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Abstract. Electric vehicle routing problems (E-VRPs) are receiving growing attention from the 
operations research community. Electric vehicles (EVs) differ substantially from internal 
combustion engine vehicles. In the routing context, the main difference is due to the limited EV 
autonomy, which can be recuperated at charging stations. These are rather scarce, thus EVs 
typically have to perform detours to reach them. Various assumptions on the charging policy and 
objective function{, among others}, have led to the definition of several variants E-VRPs. Modeling 
the charging functions is a focal point of the majority of these problems. The majority of the research 
has focused on constant or linear charging function. To account for the nonlinear relation between 
the times spent charging and the amount of energy charged, the electric vehicle routing problem 
with nonlinear charging function has been recently introduced. In this research we propose new 
formulations for this problem. We present an arc-based tracking of the time and the state of charge 
which, according to our experiments, outperform the classical node-based tracking of these values. 
We also propose alternative formulations of the piecewise linear approximation of the nonlinear 
charging function. To prevent the use of charging stations nodes replication, we propose a 
recharging path-based model. We present a labeling algorithm to generate a tractable number of 
these paths. This latter model overcomes the limits of the classical models presented in the 
literature and also outperforms them in our experiments. 
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function, mixed integer linear programming, labeling algorithm. 

Acknowledgements. This research was partly funded in France by Agence Nationale de la 
Recherche through project e-VRO (ANR-15-CE22-0005-01). 

 

 

Results and views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect 
those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du CIRRELT et 
n'engagent pas sa responsabilité. 
 
_____________________________ 
* Corresponding author: Aurelien.Froger@cirrelt.ca 
Dépôt légal – Bibliothèque et Archives nationales du Québec 

Bibliothèque et Archives Canada, 2017 

©  Froger, Mendoza, Jabali, Laporte and CIRRELT, 2017 



1. Introduction

Electric vehicles (EVs) are assumed to be an environmental viable alternative to internal
combustion engine vehicles (ICEVs). While this assumption is conditioned to EVs being
supplied by environmentally friendly energy resources, the diffusion of EV is being encour-
aged through numerous governmental and private policies. Transporters are thus in the
process of adapting their operational conventions in a manner that fits the adoption of EVs.
As a result, electric vehicle routing problems (E-VRPs) are receiving much attention in the
operational research literature. Introducing EVs modifies the definition of the “classic” ve-
hicle routing problems (VRPs), as the EV technological constraints need to be accounted
for. Indeed, the EVs have a driving autonomy limited by their battery capacity, which can
be recovered at charging stations (CSs). These are much more scarce compared to refueling
stations for ICEVs, therefore EVs typically perform on-route detours to reach CS. More-
over, the charging times of EVs could be much longer compared to refueling the activity
of ICEVs. Therefore, considering EVs introduces additional decisions in VRPs related to
planning the charging operations. More specifically, decisions in E-VRPs not only relate to
the assignment of customers to vehicles and establishing the sequence of customer visits per
vehicle, but also determine where and how long to charge.

Research on the E-VRPs primarily started with the introduction of the Green Vehicle
Routing Problem (G-VRP) by Erdoğan and Miller-Hooks (2012). In the G-VRP, a fleet of
homogeneous alternative fuel vehicles must visit a set of customers from a single depot while
traveling a minimum total distance. The vehicles have a limited fuel tank capacity but can
detour to CSs to extend their driving range. The routes have a duration limit constraint.
The tank is fully recharged at each visit to a CS in constant time. This assumption fits the
vehicles operating on alternative fuels, e.g., biofuels and liquid nitrogen. In terms of EV such
an assumption is plausible when working with battery swapping stations, where the battery
of an EV is replaced by a fully charged one. However, to our knowledge, battery swapping
stations do not seem to exist nowadays: the company Better Place declared bankruptcy
in 2013 and Tesla’s only battery swapping station shutdown at the end of 2016. To tackle
the G-VRP, Erdoğan and Miller-Hooks (2012) proposed two heuristics. Koc̆ and Karaoglan
(2016) developed a branch-and-cut algorithm that can optimally solve instances with up to
20 customers. These authors also presented a simulated annealing-based heuristic algorithm
to tackle larger instances. Montoya et al. (2016) developed a multi-space sampling two-stage
heuristic. The first stage of this heuristic builds a pool of high-quality routes, by means of
randomized route-first cluster-second heuristics, and the second stage assembles a solution
from the pool by solving a set partitioning (SP) formulation. Bartolini and Andelmin (2017)
proposed an exact method based on a SP formulation of the problem, which is strengthened
by the addition of a number of cuts. One distinct feature of their formulation lies in defining
the problem on a multigraph using the concept of refuel-paths. They optimally solved
instances with up to 110 customers.

Several variants of the G-VRP have been proposed in the literature. Schneider et al.
(2014) defined the electric routing problem with time windows and cargo capacity constraints
(E-VRPTW). In the E-VRPTW, the batteries are fully recharged at CSs. However, the
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charging time is not longer presumed constant, as in the G-VRP, it linearly depends on the
state of charge (SoC) of the EV upon its arrival at the CS. Finally, no route duration limit is
considered. To solve the E-VRPTW, Schneider et al. (2014) proposed a hybrid metaheuristic
that couples variable neighborhood and tabu search. Schneider et al. (2015) proposed an
adaptive variable neighborhood search for a more general class of problems, which improved
the G-VRP results of Schneider et al. (2014). Keskin and C̆atay (2016) designed an adaptive
large neighborhood search (ALNS) algorithm with customized operators for the E-VRPTW.
Desaulniers et al. (2016) studied a version of the E-VRPTW, in which the fleet size is fixed.
These authors proposed a branch-and-cut-and-price approach that is able to solve instances
with up to 100 customers to optimality. This algorithm also applies when adopting a partial
charging policy for the EVs, i.e., a charging activity does not entail fully charging the battery.

In the vast majority of E-VRPs, the energy consumption rate of EVs depends only on
the traveled distance. Goeke and Schneider (2015) considered a mixed fleet of EVs and
ICEVs, the energy consumption of the EVs depends on road gradients, cargo load, and
vehicle speed. Such parameters are used to accurately model energy consumption. They
developed an ALNS algorithm which combines local search. Furthermore, they adapted
their algorithm to tackle the related E-VRPTW.

Hiermann et al. (2016) introduced an extension of the E-VRPTW called the Electric
Fleet Size and Mix Vehicle Routing Problem with Time Windows and Recharging Sta-
tions (E-FSMFTW). They considered a heterogeneous fleet of vehicles, each type of vehicle
having different capacity, energy consumption and acquisition costs. They developed a
branch-and-price algorithm, and optimally solved instances with up to 15 customers. They
also developed an ALNS algorithm based metaheuristic for solving realistic-sized instances.
Both these algorithms produce competitive results on the E-VRPTW of Schneider et al.
(2014) instances. Locating CSs is another critical point when routing EVs. The joint prob-
lem of locating CSs and routing EVs has been recently studied. Yang and Sun (2015)
considered battery swapping stations and proposed heuristic algorithms for the resulting
problem. Schiffer and Walther (2017) introduced the electric location routing problem with
time windows and partial recharging and proposed a mathematical model.

With the exception of the work of Desaulniers et al. (2016) and Schiffer and Walther
(2017), the above literature assumed that whenever a charging activity is performed it is con-
cluded only when the battery is fully charged. This assumption yields more tractable models,
which is partly the reason behind its adoption by earlier versions of E-VRPs. Nonetheless,
assuming that the battery is fully charged each time a charging operation takes place is
rather conservative. Partial recharges were first been introduced by Felipe et al. (2014).
Indeed, compared to a full charging policy, partial charging allows savings in both energy
consumption and time, since only the energy required can be charged. It is worth noting
that the time to reach a fully-charged battery is usually prohibitive when charging opera-
tions occur in routes. The authors also considered CSs with multiple technologies. More
specifically, the charging rate may be different from one CS to another. This reflects the va-
riety of chargers one can encounter in practice (e.g., slow, medium, and fast chargers). The
authors also considered capacitated vehicles and route duration constraints. They developed
a simulated annealing metaheuristic for the resulting problem. Bruglieri et al. (2015) consid-
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ered the E-VRPTW using a partial charging policy with an alternative objective function,
which consists in minimizing a weighted sum of two different components: the number of
EVs serving the customers and the total time consumed in traveling, waiting and charging.
This objective better captures the impact of charging decisions. Indeed, the objectives solely
based on cost or distance associated with each arc neglect the significant time that can be
spent at CSs. The same analysis is done by Montoya et al. (2017) who therefore set the
minimization of the total time as the objective of their problem. They also used nonlin-
ear charging functions to model the charging process, which better depict the real charging
process. The resulting problem is called the electric vehicle routing problem with nonlinear
charging function (E-VRP-NL). Indeed, from a 80%-SoC the battery level generally increases
concavely with time. The authors therefore proposed a piecewise linear approximation of
the charging process. Moreover, Montoya et al. (2017) showed that accounting for nonlinear
charging functions is pivotal for the E-VRPs. Indeed, they showed that previously adopted
linear charging functions yield infeasible routes with respect to tour duration limits, when
projected on nonlinear functions. Moreover, even if routes produced under linear charging
functions are feasible, when subjected to nonlinear charging functions they tend to be of
poor quality. To solve the E-VRP-NL, they developed a hybrid metaheuristic that combines
an iterated local search and a SP problem.

The research outlined above implicitly assumes that the charging infrastructure is owned
by the EV operator. This is plausible for large transportation companies. In contrast, public
infrastructure involves uncertainty with respect to the availability of the CS. Using public
infrastructure to charge EVs in a routing context has received far less attention in the
literature. We refer the reader to (Kullman et al., 2016) and, especially, to (Sweda et al.,
2017) for specific details.

Research on the E-VRP is moving towards more accurately representing the character-
istics of EVs. This tendency is yielding more intricate models posing various algorithmic
challenges. In this paper, we study the E-VRP-NL introduced by Montoya et al. (2017),
which as previously mentioned, is pivotal in that it realistically models the charging opera-
tion via nonlinear functions, while accounting for various charging technologies.

