Ω) with s > N/p and σ > p * /(p * -γ). Under assumption (A.1), all the local minimizers of G δ are locally bounded, see [8, Theorem 7.5] and moreover, for every such minimizer u, for every

where M depends on u W 1,p (B R 0 ) , r 0 , R 0 , b L σ (R 0 ) , and a L s (B R 0 ) .

Then we have:

Theorem A.1. Let p ≥ 2 and let u ∈ W 1,p loc (Ω) be a local minimizer of the functional G δ . Then u is locally Lipschitz in Ω.

Proof. We only explain the main differences with respect to the proof of Theorem 1.1. Since G is convex with respect to the second variable, the functional G is still convex. This implies that Lemma 2.3 remains true with the same proof. We then introduce the approximation of G:

where ρ ε is the same regularization kernel as before, while ρ ε is a regularization kernel on R. Given a local minimizer U ∈ W 1,p loc (Ω) and a ball B ⊂ 2 B Ω, there exists a unique C 2 solution u ε to the regularized problem min G ε (v; B) : v -U ε ∈ W 1,p 0 (B) ,