First, we revisit the mixed integer linear programming (MILP) formulation introduced
by Montoya et al. (2017) and propose alternative strategies to model the time and SoC
tracking as well as the piecewise linear charging functions. Second, we define the problem
on a multigraph, which allows us to derive a formulation of the E-VRP-NL that does not
use replication of CS nodes, as it is typical in E-VRPs. We discuss how this formulation
better fits the problem from a modeling perspective, we also show the superiority of this
formulation on a number of experiments.

The remainder of this document is organized as follows. We formally describe the E-
VRP-NL in Section 2. In Section 3, we present MILP formulations of the problem based on
its “classical” definition on a simple digraph. We then present a MILP formulation of the
E-VRP-NL using the concept of recharging paths. We present the computational results in
Section 5. Finally, we present our conclusions and outline research perspectives in Section
6.
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2. Problem description

The electric vehicle routing problem with nonlinear charging function introduced by
(Montoya et al., 2017) is defined as follows. Let I be the set of customers that need to
be served and let F be the set of charging stations (CSs), at which the vehicles can stop
to recharge their battery. Each customer i P I has a service time gi. The customers are
served using an unlimited and homogeneous fleet of EVs. All the EVs have a battery of
capacity Q (expressed in kWh) and a maximum tour duration of Tmax. At the beginning
of the planning horizon, the EVs are located in a single depot, from which they leave fully
charged. Traveling from one location i (the depot, a customer, or a CS) to another location j
incurs a diriving time tij ¥ 0 and an energy consumption eij ¥ 0. The triangular inequality
holds for both the driving times and energy consumptions. Due to their limited battery
capacity, EVs may require to stop en route at CSs. Charging operations can occur at any
CS and EVs can be partially recharged. Each CS i P F has a charging mode (e.g., slow,
moderate, fast) associated with a piecewise linear charging function Φip∆q that maps, for
an empty battery, the time ∆ spent charging at i to the SoC of the vehicle when it leaves i.
If q is the SoC of the EV when it arrives at i and ∆ the time spent charging, the SoC of the
EV when it departs from i is given by Φip∆ � Φ�1

i pqqq. We denote as Bi � t0, . . . , biu the
set of breakpoints of the piecewise linear approximation of the charging curve at i (sorted
in ascending order). Let cik and aik be the charging time and the SoC of breakpoint k P Bi,
of the CS i. Figure 1 shows the piecewise linear approximation for a CS i yielding a power
of 22 kW charging a vehicle equipped with a 16 kWh battery. Let ρik be the slope of the
segment between ci,k�1 and cik (i.e. ρik � paik� ai,k�1q{pcik� ci,k�1q) and ηik the y-intercept
of the segment between ci,k�1 and cik (i.e. ηik � aik � cikρik). We say that a charging
function g dominates another charging function g1 if @t P r0, Smaxs, we have gptq ¥ g1ptq.
The parameter Smax � maxiPF tcibu corresponds to the maximum charging time, i.e., the
time to fully charge the battery when the initial SoC is zero. An important characteristic of
charging functions is that given two such functions, corresponding to different technologies,
one will dominate the other.

Figure 1: Real data (solid line) vs. piecewise linear approximation (dashed line) for a CS yielding a power
of 22 kW charging a 16 kWh battery. Taken from (Montoya et al., 2017).
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Feasible solutions to the E-VRP-NL satisfy the following conditions:

1. Each customer is visited exactly once by a single vehicle;

2. Each route starts and ends at the depot;

3. Each route satisfies the maximum-duration limit Tmax;

4. Each route is energy-feasible, i.e., the SoC of an EV when it arrives at and departs
from any location is between 0 and Q

The objective of the E-VRP-NL is to minimize the total time. This takes into account
driving, service, and charging times. The motivation for having a temporal-based objective,
stems from the fact that charging times should be explicitly accounted for in this problem.

3. CS replication-based formulation

Following the established conventions in the E-VRP literature, the E-VRP-NL is defined
on a complete digraph G � pV,Aq, where V � t0u Y I Y F 1 is the set of nodes and A �
tpi, jq : i, j P V, i � ju is the set of arcs connecting nodes of V . The symbol 0 represents
the single depot. The set F 1 contains βi copies of each CS i P F (i.e., |F 1| �

°
iPF

βi). The

value of βi corresponds to an upper bound on the number of times that each CS i can be
visited. These copies are introduced for modeling convenience, each visit of an EV to a CS
is modeled as a visit to a distinct copy of that particular CS, i.e, each node in F 1 can be
restricted to be visited at most once. Therefore, the use of CS copies facilitates tracking of
the SoC and the driving time of each route. In the remainder of this manuscript, depending
on the context, we refer to an element of F 1 or F 1

i as a CS copy. We denote as F 1
i � F 1 the

set containing the βi copies of CS i (i.e., |F 1
i | � βi and F 1 �

�
iPF F

1
i ). We assume that F 1

i

is an ordered set and that its elements are numbered from 1 to βi.
It is noteworthy that the graph G is not necessary complete. Indeed, some arcs from the

arc set A can be safely removed without cutting off the optimal solution. Specifically, we
introduce the following preprocessing steps to reduce the size of the arc set:

1. Let ÝÑe maxi � Q � minlPFYt0u eli be the maximum possible SoC at departure of node
i P V . Similarly, let ÝÑe mini � minlPFYt0u eil be the minimum SoC at departure of
node i P V to build an energy-feasible route. Considering i, j P V , in the case where
ÝÑe maxi �eij�ÝÑe

min
j ¡ Q we infer that even with the maximum SoC at i, after traversing

the arc pi, jq the EV does not have enough SoC to reach the nearest CS or the depot.
Therefore, the corresponding arcs pi, jq to this case are removed from A.

2. Let t�ij be the duration of the shortest path in G from i to j with respect to arc duration
tij, of the resulting graph from step 1. Let ecminij the minimum charging amount neces-
sary to build a route traversing arc pi, jq. We have ecminij � max p0, pe0i � eij � ej0q �Qq.

We also define tchargeij the minimum charging time necessary to perform a route travers-

ing the arc pi, jq. Namely, tchargeij is equal to 0 if ecminij � 0. Otherwise, tchargeij is equal
to:

tchargeij � min
lPF

�
min

��
ecmin

ij � e0l � eli � e0i
�
{ρl1,

�
ecmin

ij � eil � elj � eij
�
{ρl1,

�
ecmin

ij � ejl � el0 � ej0
�
{ρl1

��
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More specifically, tchargeij is the minimum time spent for the detour to a CS and for
charging, as it accounts for fastest possible CS charging for three mutually exclusive
detour options. If t�0i � t�ij � t�j0 � tchargeij ¡ Tmax, we remove the arc pi, jq from set A,
since traversing the arc pi, jq leads to violation of the tour duration limit.

3. We also remove all the arcs between CS copies of the same CS. More specifically, for
every i P F and j, l P F 1

i , we remove the arc pj, lq from set A.

In the following, for the sake of completeness and clarity, we present the model introduced
in (Montoya et al., 2017) in Section 3.1. In Section 3.2 we introduce alternative formulations,
which relate to modeling the SoC as a function of time tracking, as well as the piecewise
linearization of the charging functions.

3.1. The E-VRP-NL formulation

The formulation of Montoya et al. (2017) involves the following decisions variables. Bi-
nary variable xij is 1 if and only if an EV travels arc pi, jq P A. Continuous variables τj and
yj track the time and SoC of the EV when it departs from node j P V . Continuous variables
qi and oi specify (according to the piecewise linear approximation of the charging function
of i) the SoC of an EV when it arrives at and departs from CS copy i P F 1, and si and
di are the scaled arrival time and departure time, according to the charging function of CS
copy i. Continuous variable ∆i � di � si represents the duration of the charging operation
performed at CS copy i. Binary variables zik and wik are 1 if the SoC is between ai,k�1

and aik, with k P Bizt0u, when the EV arrives at and departs from CS copy i, respectively.
Finally, continuous variables αik and λik are the coefficients associated with the breakpoint
pcik, aikq in the piecewise linear approximation, when the EV arrives at and departs from CS
copy i P F 1 respectively. Specifically, the variables tαikukPBi

enable the expression of psi, qiq
as a convex combination of the breakpoints tpcik, aikqukPBi

. Similarly, the variables tλikukPBi

enable the expression of pdi, oiq as a convex combination of the breakpoints tpcik, aikqukPBi
.

The formulation of the E-VRP-NL, denoted as rFM s, is as follows:

rFM s min
¸

i,jPV,i�j

tijxij �
¸
iPF 1

∆i �
¸
iPI

gi (1)

subject to¸
pi,jqPA

xij � 1, @i P I (2)

¸
pi,jqPA

xij ¤ 1, @i P F 1 (3)

¸
pj,iqPA

xji �
¸

pi,jqPA

xij � 0, @i P V (4)

eijxij � p1 � xijqQ ¤ yi � yj ¤ eijxij � p1 � xijqQ, @pi, jq P A : i P V, j P I (5)

eijxij � p1 � xijqQ ¤ yi � qj ¤ eijxij � p1 � xijqQ, @pi, jq P A : i P V, j P F 1 (6)

yi ¥ ei0xi0, @pi, 0q P A : i P V zt0u (7)
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yi � oi, @i P F 1 (8)

y0 � Q (9)

qi ¤ oi, @i P F 1 (10)

qi �
¸
kPBi

αikaik, @i P F 1 (11)

si �
¸
kPBi

αikcik, @i P F 1 (12)

¸
kPBi

αik �
¸

kPBizt0u

zik, @i P F 1 (13)

¸
kPBizt0u

zik �
¸

pi,jqPA

xij , @i P F 1 (14)

αi0 ¤ zi1, @i P F 1 (15)

αik ¤ zik � zi,k�1, @i P F 1,@k P Bizt0, biu (16)

αibi ¤ zibi , @i P F 1 (17)

oi �
¸
kPBi

λikaik, @i P F 1 (18)

di �
¸
kPBi

λikcik, @i P F 1 (19)

¸
kPBi

λik �
¸

kPBizt0u

wik, @i P F 1 (20)

¸
kPBizt0u

wik �
¸

pi,jqPA

xij , @i P F 1 (21)

λi0 ¤ wi1, @i P F 1 (22)

λik ¤ wik � wi,k�1, @i P F,1 @k P Bizt0, biu (23)

λibi ¤ wibi , @i P F 1 (24)

∆i � di � si, @i P F 1 (25)

τi � ptij � pjqxij � Tmaxp1 � xijq ¤ τj , @pi, jq P A : i P V, j P I (26)

τi � ∆j � tijxij � pSmax � Tmaxqp1 � xijq ¤ τj , @pi, jq P A : i P V, j P F 1, (27)

τj � tj0 ¤ Tmax, @j P V (28)

τ0 � 0 (29)

τl � ∆l ¥ τj � ∆j , @i P F,@j, l P F 1
i , j   l (30)¸

ph,jqPA

xhj ¥
¸

ph,lqPA

xhl, @i P F,@j, l P F 1
i , j   l (31)

xij P t0, 1u, @pi, jq P A (32)

τi ¥ 0, yi ¥ 0 @i P V (33)

zik P t0, 1u, wik P t0, 1u, @i P F 1,@k P Bizt0u (34)

αik ¥ 0, λik ¥ 0, @i P F 1,@k P Bi (35)

qi ¥ 0, oi ¥ 0,∆i ¥ 0, @i P F 1 (36)

si ¥ 0, di ¥ 0 @i P F 1 (37)

Equation (1) gives the objective of the problem: minimizing the total time (driving times,
service times, and charging times). Constraints (2) ensure that each customer is visited once.
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Constraints (3) ensure that each CS copy is visited at most once. Constraints (4) impose the
flow conservation. Constraints (5) and (6) track the SoC of an EV at each node. Constraints
(7) ensure that if an EV travels between a node (customer or CS copy) and the depot, it
has sufficient energy to reach its destination. Constraints (8) reset the battery tracking to oi
upon departure from CS copy i P F 1. Constraint (9) states that the SoC of an EV leaving the
depot is Q. Constraints (10) couple the SoC of an EV when it arrives at and departs from
any CS copy. Constraints (11)–(17) define the SoC (and its corresponding charging time)
of an EV when it arrives at CS copy i (based on the piecewise linear approximation of the
charging function). Similarly, constraints (18)–(24) define the SoC (and its corresponding
charging time) of an EV when it departs from CS copy i. Constraints (25) define the time
spent at any CS copy. Constraints (26) and (27) track the departure time at each node.
Constraints (28) and (29) ensure that the EVs return to the depot no later than Tmax. While
not necessary, constraints (30) and (31) avoid potential symmetry between copies of the CSs.
These constraints ensure that the copies of CS i are visited in the order they appear in Fi
(i.e, a charging operation at j P F 1

i must start after a charging operation at l P F 1
i if j ¡ l).

Finally, constraints (32)–(37) define the domain of the decision variables.
To strengthen the previous formulation, we propose adding the following valid inequali-

ties:

yi ¥ min
lPFYt0u

eil @i P V zt0u (38)

These inequalities state that the SoC of an EV at the departure from a node must be enough
to reach the depot or the nearest CS (according to energy consumption).

3.2. Alternative formulations

There usually exists multiple ways to model a problem. Keeping in mind that the
efficiency of a MILP solver running a model is very sensitive to different formulations, we
now investigate several modeling alternatives to the E-VRP-NL.

3.2.1. Modeling the time and SoC tracking

Formulation rFM s tracks the time and the SoC of the EVs with variables indexed on
the nodes. We therefore refer to constraints (5)-(9), (26)-(29), (31), (33) and (38) as node-
based tracking constraints. We now propose an alternative way to model the time and SoC
tracking by introducing arc-based variables. More precisely, we replace variables τj and yj
by the continuous variables τij and yij tracking (respectively) the time and SoC of an EV
when it departs from node i P V to travel arc pi, jq P A. If no vehicle travels the arc pi, jq,
both variables are 0. We model the time and SoC tracking with the following constraints
(hereafter referred to as arc-based tracking constraints), that replace the node-based tracking
constraints in formulation rFM s:

¸
pi,jqPA

yij �
¸

pi,jqPA

eijxij �
¸

pj,lqPA

yjl, @j P I (39)

¸
pi,jqPA

yij �
¸

pi,jqPA

eijxij � qj , @j P F 1 (40)
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¸
pj,lqPA

yjl � oj , @j P F 1 (41)

yij ¤

�
Q� min

lPFYt0u
eli



xij , @pi, jq P A (42)

yij ¥

�
eij � min

lPFY0
ejl



xij , @pi, jq P A (43)¸

pi,jqPA:i�0

pτij � ptij � pjqxijq �
¸

pj,lqPA

τjl, @j P I (44)

¸
pi,jqPA:i�0

pτij � tijxijq � ∆j �
¸

pj,lqPA

τjl, @j P F 1 (45)

τij ¤ pTmax � tij � pj � tj0qxij , @pi, jq P A : i � 0, j P I (46)

τij ¤
�
Tmax � tij � ∆min

j � tj0
�
xij , @pi, jq P A : i � 0, j P F 1 (47)¸

pj,hqPA:j�0

τjh � ∆j ¥
¸

pl,hqPA:l�0

τlh � ∆l, @i P F,@j, h P F 1
i : j   l (48)

τij ¥ 0, @pi, jq P A : i � 0 (49)

yij ¥ 0, @pi, jq P A (50)

Constraints (39) track the SoC of an EV at each customer. Constraints (40) track the
SoC of an EV when it arrives at a CS copy. Constraints (41) track the SoC of the EV when
it leaves a CS copy. Constraints (42) couple the variables yij and xij. Constraints (43) state
that if an EV traverses the arc pi, jq its SoC when leaving i must be enough to traverse
the arc and then to reach the closest CS or depot. They are an adaptation of the valid
inequalities (38) associated with the node-based tracking constraints. Constraints (44) track
the departure time at each customer. Constraints (45) track the departure time at CS copies.
Constraints (46) and (47) couple the τij and xij variables. Specifically, if an EV traverses an
arc pi, jq, then its departure time must guarantee that the EV returns to the depot without
exceeding the tour duration limit. The parameter ∆min

j represents the minimum duration
of a charging operation at j P F 1. We have ∆min

j � min
l,l1PV ztju|pl,jqPA^pj,l1qPA

pelj � ejl1 � ell1q{ρi1.

This is a lower bound on the time spent charging to recover the energy consumed to make
the detour to j considering the fastest charging rate. Constraints (48) break symmetries
created by the introduction of CS copies. Constraints (49) and (50) define the domain of
the newly introduced decision variables.

According to the experiments conducted by Ascheuer et al. (2001) on the asymmetric
traveling salesman problem with time windows, MILP solvers tend to perform better on arc-
based tracking constraints, similar to (39)-(50) than on those based on node-based tracking
constraints. Therefore, there is ground to believe that re-formulating the time and SoC
tracking in rFM s using this new model may yield better performance.

3.2.2. Modeling the piecewise linear charging function: two alternative formulations

In formulation rFM s, the piecewise linear charging functions are modeled using the widely
used convex combination (CB) model (also referred to as the Lambda-method (Vielma et al.,
2010)). Alternatively, we propose two E-VRP-NL models based on new formulations for the

9

New Formulations for the Electric Vehicle Routing Problem with Nonlinear Charging Functions

CIRRELT-2017-30



piecewise linear charging functions. Namely, a multiple choice model (MC) and a reduced
model (R).

• First, we present the MC model. According to (Croxton et al., 2003) the MC and CB
models have the same LP relaxation and lead to the same bounds. However, Vielma
et al. (2010) conducted experiments showing that MILP solvers tend to perform better
on MC models. Therefore, there is room to believe that re-formulating the charging
constraints in the E-VRP-NL using an MC model may yield a MILP that is easier to
solve in practice.

Figure 2: Illustration of the definition of variables δstartik and δendik

To model the piecewise linear charging constraints, we introduce for each i P F 1 and
k P Bi the continuous variables δstartik and δendik . If the SoC of the EV lays between
ai,k�1 and aik when the EV arrives at (resp. leaves from) CS copy i, δstartik (resp. δendik )
takes the value of the abscissa in the charging function corresponding to the SoC. In
any other case, δstartik (resp. δendik ) takes the value 0. Figure 2 illustrates the definition
of these variables. Reusing variables zik and wik as defined in §3.1, we can model the
piecewise linear charging constraints as:

qi �
¸

kPBizt0u

ρikδ
start
ik � ηikzik, @i P F 1 (51)

cik�1zik ¤ δstartik ¤ cikzik, @i P F 1,@k P Bizt0u (52)

oi �
¸

kPBizt0u

ρikδ
end
ik � ηikwik, @i P F 1 (53)

cik�1wik ¤ δendik ¤ cikwik, @i P F 1,@k P Bizt0u (54)

si �
¸

kPBizt0u

δstartik , @i P F 1 (55)

di �
¸

kPBizt0u

δendik , @i P F 1 (56)

δstartik ¥ 0, δendik ¥ 0, @i P F 1,@k P Bizt0u (57)
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Constraints (51) and (52) couple the SoC of an EV when it arrives at CS copy i to
the correct segment and abscissa of the charging function. Similarly, constraints (53)
and (54) couple the battery level when an EV departs from CS copy i to the correct
segment and abscissa of the charging function. Constraints (55) and (56) help define
the time spent at any CS copy (see constraints (25)). Constraints (32)–(37) define the
domain of the newly introduced decision variables.

• Second, we present the R model. It takes advantage of the concavity of the charging
function to reduce the number of variables and constraints used to model its piecewise
linear approximation. We omit variables zik, wik, αik and λik. Let each CS copy
i P F 1 and k P Bizt0u. We introduce the continuous variable φik that represents the
amount of energy charged at CS copy i on the segment that lies between the points
pci,k�1, ai,k�1q and pcik, aikq. We also introduce the binary variable ωik, which is equal
to 1 if and only if an EV charges at CS copy i on the segment between the points
pci,k�1, ai,k�1q and pcik, aikq. Figure 3 illustrates the definition of these variables.

Figure 3: Illustration of the definition of variables used in the R model

A shorter formulation of the piecewise linear charging constraints is then as follows:

qi � φik ¤ aikωik �Qp1 � ωikq, @i P F 1,@k P Bizt0u (58)

φik ¤ paik � ai,k�1qωik, @i P F 1,@k P Bizt0u (59)¸
kPBizt0u

ωik ¥
¸

pi,jqPA

xij , @i P F 1 (60)

ωik ¤
¸

pi,jqPA

xij , @i P F 1,@k P Bizt0u (61)

oi � qi �
¸

kPBizt0u

φik, @i P F 1 (62)

∆i �
¸

kPBizt0u

φik{ρik, @i P F 1 (63)

φik ¥ 0 @i P F 1,@k P Bizt0u (64)

ωik P t0, 1u @i P F 1,@k P Bizt0u (65)
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Constraints (58) restrict the segments on which EVs can charge according to the SoC
they have at their arrival at CS copies. Constraints (59) restrict the charging amount
that can be charged on each segment. Constraints (60) impose the activation of one
segment whenever an EV visits a CS copy. Constraints (61) are valid inequalities.
Constraints (62) define the SoC after a charging operation, by summing up the amounts
charged on the relevant segments. Constraints (63) define the time spent charging
at each CS copy. Constraints (64)–(65) define the domain of the newly introduced
decision variables.

Hereafter, we refer to:

• constraints (11)-(13), (15)-(20), (22)- (24), and (35) defined in rFM s as CB piecewise
linear constraints,

• constraints (51)-(57) as MC piecewise linear constraints

• to constraints (58)-(65) as R piecewise linear constraints

3.2.3. Valid inequalities

To strengthen all the previous formulations, we introduce a new set of valid inequalities.
Let ecminl be the minimum amount of energy that an EV must charge at a CS copy l P F 1.
This amount is the charge needed to recover the minimum energy consumed to make the
detour from the node visited before node l and the node visited after l. Specifically, we
have ecminl � min

i,jPV ztlu|pi,lqPA^pl,jqPA
peil � elj � eijq. We can therefore build the following valid

constraints:

oi � qi ¥ ecmin
i

�
� ¸

pi,jqPA

xij

�

, @i P F 1 (66)

4. Recharging path-based formulation

A major drawback of the previous formulations defined on a simple graph is the need to
replicate CSs nodes. To ensure that no optimal solutions are cut off, the number of copies
should be very large, we computed an upper bound of 4|I| for this value (see AppendixA).
Indeed, the number of CS copies impacts the efficiency of MILP solvers to compute optimal
solutions in a reasonable amount of time. Therefore working with an order of |I| copies for
each CS is impracticable.

Montoya et al. (2017) proposed a procedure to set the number of CS copies that need
to be used in the model. They use the same number β of CS copies associated with every
CS. Starting with β � 0, they solve the MILP formulation to optimality with a time limit
of 100h, β is then incremented and the resulting MILP is solved. If β ¥ 1 and either the
time limit is reached or the optimal solution obtained with β � l has the same value as the
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one obtained with β � l � 1, they stop the procedure and fix β � l � 1. This procedure is
not optimal when the time limit is reached. Moreover, even when all problems are solved
to optimality, the procedure might cut off the optimal solution in many different cases (see
AppendixB for examples).

The main objective of this section is to propose a formulation for the E-VRP-NL that
does not explicitly have copies of CSs. To address this issue, we propose an alternative model
for the E-VRP-NL based on the concept of recharging paths between each couple of nodes
(either customers or the depot). A recharging path is simply a route connecting two nodes
(customers or depot) and possibly visiting one or multiple CSs in between. This concept
has been introduced (under the name of refuel paths) by Bartolini and Andelmin (2017) for
the design of an exact algorithm for the G-VRP. The concept has also been mentioned by
Roberti and Wen (2016) for the electric traveling salesman problem. The difference between
this concept and the models of Koc̆ and Karaoglan (2016) and Leggieri and Haourari (2017)
is that the latter authors assumed that only one CS can be visited between each pair of
customers. This assumption may, however, exclude the optimal solution to the G-VRP (see
(Bartolini and Andelmin, 2017) for an example).

The concept of recharging paths (hereafter sometimes referred to as paths) leads to the

definition of the E-VRP-NL on a directed multigraph rG � prV , rAq, where rV � t0u Y I andrA is the set of arcs associated with paths connecting nodes of rV .
Let i, j P rV be two nodes such that i � j. We define Pij as the set of recharging paths

connecting node i to node j by visiting none or a number of CSs. Let P be the set of
all recharging paths connecting any couple of nodes in the graph. Specifically, we have
P �

�
i,jPrV ,i�j Pij. We denote oppq and dppq as the origin and destination of a path p P P .

For each path p, we define an arc in rA from oppq to dppq. Let np denote the number of CSs
in path p and let Lp � t0, 1..., np � 1u � N be the set of CS positions in the path p. Let
ipp, lq, we create a special path p0ij P Pij from i to j without having a CS in between.

4.1. Mixed integer program

A path-based formulation of the E-VRP-NL involves the following decisions variables.
Binary variable xp is 1 if and only if an EV travels recharging path p P P . Continuous
variables τp and yp track the time and SoC of an EV when it departs from node oppq to
dppq using path p. For a path p, continuous variables qpl and opl specify (according to
the piecewise linear approximation of the charging function) the SoC of an EV when it
arrives at and departs from ipp, lq (i.e. the CS at position l P Lp). Continuous variable ∆pl

represent the duration of the charging operation performed at ipp, lq. Continuous variable
φplk represents the amount of energy charged on the segment that lies between the points
pcipp,lq,k�1, aipp,lq,k�1q and pcipp,lq,k, aipp,lq,kq at the CS ipp, lq. Binary variables ωplk equal to one
if and only if an EV charges at the CS at position l in path p on the segment between the
points pcipp,lq,k�1, aipp,lq,k�1q and pcipp,lq,k, aipp,lq,kq. Let ep and tp be the energy consumption
and the driving time associated with path p P P .

A path-based formulation of the E-VRP-NL, denoted as rF paths, is as follows:
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rF paths min
¸
pPP

�
�tpxp � ¸

lPLp

∆pl

�

�

¸
iPI

gi (67)

subject to ¸
jP rV ,i�j

¸
pPPij

xp � 1, @i P I (68)

¸
jP rV ,i�j

¸
pPPji

xp �
¸

jP rV ,i�j

¸
pPPij

xp � 0, @i P rV (69)

¸
lP rV ,l�j

¸
pPPlj

�
�yp � epxp �

¸
lPLp

popl � qplq

�

�

¸
lP rV ,l�j

¸
pPPjl

yp, @j P I (70)

yp � eoppq,ipp,0qxp � qp0, @p P P : |Lp| � 0 (71)

op,l�1 � eipp,l�1q,ipp,lqxp � qpl, @p P P,@l P Lpzt0u (72)

¸
iP rV ,i�0

¸
pPPi0

�
�yp � epxp �

¸
lPLp

popl � qplq

�

¥ 0, @i P I (73)

yp ¤ Qxp, @p P P (74)

¸
iP rV zt0u,i�j

¸
pPPij

τp �
¸

iPV,i�j

¸
pPPij

�
�tpxp � ¸

lPLp

∆pl

�

� pj �

¸
lP rV ,l�j

¸
pPPjl

τp, @j P I (75)

τp �
¸
lPLp

∆pl ¤
�
Tmax � tp � pdppq � tdppq,0

�
xp, @p P P (76)

qpl � φplk ¤ aipp,lq,kωplk �Qp1 � ωplkq, @p P P,@l P Lp,@k P Bipp,lqzt0u (77)

φplk ¤ paipp,lq,k � aipp,lq,k�1qωplk, @p P P,@l P Lp,@k P Bipp,lqzt0u (78)¸
kPBipp,lqzt0u

ωplk ¥ xp, @p P P,@l P Lp (79)

ωplk ¤ xp, @p P P,@l P Lp,@k P Bipp,lqzt0u (80)

opl � qpl �
¸

kPBipp,lqzt0u

φplk, @p P P,@l P Lp (81)

∆pl �
¸

kPBipp,lqzt0u

φplk{ρipp,lq,k, @p P P,@l P Lp (82)

xp P t0, 1u, @p P P (83)

τp ¥ 0, yp ¥ 0 @p P P (84)

qpl, opl,∆pl ¥ 0, @p P P,@l P Lp (85)

φplk ¥ 0 @p P P,@l P Lp,@k P Bipp,lqzt0u (86)

ωplk P t0, 1u @p P P,@l P Lp,@k P Bipp,lqzt0u (87)

Equation (67) gives the objective of the problem: minimizing the total time (driving
times, service times, and charging times). Constraints (68) ensure that each customer is
visited once. Constraints (69) impose the flow conservation. Constraints (70) track the SoC
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of EVs at each customer. Constraints (71) track the SoC at the arrival at the first CS of
each refuel path. Constraints (72) couple the SoC of an EV that leaves a CS to go to another
CS. Constraints (73) ensure that if the EV travels between a node (customer or CS copy)
and the depot, it has sufficient energy to reach its destination. Constraints (74) couple the
SoC tracking variable to the arc travel variables. Constraints (75) track the departure time
at each node. Constraints (76) couple the time tracking variable to the arc travel variables,
and impose a tour duration limit. Constraints (77) restrict the segments on which EVs can
charge according to the SoC they have at their arrival at CSs. Constraints (78) restrict
the charging amount that can be charged on each segment. Constraints (79) impose the
activation of at least one segment whenever an EV visit a CS. Constraints (80) are coupling
constraints. Constraints (81) define the SoC after a charging operation. Constraints (82)
define the time spent charging at each CS. Finally, constraints (83)–(87) define the domains
of the decision variables.

Notice that this model widely differs from the one introduced by Andelmin (2014) for
the G-VRP. First, this latter problem implies several simplifying hypothesis: a full charg-
ing policy and a linear approximation of the charging function. Second, the authors used
variables indexed on the nodes to track the SoC and the time. It is also noteworthy that
the alternative ways of modeling introduced in Section 3 are still valid when working with a
multigraph. More specifically, time and SoC tracking can be performed on the node instead
of on the arcs. Moreover, CB and MC piecewise linear constraints can be used as alternatives
to the R piecewise linear constraints (77)-(82),(86), and (87) of rF paths. An adaptation of
the rF paths to deal with CB piecewise linear constraints is described in AppendixC. We do
not present the other models as preliminary experiments show that the MILP solver running
them performs at most as well as when running model rF paths.

4.2. Paths and dominance

Without the use of preprocessing techniques, the arc set rA contains a very large number
of arcs. One can compute an upper bound on the number of these arcs. For each pair of
nodes, we have to consider all the combinations of CSs. For each combination, we need
to consider all the possible permutations allowing each CS to be possibly visited twice if
we consider CSs with different technologies. An upper bound Γ on the number of arcs is
therefore defined as follows:

Γ � |I|p|I| � 1q �

�
|F |̧

k�1

�
|F |
k



�

�
ķ

l�1

pk � lq!

2l

��
(88)

If all the CSs have the same technologies, the upper bound Γ can be reduced to:

Γ � |I|p|I| � 1q �

|F |̧

k�1

|F |!

k!
(89)

The previous bounds (although quite loose) clearly demonstrate how the number of paths
explodes with the number of CSs and the number of customers. However, a large number of
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these arcs cannot be part of an optimal solution. To find these paths, we exploit the concept
of state of charge (SoC) functions (hereafter referred to as SoC-functions) associated with
paths. This concept has been introduced in (Zündorf, 2014) to solve an electric-shortest
path problem1. Let p P P be a path and 0 ¤ q ¤ Q an initial SoC for an EV when
leaving the origin oppq. A SoC-function SoCq

p for a path p with an initial SoC q maps a
duration t P R to a final SoC at the destination dppq. Since we assume that the charging
functions are piecewise linear, a SoC-function can be defined by a set of supporting points
pt1, q1q,...,ptk, qkq sorted by ascending order. t1 represents the minimal duration for an EV
to travel the path according to the battery constraints (no under-overcharging is allowed
and the SoC is sufficient to travel between each arc) and the initial SoC. A SoC-function
represented by the set of supporting points pt1, q1q,...,ptk, qkq is defined as follows:

SoCq
pptq �

$'''''''&'''''''%

�8 if 0 ¤ t   t1
pt� t1qpq2 � q1q

t2
� q1 if t1 ¤ t   t2

... ...
pt� tk�1qpq2 � q1q

tk�1

� qk�1 if tk�1 ¤ t   tk

qk else

(90)

Figure 4: Example of a SoC-function associated with the supporting points (1,1),(3,4) and (6,5) taken from
(Zündorf, 2014).

Figure 4 illustrates the concept of SoC-function. In this example, the first supporting
point of the curve is (1,1). This means that the minimum duration to travel the path is
equal to 1, and in that case, the arrival SoC at the destination of the EV is equal to 1. If
at the destination of the path (i.e. at dppq) the SoC needed for the EV is 4, the duration of
the corresponding path is equal to 3 (the time is increased due to a larger amount of energy
charged at a CS part of the path).

For a known initial SoC, we now introduce the concept of dominance between paths
having same origin and destination.

1This problem consists in finding the route with the minimum traveling time respecting battery con-
straints and taking into account that the EV can stop in route at CSs.
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Definition 4.1. Let p, p1 P P be two paths with same origin o � oppq � opp1q and same
destination d � dppq � dpp1q and 0 ¤ q ¤ Q an initial SoC of the EV when leaving the
origin node o. Path p is said to dominate path p1 with respect to q if SoCq

pptq ¥ SoCq
p1ptq for

every t ¥ 0. We denote p ¡q p
1.

The previous definition states that a path p dominates another path p1 only if for every
possible travel time the EV has a higher SoC at the destination. Zündorf (2014) proved that
this dominance rule does not remove any path that could be part of an optimal solution.
Let us now introduce the concept of dominance between paths with the same origin and
destination, independently of the initial SoC of the EV when leaving the origin.

Definition 4.2. Let p, p1 P P be two paths with same origin o � oppq � opp1q and same
destination d � dppq � dpp1q. Path p is said to dominate path p1 if p ¡q p

1 for every
0 ¤ q ¤ Q. We denote p ¡ p1.

Let SoCMIN
i and SoCMAX

i be the minimal and maximal SoC of an EV at node i P rV .
Let SoCMIN

i � minjPFY0 eij (the SoC must be enough to reach the depot or the nearest CS
according to energy consumption). Furthermore, let SoCMAX

i � Q�minlPFY0 eli. Let F piq
be the set of CSs reachable from i by an EV having a SoC between SoCMIN

i and SoCMAX
i .

More specifically, we have F piq � tl P F |SoCMIN
i ¤ eil ¤ SoCMAX

i u.

Proposition 4.1. Let i, j P rV , i � j be two nodes of the multigraph and p, p1 P Pij be two
paths. Path p dominates path p1 (i.e., p ¡ p1) if p ¡q p

1 for every q P teij|j P F piqu.

Proof. First, observe that the path going directly from i to j without visiting a CS, if feasible
(i.e. eij ¤ SoCMAX

i ), can never be dominated since the driving times verify the triangular
inequality. Let SoCMIN

i ¤ q ¤ SoCMAX
i be the initial SoC of the EV when it departs from

node i and p be a feasible non-dominated path (containing at least one CS) with respect to
q. We need to prove that there exists q1 P teij|j P F piqu such that p is non-dominated with
respect to q1. The cases q   SoCMIN

i and q ¡ SoCMAX
i do not need to be considered since it

cannot be part of any feasible solution to the E-VRP-NL. Also, since the path p contains at
least one CS, there exists l P F piq such that eil ¤ q (to satisfy the battery constraints). Let
l1ppq be the first CS visited in path p, Y pl1ppqq the SoC of the EV when it arrives at l1ppq,
and Φpl1ppqq the amount of energy charged at l1ppq. Let us prove that p is non-dominated
with respect to q1 � ei,l1ppq. First, the CS l1ppq is obviously reachable without visiting any
CS if the initial SoC of the EV is q1. Second, the EV arrives at l1ppq with a larger SoC (i.e.
Y pl1ppqq ¥ 0) if its initial SoC is q rather than q1. Given that charging first at CS l1ppq in
path p makes this latter non-dominated with respect to q, charging the amount of energy
Φpl1ppqq � q � q1 at CS l1ppq makes p a non-dominated path with respect to q1 (because of
the dominance property between charging functions).

To compute the set Pij for each couple of nodes i, j P rV , i � j, we apply the procedure
described in Algorithm 1. Using the result of Proposition 4.1, we first fix the SoC q at the
departure of i before using a label-correcting algorithm to compute all the non-dominated
paths between i and j if the initial SoC is q. This algorithm is inspired by to the one
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presented by Zündorf (2014). The underlying directed graph simply consists of a graph
containing nodes i and j and every CS node. For each CS node l, we create the arcs pl, l1q
where l1 is another CS different from l and the arcs pi, lq and pl, jq. We also create the arc
pi, jq. When visiting a CS, we must determine the amount of energy to charge. However,
without knowing the further course of the path, this cannot be done. The idea of the
algorithm is thus to delay the decision about how much energy should be charge at CSs as
long as possible. For this purpose, it uses SoC-functions as labels. When the EV traverses
an arc, the missing energy (if there is some) is charged retroactively at the previous CS (if
possible). Otherwise traversing the edge is impossible when extending the label. As soon as
we want to set a CS node, we need to set the energy we charged at the previous CS (if one
exists in the current path). Zündorf (2014) proved that changing CSs is only meaningful at
a supporting point of the current SoC-function. Using this result, we create one new label
for each supporting point of the current SoC-function in order to explore the possibility of
switching over to the new CS at that point.

Algorithm 1: ComputeRechargingPaths(i,j)

input : two nodes i, j P rV , i � j
output: a set containing all the non-dominated recharging paths between i and j

1 P ÐH (P stores the non-dominated recharging paths)

2 if
�
eij �minlPFYt0u eli �minlPFYt0u ejl ¤ Q

�
then

3 P Ð P Y tp0iju

4 end
5 for l P F piq do
6 Use a label-correcting algorithm to compute all the non-dominated paths with

respect of an initial SoC of eil.
7 for each non-dominated label at j do
8 Let p be the recharging path associated with the label
9 if p R P then

10 P Ð P Y tpu
11 end

12 end

13 end
14 return P

5. Computational experiments

We tested the different models presented in this document. We used Gurobi 7.0.2 to
solve the MILP models through its Java API. All experiments were performed, using a
single thread with 12 GB, on a cluster of 27 computers, each of which having 12 cores and
two Intel(R) Xeon R© X5675 3.07 GHz processors. We set a 3-hour time limit (the CPU
times are reported in seconds and rounded to the nearest integer). In order to assess the
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performance of the proposed formulations, we performed our tests on small-sized instances.
We considered the 20 instances of the 120-instances testbed proposed by Montoya et al.
(2017) that contains 10 customers.

5.1. CS replication-based formulation

First, we tested the efficiency of the MILP solver running the different models coming
from the modeling alternatives presented in Section 3, which are based on the replication of
CS nodes. The number of copies of each CS i P F is set to β P Nzt0u (i.e. βi � β, @i P F ).
We refer to each model via “a b” where a and b refer to the modeling of the SoC and time
tracking (A: arc-based tracking constraints/ N: node-based tracking constraints) and of the
charging function (C: CB piecewise linear constraints / M: MC piecewise linear constraints
/ R: R piecewise linear constraints). Note that formulation rFM s corresponds to notation
N C.

Table 1 presents the number of instances proven infeasible by the solver within the time
limit according to the models and different values of β. In Table 2, we report for each
formulation and each value of β the number of instances optimally solved to the number of
instances with a feasible solution (#Opt), the average solution time (Time) for the instances
solved to optimality, the average gap for the unsolved instances (Gap), and the gap of the
solution with respect to the maximal lower bound found by the solver running any of the
models (Gap to best LB). We compute the gap pz � zLBq{z where z is the objective of the
solution returned by the solver and zLB is either the lower bound retrieved by the solver
running the corresponding model (column “Gap”) or the maximal lower bound found by any
of the models (column “Gap to best LB”). Moreover, since average values do not provide
sufficient information, Figure 5 shows the number of instances optimally solved according
to the solution time for different models and some values of β. The detailed results of for
all instances are reported in AppendixD.

Table 1: Number of instances proven infeasible by the solver within the time limit

β A C A M A R N C N M N R
1 9 9 9 10 10 10
2 1 1 1 5 5 5
3 0 0 0 0 0 0
4 0 0 0 0 0 0

First, we observe that models with arc-based tracking constraints have difficulties to
prove infeasibility of instances for small values of β. This may come from the larger number
of variables they have (around two times more). Second, the results confirm that the value
of β influences the feasibility of the instances. Since we do not know any procedure for
fixing β, which guarantees optimality, we can only compare models for identical values of
β. The best results are obtained when using arc-based tracking constraints: the number
of optimal solutions is larger and the solution time is significantly reduced, compared to
node-based tracking. Moreover, when the time limit is reached, the best solution returned
by the arc-based models have a better quality. We also see that the modeling of the charging
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function has no significant impact on the efficiency of the MILP solver. Finally, results tend
to show the difficulty of optimally solving even small instances with CS replication-based
models.

Table 2: Detailed computational results for the different models on the 10-customer instances

β A C A M A R N C N M N R

1
#Opt 10/10 10/10 10/10 10/10 10/10 10/10
Time (s) 24 9 4 433 632 943

2

#Opt 15/15 15/15 15/15 11/15 11/15 11/15
Time (s) 355 602 262 825 436 311
Gap - - - 22.6% 20.3% 17.8%
Gap to best LB - - - 0.0% 0.0% 0.0%

3

#Opt 20/20 18/20 19/20 12/20 12/20 12/20
Time (s) 1511 586 963 1992 891 1408
Gap - 10.3% 15.5% 26.2% 25.5% 25.1%
Gap to best LB - 0.0% 0.0% 0.0% 0.1% 0.1%

4

#Opt 16/20 16/20 16/20 8/20 10/20 10/20
Time (s) 574 541 746 963 1340 2077
Gap 10.7% 13.7% 11.1% 22.9% 24.0% 25.9%
Gap to best LB 8.1% 8.1% 8.1% 3.0% 3.6% 3.3%

(a) β � 3 (b) β � 4

Figure 5: Performance charts of the different CS replication-based formulations for different values of β

We also computed the average relative gap between the linear relaxation value and the
best lower bound provided by the linear relaxation of any of the formulations. Using arc
tracking variables yielded tighter formulations than using node tracking variables. More
specifically, the gap between the values returned by these two types of models is around
50%. This is the main reason why a MILP solver running the arc-based models yields better
performance than running the node-based ones. There is no influence of the piecewise
linear constraints when using node-tracking. When using arc tracking, the R piecewise
linear constraints can yield worst, equal, and better LP values than the other piecewise
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linear constraints. Thus, we conclude that on the considered instances, the modeling of the
charging function has very little impact on the results.

5.2. Recharging path-based formulation

We tested two recharging path-based formulations according to the modeling of the piece-
wise linear constraints: CB and R. In the two models, we use arc-based tracking constraints.
We refer to formulation rF paths using notation Path A R and to the formulation using CB
piecewise linear constraints with notation Path A C.

First, we tested the labeling algorithm with and without the exploitation of the domi-
nance rule presented in Proposition 4.1. On our 20 instances, the average number of paths
is reduced by a factor of 3.5 (on average 1071 paths without the dominance rule vs. 280
with). After applying the dominance rule, the average number of paths between each couple
of nodes is approximately 2.5 for the 10-customer instances. In Table 3, we report for each
formulation the number of instances solved to optimality (#Opt) and the average solution
time (Time). for the sake of a better understanding of the results, Figure 6 shows the num-
ber of instances optimally solved according to the solution time. See AppendixD for the
detailed results for each instance.

Table 3: Computational results on the 10-customer instances

Path A C Path A R
#Opt 20/20 20/20
Time (s) 415 439

Figure 6: Performance charts of the different models

Results show that the MILP solver can optimally solve all the 10-customers instances in
an average time of 7min. Nonetheless, the instances where customers are clustered seem to
be the most difficult to solved (see the detailed results), and the solution time can increase
subsequently (up to more than one hour).
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We clearly see that the MILP solver tends to perform better on the recharging path-based
models rather than on the CS replication-based models. Moreover, using the first type of
model ensures to not cut off the optimal solution. Some preliminary tests on instances with
20 customers show that we are able to optimally solve (within the 3-hour time limit) nearly
half of the 20-customer instances of the testbed of Montoya et al. (2017).

6. Conclusions and perspectives

In this study, we have introduced new MILP formulations for the e-VRP-NL. The first
formulation of the problem was proposed by Montoya et al. (2017), where tracking the time
and the SoC of each route was done using arc-based variables. We first proposed arc-based
tracking variables. Considering the piecewise linear approximation of the charging functions,
we proposed two additional alternative formulations, compared to Montoya et al. (2017).
The intersection of these modeling components yields six formulations.

The majority of the eVRP literature, as well as the six previously mentioned models
necessitate determining CS-replications. We have discussed and shown, that choosing a
limited number of copies compromises the quality of the solution, by possibly eliminating
optimal solutions or by simply yielding an unfeasible problem. Choosing a large number
of copies yields large problems, which are difficult to solve even for small-sized instances.
To overcome these drawbacks, we proposed another formulation of the problem, based on
the concept of recharging paths between none-CS nodes. Using dominance rules to dis-
card unpromising paths, this formulation significantly improves the results compared to the
previously mentioned six formulations.

Experiments showed that the modeling of the piecewise linear approximation of the
charging functions only has a limited impact on the results. However, tracking the time and
the SoC of each route using arc-based variables (instead of node-based variables) drastically
improves the results. This is mainly due to the stronger LP bound achieved by the arc-based
formulations. The results of the recharging path-based models are significantly better, as
all considered instances are solved to optimality in a much shorter time.

Future research could aim at developing an exact algorithm able to solve medium and
some large-sized instances. Finally, one of the key assumptions in the E-VRP-NL is that
CSs are able to simultaneously handle an unlimited number of EVs. In practice, however,
each CS has a limited number of chargers. Handling capacitated CSs is therefore a timely
and relevant challenge to address.
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AppendixA. Upper bound on the number of CS copies

If we consider homogeneous CSs, an upper bound on the number of CS copies to consider
is 2|I| . Indeed, at worst we need an EV for each customer and a visit to a CS before and
after serving it. If we consider heterogeneous CSs, an upper bound on the number of CS
copies to consider is 4|I|. Indeed, in that case a CS can be visited twice between the depot
(or the customer) and the customer (or the depot). Let j be a slow CS and l a fast CS. Let
i be a customer such that t0j   t0l, e0j ¤ Q   e0l ¤ e0i, tji   tli, and eji   eli. The EV can
go to j to charge the energy needed to reach l (i.e. ejl � pQ � e0jq) and then go back for
charging at j to have a SoC larger at the customer i.

AppendixB. Examples showing the non-optimality of the Montoya et al. (2017)
procedure

In this section, we introduce 2 examples showing the non-optimality of the procedure
introduced by Montoya et al. (2017).

In the first example (denoted Example 1), we have 1 depot (denoted 0), 2 customers
(denoted 1 and 2), and 1 CS (denoted 3). The battery capacity of the EVs is 10 and Tmax
is set to 20. Tables B.4a and B.4b show the driving times and energy consumption between
the nodes. Figure B.4c shows the charging function at the CS.

Table B.4: Data of Example 1.

0 1 2 3

0 0 4 4 2

1 4 0 5 3

2 4 5 0 3

3 2 3 3 0

(a) Driving times.

0 1 2 3

0 0 5 5 3

1 5 0 7 2.5

2 5 7 0 5

3 3 2.5 5 0

(b) Energy consumption.

(c) Charging function associated with CS 3

For β � 0 (i.e., the CS cannot be visited) and β � 1 (i.e., the CS can be visited at most
once), the optimal solutions contains two routes (0 Ñ 1 Ñ 0) and (0 Ñ 2 Ñ 0) and the
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total time is equal to 17. For β � 2 (i.e.,the CS can be visited at most twice), the optimal
solution contains one route (0 Ñ 2 Ñ 3 Ñ 1 Ñ 3 Ñ 0) and the total time is equal to 16.8.
In that solution, we arrive at CS 3 with a 0-SoC. We charge the battery up to 50%-SoC and
30%-SoC during the first and second visits (it takes 0.5 and 0.3 time units, respectively).

Let us now consider the case where the charging function is linear. We introduce another
example (denoted as Example 2). We have 1 depot (denoted 0), 4 customers (denoted 1,
2, 3, and 4), and 1 CS (denoted 5). The battery capacity of the EVs is 10 and Tmax is set
to 10. Tables B.5a and B.5b show the driving times and energy consumption between the
nodes. Figure B.5c shows the charging function at the CS 5.

Table B.5: Data of Example 2.

0 1 2 3 4 5

0 0 1 2 2 1 1

1 1 0 1 1 1 1

2 2 1 0 1 1 1

3 2 1 1 0 1 1

4 1 1 1 1 0 1

5 1 1 1 1 1 0

(a) Driving times.

0 1 2 3 4 5

0 0 2.5 3 3 2.5 6

1 2.5 0 5 5.5 5 4

2 3 5 0 2 5.5 4

3 3 5.5 2 0 5 4

4 2.5 5 5.5 5 0 4

5 6 4 4 4 4 0

(b) Energy consumption.

(c) Charging function associated with CS 5

For β � 0 and β � 1, the optimal solutions contains two routes (0 Ñ 1 Ñ 4 Ñ 0) and
(0 Ñ 2 Ñ 3 Ñ 0) and the total time is equal to 10. For β � 2, the optimal solution contains
one route (0 Ñ 1 Ñ 5 Ñ 2 Ñ 3 Ñ 5 Ñ 4 Ñ 0) and the total time is equal to 9.65. At the
first visit to the CS 5, the arrival SoC of the EV is equal to 35% and we charge the battery
up to 100%-SoC (it takes 0.325 time units). At the second visit to the CS 5, the arrival
SoC of the EV is equal to 0% and we charge the battery up to 65%-SoC (it takes 0.325 time
units).

Notice that if the charging function is assumed to be constantly equal to a value δ ¥ 0
in Example 2, the solutions remain the same. The solution for β � 0 or 1 has an objective
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value equal to 10. The solution for β � 2 is equal to 9� 2δ. So a better solution is found as
soon as δ   0.5.

In conclusion, the procedure of Montoya et al. (2017) is not optimal for any approxima-
tion of the charging functions (constant, linear, and nonlinear).

AppendixC. Adaptation of the formulation rF paths to the use of a CB model

To write the formulation rF paths with CB piecewise linear constraints, we remove vari-
ables φplk and ωplk for the variables zplk, wplk, αplk, and λplk (their definition are identical to
the one provided for the CS replication-based model). We also replace constraints (77)-(82)
and (86)-(87) by the following constraints:

qpl �
¸

kPBipp,lq

αplkaipp,lqk, @p P P,@l P Lp (C.1)

spl �
¸

kPBipp,lq

αplkcipp,lqk, @p P P,@l P Lp (C.2)

¸
kPBipp,lq

αplk �
¸

kPBipp,lqzt0u

zplk, @p P P,@l P Lp (C.3)

¸
kPBipp,lqzt0u

zplk � xp, @p P P,@l P Lp (C.4)

αpl0 ¤ zpl1, @p P P,@l P Lp (C.5)

αplk ¤ zplk � zpl,k�1, @p P P,@l P Lp,@k P Bipp,lqzt0, bipp,lqu (C.6)

αplbipp,lq ¤ zplbipp,lq , @p P P,@l P Lp (C.7)

opl �
¸

kPBipp,lq

λplkaipp,lqk, @p P P,@l P Lp (C.8)

dpl �
¸

kPBipp,lq

λplkcipp,lqk, @p P P,@l P Lp (C.9)

¸
kPBipp,lq

λplk �
¸

kPBipp,lqzt0u

wplk, @p P P,@l P Lp (C.10)

¸
kPBipp,lqzt0u

wplk � xp, @p P P,@l P Lp (C.11)

λi0 ¤ wpl1, @p P P,@l P Lp (C.12)

λplk ¤ wplk � wpl,k�1, @p P P,@l P Lp,@k P Bipp,lqzt0, bipp,lqu (C.13)

λplbipp,lq ¤ wplbipp,lq , @p P P,@l P Lp (C.14)

∆pl � dpl � spl, @p P P,@l P Lp (C.15)

zplk P t0, 1u, wplk P t0, 1u, @p P P,@l P Lp,@k P Bizt0u (C.16)

αplk ¥ 0, λplk ¥ 0, @p P P,@l P Lp,@k P Bi (C.17)

spl ¥ 0, dpl ¥ 0 @i P F 1 (C.18)
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AppendixD. Detailed computational results

We write each instance using the symbol tcγ1cγ2sγ3cγ4# where γ1 is the method used to
place the customers (i.e., 0: randomization, 1: mixture of randomization and clustering, 2:
clustering), γ2 is the number of customers, γ3 is the number of the CSs, γ4 is ’t’ if we use a
p-median heuristic to locate the CSs and ’f’ otherwise, and # is the number of the instance
for each combination of parameters (i.e., # = 0 , 1 , 2 , 3 , 4). The symbol ”Inf” means
that the instance has been proven infeasible, whereas the symbol ”-” means that no feasible
solution has been found by the solver but the instance has not been proven infeasible.

Table D.6: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 1)

Instance
A C A M A R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc0c10s2ct1 17.30 17.30 1 17.30 17.30 1 17.30 17.30 2
tc0c10s3cf1 Inf Inf 27 Inf Inf 56 Inf Inf 76
tc0c10s3ct1 15.80 15.80 1 15.80 15.80 1 15.80 15.80 1
tc1c10s2cf2 14.03 14.03 2 14.03 14.03 1 14.03 14.03 2
tc1c10s2cf3 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s2cf4 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s2ct2 15.76 15.76 8 15.76 15.76 10 15.76 15.76 9
tc1c10s2ct3 Inf Inf 1852 Inf Inf 1058 Inf Inf 2831
tc1c10s2ct4 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s3cf2 14.03 14.03 1 14.03 14.03 1 14.03 14.03 1
tc1c10s3cf3 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s3cf4 19.95 19.95 2 19.95 19.95 2 19.95 19.95 2
tc1c10s3ct2 14.20 14.20 18 14.20 14.20 5 14.20 14.20 7
tc1c10s3ct3 18.02 18.02 11 18.02 18.02 3 18.02 18.02 3
tc1c10s3ct4 18.21 18.21 2 18.21 18.21 4 18.21 18.21 4
tc2c10s2cf0 Inf Inf 304 Inf Inf 259 Inf Inf 203
tc2c10s2ct0 - - 10800 - - 10800 - - 10800
tc2c10s3cf0 Inf Inf 234 Inf Inf 271 Inf Inf 494
tc2c10s3ct0 16.51 16.51 195 16.51 16.51 65 16.51 16.51 8

Instance
N C N M N R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 Inf Inf 1 Inf Inf 1 Inf Inf 0
tc0c10s2ct1 17.30 17.30 5 17.30 17.30 3 17.30 17.30 3
tc0c10s3cf1 Inf Inf 1 Inf Inf 1 Inf Inf 4
tc0c10s3ct1 15.80 15.80 9 15.80 15.80 7 15.80 15.80 11
tc1c10s2cf2 14.03 14.03 13 14.03 14.03 27 14.03 14.03 57
tc1c10s2cf3 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s2cf4 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s2ct2 15.76 15.76 526 15.76 15.76 335 15.76 15.76 288
tc1c10s2ct3 Inf Inf 50 Inf Inf 5 Inf Inf 4
tc1c10s2ct4 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s3cf2 14.03 14.03 16 14.03 14.03 26 14.03 14.03 30
tc1c10s3cf3 Inf Inf 0 Inf Inf 0 Inf Inf 0
tc1c10s3cf4 19.95 19.95 4 19.95 19.95 4 19.95 19.95 4
tc1c10s3ct2 14.20 14.20 856 14.20 14.20 1313 14.20 14.20 915
tc1c10s3ct3 18.02 18.02 1762 18.02 18.02 2086 18.02 18.02 922
tc1c10s3ct4 18.21 18.21 13 18.21 18.21 14 18.21 18.21 6
tc2c10s2cf0 Inf Inf 1 Inf Inf 1 Inf Inf 1
tc2c10s2ct0 Inf Inf 111 Inf Inf 254 Inf Inf 472
tc2c10s3cf0 Inf Inf 1 Inf Inf 1 Inf Inf 1
tc2c10s3ct0 16.51 16.51 1128 16.51 16.51 2509 16.51 16.51 7198
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Table D.7: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 2)

Instance
A C A M A R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 Inf Inf 849 Inf Inf 1739 Inf Inf 704
tc0c10s2ct1 17.30 17.30 22 17.30 17.30 47 17.30 17.30 35
tc0c10s3cf1 25.50 25.50 162 25.50 25.50 148 25.50 25.50 94
tc0c10s3ct1 15.80 15.80 5 15.80 15.80 4 15.80 15.80 5
tc1c10s2cf2 14.03 14.03 2 14.03 14.03 2 14.03 14.03 2
tc1c10s2cf3 - - 10800 - - 10800 - - 10800
tc1c10s2cf4 21.14 21.14 11 21.14 21.14 4 21.14 21.14 4
tc1c10s2ct2 15.75 15.75 281 15.75 15.75 46 15.75 15.75 58
tc1c10s2ct3 - - 10800 - - 10800 - - 10800
tc1c10s2ct4 18.83 18.83 5 18.83 18.83 2 18.83 18.83 2
tc1c10s3cf2 14.03 14.03 3 14.03 14.03 4 14.03 14.03 2
tc1c10s3cf3 21.94 21.94 157 21.94 21.94 238 21.94 21.94 155
tc1c10s3cf4 19.90 19.90 19 19.90 19.90 28 19.90 19.90 28
tc1c10s3ct2 14.20 14.20 204 14.20 14.20 79 14.20 14.20 33
tc1c10s3ct3 18.02 18.02 49 18.02 18.02 88 18.02 18.02 28
tc1c10s3ct4 18.21 18.21 67 18.21 18.21 71 18.21 18.21 13
tc2c10s2cf0 - - 10800 - - 10800 - - 10800
tc2c10s2ct0 18.84 18.84 1169 18.84 18.84 3053 18.84 18.84 872
tc2c10s3cf0 - - 10800 - - 10800 - - 10800
tc2c10s3ct0 16.51 16.51 3168 16.51 16.51 5220 16.51 16.51 2600

Instance
N C N M N R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 Inf Inf 3 Inf Inf 2 Inf Inf 2
tc0c10s2ct1 17.30 17.30 59 17.30 17.30 34 17.30 17.30 104
tc0c10s3cf1 25.50 25.50 14 25.50 25.50 13 25.50 25.50 68
tc0c10s3ct1 15.80 15.80 253 15.80 15.80 98 15.80 15.80 128
tc1c10s2cf2 14.03 14.03 125 14.03 14.03 121 14.03 14.03 108
tc1c10s2cf3 Inf Inf 205 Inf Inf 131 Inf Inf 189
tc1c10s2cf4 21.14 21.14 15 21.14 21.14 9 21.14 21.14 14
tc1c10s2ct2 15.75 13.95 10800 15.75 14.66 10800 15.75 14.17 10800
tc1c10s2ct3 Inf Inf 97 Inf Inf 46 Inf Inf 90
tc1c10s2ct4 18.83 18.83 9 18.83 18.83 10 18.83 18.83 7
tc1c10s3cf2 14.03 14.03 149 14.03 14.03 142 14.03 14.03 144
tc1c10s3cf3 21.94 21.94 4410 21.94 21.94 2907 21.94 21.94 239
tc1c10s3cf4 19.90 19.90 1206 19.90 19.90 92 19.90 19.90 125
tc1c10s3ct2 14.20 13.32 10800 14.20 13.5 10800 14.20 13.51 10800
tc1c10s3ct3 18.02 11.83 10800 18.02 12.18 10800 18.02 14.62 10800
tc1c10s3ct4 18.21 18.21 572 18.21 18.21 293 18.21 18.21 214
tc2c10s2cf0 Inf Inf 296 Inf Inf 327 Inf Inf 31
tc2c10s2ct0 18.84 18.84 2264 18.84 18.84 1079 18.84 18.84 2276
tc2c10s3cf0 Inf Inf 7753 Inf Inf 281 Inf Inf 2080
tc2c10s3ct0 16.51 10.16 10800 16.51 10.37 10800 16.51 10.34 10800
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Table D.8: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 3)

Instance
A C A M A R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 24.75 24.75 89 24.75 24.75 83 24.75 24.75 124
tc0c10s2ct1 17.30 17.30 94 17.30 17.30 60 17.30 17.30 80
tc0c10s3cf1 24.75 24.75 10026 24.75 24.75 4279 24.75 24.75 1751
tc0c10s3ct1 15.80 15.80 23 15.80 15.80 12 15.80 15.80 17
tc1c10s2cf2 14.03 14.03 6 14.03 14.03 6 14.03 14.03 15
tc1c10s2cf3 21.37 21.37 29 21.37 21.37 24 21.37 21.37 29
tc1c10s2cf4 21.10 21.10 15 21.10 21.10 9 21.10 21.10 28
tc1c10s2ct2 15.75 15.75 202 15.75 15.75 84 15.75 15.75 96
tc1c10s2ct3 18.17 18.17 26 18.17 18.17 43 18.17 18.17 27
tc1c10s2ct4 18.83 18.83 13 18.83 18.83 11 18.83 18.83 6
tc1c10s3cf2 14.03 14.03 7 14.03 14.03 5 14.03 14.03 26
tc1c10s3cf3 21.37 21.37 803 21.37 21.37 724 21.37 21.37 1715
tc1c10s3cf4 19.90 19.90 90 19.90 19.90 123 19.90 19.90 128
tc1c10s3ct2 14.20 14.20 172 14.20 14.20 88 14.20 14.20 203
tc1c10s3ct3 18.02 18.02 698 18.02 18.02 259 18.02 18.02 165
tc1c10s3ct4 18.21 18.21 142 18.21 18.21 59 18.21 18.21 32
tc2c10s2cf0 27.12 27.12 2099 27.12 27.12 3402 27.12 27.12 6352
tc2c10s2ct0 17.45 17.45 2162 17.45 17.45 1289 17.45 17.45 1385
tc2c10s3cf0 27.12 27.12 9953 27.12 23.66 10800 27.12 22.92 10800
tc2c10s3ct0 16.51 16.51 3567 16.51 15.21 10800 16.51 16.51 6124

Instance
N C N M N R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 24.75 24.75 15 24.75 24.75 13 24.75 24.75 14
tc0c10s2ct1 17.30 17.30 136 17.30 17.30 119 17.30 17.30 236
tc0c10s3cf1 24.75 24.75 3264 24.75 24.75 337 24.75 24.75 821
tc0c10s3ct1 15.80 15.80 156 15.80 15.80 66 15.80 15.80 317
tc1c10s2cf2 14.03 14.03 428 14.03 14.03 433 14.03 14.03 654
tc1c10s2cf3 21.37 21.37 8238 21.37 21.37 6249 21.37 21.37 6625
tc1c10s2cf4 21.10 21.10 143 21.10 21.10 79 21.10 21.10 86
tc1c10s2ct2 15.75 13.53 10800 15.75 13.73 10800 15.75 13.57 10800
tc1c10s2ct3 18.17 18.17 769 18.17 18.17 825 18.17 14.37 10800
tc1c10s2ct4 18.83 18.83 44 18.83 18.83 33 18.83 18.83 26
tc1c10s3cf2 14.03 14.03 977 14.03 14.03 451 14.03 14.03 605
tc1c10s3cf3 21.37 17.41 10800 21.37 17.62 10800 21.37 17.06 10800
tc1c10s3cf4 19.90 19.90 5653 19.90 19.90 652 19.90 19.90 855
tc1c10s3ct2 14.20 12.97 10800 14.20 13.18 10800 14.20 13.13 10800
tc1c10s3ct3 18.02 10.93 10800 18.12 10.78 10800 18.12 10.35 10800
tc1c10s3ct4 18.21 18.21 4085 18.21 18.21 1436 18.21 18.21 1674
tc2c10s2cf0 27.12 21.77 10800 27.12 21.16 10800 27.12 27.12 4978
tc2c10s2ct0 17.45 11.31 10800 17.45 11.40 10800 17.45 12.40 10800
tc2c10s3cf0 27.12 17.54 10800 27.12 19.11 10800 27.12 19.61 10800
tc2c10s3ct0 16.51 10.08 10800 16.51 9.88 10800 16.55 10.05 10800
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Table D.9: Detailed computational results on the 10-customer instances for the CS replication-based formu-
lations (β � 4)

Instance
A C A M A R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 24.75 24.75 150 24.75 24.75 206 24.75 24.75 131
tc0c10s2ct1 17.30 17.30 71 17.30 17.30 100 17.30 17.30 255
tc0c10s3cf1 24.75 21.88 10800 24.75 22.31 10800 24.75 22.27 10800
tc0c10s3ct1 15.80 15.80 29 15.80 15.80 23 15.80 15.80 44
tc1c10s2cf2 14.03 14.03 8 14.03 14.03 6 14.03 14.03 9
tc1c10s2cf3 21.37 21.37 38 21.37 21.37 81 21.37 21.37 129
tc1c10s2cf4 21.10 21.10 55 21.10 21.10 17 21.10 21.10 65
tc1c10s2ct2 15.75 15.75 267 15.75 15.75 125 15.75 15.75 394
tc1c10s2ct3 18.17 18.17 25 18.17 18.17 32 18.17 18.17 54
tc1c10s2ct4 18.83 18.83 28 18.83 18.83 20 18.83 18.83 15
tc1c10s3cf2 14.03 14.03 28 14.03 14.03 15 14.03 14.03 32
tc1c10s3cf3 21.37 21.37 5334 21.37 21.37 3684 21.37 20.91 10800
tc1c10s3cf4 19.90 19.90 111 19.90 19.90 82 19.90 19.90 265
tc1c10s3ct2 14.20 14.20 277 14.20 14.20 563 14.20 14.20 335
tc1c10s3ct3 18.02 18.02 473 18.02 18.02 1466 18.02 18.02 551
tc1c10s3ct4 18.21 18.21 142 18.21 18.21 116 18.21 18.21 41
tc2c10s2cf0 26.83 24.15 10800 26.77 23.80 10800 26.77 22.84 10800
tc2c10s2ct0 17.45 17.45 2147 17.45 17.45 2130 17.45 17.45 4069
tc2c10s3cf0 26.77 23.40 10800 26.77 21.85 10800 26.77 22.04 10800
tc2c10s3ct0 16.51 15.09 10800 16.51 13.96 10800 16.51 16.51 5552

Instance
N C N M N R

Obj Bound Time Obj Bound Time Obj Bound Time
tc0c10s2cf1 24.75 24.75 40 24.75 24.75 66 24.75 24.75 90
tc0c10s2ct1 17.30 17.30 420 17.30 17.30 204 17.30 17.30 334
tc0c10s3cf1 24.75 18.97 10800 24.75 21.19 10800 24.75 21.15 10800
tc0c10s3ct1 15.80 15.80 541 15.80 15.8 59 15.80 15.80 105
tc1c10s2cf2 14.03 14.03 719 14.03 14.03 508 14.03 14.03 758
tc1c10s2cf3 21.37 18.67 10800 21.37 19.10 10800 21.37 18.58 10800
tc1c10s2cf4 21.10 21.10 168 21.10 21.10 147 21.10 21.10 337
tc1c10s2ct2 15.75 13.40 10800 15.75 13.50 10800 15.75 13.34 10800
tc1c10s2ct3 18.19 15.07 10800 18.17 18.17 2169 18.17 18.17 4761
tc1c10s2ct4 18.83 18.83 104 18.83 18.83 90 18.83 18.83 186
tc1c10s3cf2 14.03 14.03 1868 14.03 14.03 1099 14.03 14.03 1358
tc1c10s3cf3 21.37 16.83 10800 21.37 17.13 10800 21.37 16.74 10800
tc1c10s3cf4 19.90 19.90 3845 19.90 19.90 954 19.90 19.90 3629
tc1c10s3ct2 14.20 12.73 10800 14.20 12.85 10800 14.20 12.76 10800
tc1c10s3ct3 18.08 10.32 10800 18.08 10.49 10800 18.08 10.34 10800
tc1c10s3ct4 18.21 16.80 10800 18.21 18.21 8104 18.21 18.21 9210
tc2c10s2cf0 26.77 19.65 10800 26.77 18.15 10800 26.77 19.10 10800
tc2c10s2ct0 17.45 11.33 10800 17.45 10.69 10800 17.45 10.35 10800
tc2c10s3cf0 26.83 16.20 10800 26.77 17.56 10800 26.83 18.24 10800
tc2c10s3ct0 16.68 9.93 10800 16.54 9.99 10800 16.51 9.94 10800
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Table D.10: Detailed computational results on the 10-customer instances for the recharging path-based
formulations

Instance
Path A C Path A R

Obj Time Obj Time
tc0c10s2cf1 24.75 15 24.75 15
tc0c10s2ct1 17.30 20 17.30 20
tc0c10s3cf1 24.75 22 24.75 8
tc0c10s3ct1 15.80 15 15.80 8
tc1c10s2cf2 14.03 12 14.03 4
tc1c10s2cf3 21.37 108 21.37 32
tc1c10s2cf4 21.10 14 21.10 9
tc1c10s2ct2 15.75 202 15.75 184
tc1c10s2ct3 18.17 13 18.17 12
tc1c10s2ct4 18.83 6 18.83 4
tc1c10s3cf2 14.03 13 14.03 4
tc1c10s3cf3 21.37 169 21.37 43
tc1c10s3cf4 19.90 37 19.90 16
tc1c10s3ct2 14.20 117 14.20 129
tc1c10s3ct3 18.02 86 18.02 29
tc1c10s3ct4 18.21 14 18.21 13
tc2c10s2cf0 26.77 1715 26.77 894
tc2c10s2ct0 17.45 1062 17.45 1993
tc2c10s3cf0 26.77 1708 26.77 909
tc2c10s3ct0 16.51 2953 16.51 4459
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