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Abstract: We characterise the convergence of a certain class of discrete time Markov processes

toward locally Feller processes in terms of convergence of martingale problems. We apply our

results of approximation to get convergence of some random walks to diffusions behaving into

singular potentials. As a consequence we deduce the convergence of random walks in random

medium to diffusions in random potential. The results on locally Feller processes are also applied

to Lévy-type processes in order to get (or to improve) convergence results, simulation methods

and Euler schemes.
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1 Introduction

A number of models for phenomena in several domains (physics, biology, ...) are based
on a large class of stochastic processes, which are Feller processes. The present paper
address some important questions focusing on two types of Feller processes : Brownian
particle evolving in a some irregular potentials and Lévy-type processes. Recall that
the Brownian particle evolving in a some irregular potentials is the solution of a SDE
driven by a Brownian motion with the considered potential as a drift. Also, a Lévy-type
process is a Markov process which, roughly speaking behaves locally like a Lévy process.

Our main goal is to study the convergence of sequences of such type of processes in
the setting of these two examples. In particular we try to use approximating Markov
sequences which could have continuous or discrete time parameter in order to cover
scaling transformations or discrete schemes.

In the context of Feller processes there exist two corresponding results of convergence
(see, for instance [11], Theorems 19.25, p. 385 and 19.27, p. 387). For instance in the
case of Lévy-type processes, when one needs to consider unbounded coefficients in the
Lévy triplet technical difficulties could appear in the framework of Feller processes. On
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the other hand the cited results of convergence impose the knowledge of a core of the
generator. This could not be the case in some probabilistic constructions. Detailed
overviews on these topics and many other references on the subject can be found in
[9], [8], [12] for the case of Lévy-type processes. Likely, for Brownian particles, it can
be possible to consider potentials with very few constraints, in particular it could be
singular, or random (see for instance [14],[2] or [4]).

Our method to tackle these difficulties is to consider the context of the martingale lo-
cal problems and of locally Feller processes, introduced in [7]. In this general framework
we have already analysed the question of convergence of sequences of locally Feller pro-
cesses. In the present paper we add the study of the convergence for processes indexed
by a discrete time parameter toward processes indexed by a continuous time parameter.
We obtain the characterisation of the convergence in terms of convergence of associated
operators, by using the uniform convergence on compact sets, and hence operators with
unbounded coefficients could be considered. Likewise, we do not impose that the opera-
tor is a generator, but we assume only the well-posed feature of the associated martingale
local problem. Indeed, it could be more easy to verify the well-posed feature (see for
instance, [19] for Lévy-type processes, [20] for diffusion processes, [13] for Lévy-driven
stochastic differential equations and forward equations...).

We apply our abstract results and we obtain sharp results of convergence in the
context of the dynamic of a Brownian particle in a potential. It is often given by the
solution of the one-dimensional stochastic differential equation

dXt = dBt −
1

2
V ′(Xt)dt,

where V : R → R. We prove the continuous dependence of the diffusion with respect
to the potential. We point out that it can be possible to consider potentials with very
few constraints. In particular we consider diffusions in random potentials as limits of
random walks in random mediums, as an application of an approximation of the diffusion
by random walks on Z. An important example is the convergence of Sinai’s random walk
[18] to the diffusion in a Poisson potential (recovering Theorem 2 from [17], p. 296), to
the diffusion in a Brownian potential, also called Brox’s diffusion (improving Theorem
1 from [17], p. 295) and, more generally, to the diffusion in a Lévy potential.

Using again our abstract results we obtain sharp results of convergence for discrete
and continuous time sequences of processes toward Lévy-type process, in terms of Lévy
triplet. We prefer the use of the Lévy triplet than the symbol associated to the operator,
since the results are more precise in the situation of possibly instantaneous explosions.
This is due essentially to the fact that the vague convergence of bounded measures
cannot be characterised in terms of characteristic function. Our results can also be used
to simulate Lévy-type processes and we improve Theorem 7.6 from [3], p. 172, which is an
approximation result of type Euler scheme. We state the results in terms of convergence
of operators, but essentially one can deduce the convergence of the associated processes.

Let us describe the organisation of the paper. The next section contains notations
and statements from our previous paper [7], which are useful for an easy reading of the
present paper. In particular, we give the statements concerning the existence of solutions
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for martingale local problems and concerning the convergence of continuous time locally
Feller processes. Section 3 is devoted to the limits of sequences of discrete time processes,
while Section 4 contains the study of the diffusions evolving in a potential. Finally, two
results of convergence toward general Lévy-type processes are studied in Section 5. The
appendix contains the statements of several technical results already proved in [7].

2 Martingale local problem setting and related results

In the present section we recall some notations and results concerning the martingale lo-
cal problems and locally Feller processes. Complete statements and proofs are contained
in a entirely dedicated paper [7].

Let S be a locally compact Polish space. Take ∆ 6∈ S, and we will denote by S∆ ⊃ S
the one-point compactification of S, if S is not compact, or the topological sum St{∆},
if S is compact (so ∆ is an isolated point). The fact that a subset A is compactly
embedded in an open subset U ⊂ S∆ will be denoted by A b U . If x ∈ (S∆)R+ is a path
on S we will denote its ”explosion” time by

ξ(x) := inf{t ≥ 0 | {xs}s≤t 6b S}.

The set of exploding càdlàg paths is defined by

Dloc(S) :=

x ∈ (S∆)R+

∣∣∣∣∣∣
∀t ≥ ξ(x), xt = ∆,
∀t ≥ 0, xt = lims↓t xs,
∀t > 0 s.t. {xs}s<t b S, xt− := lims↑t xs exists

 ,

and it will be endowed with the local Skorokhod topology (see Theorem 2.4 from [6])
which also becomes Polish space. Recall also that a sequence (xk)k∈N in Dloc(S) converges
to x for the local Skorokhod topology if and only if there exists a sequence (λk)k of
increasing homeomorphisms on R+ satisfying

∀t ≥ 0 s.t. {xs}s<t b S, lim
k→∞

sup
s≤t

d(xs, x
k
λks

) = 0 and lim
k→∞

sup
s≤t
|λks − s| = 0.

The local Skorokhod topology does not depend on the (arbitrary) metric d on S∆, but
only on the topology on S. We will always denote by X the canonical process on Dloc(S).
We endow Dloc(S) with the Borel σ-algebra F := σ(Xs, 0 ≤ s < ∞) and the filtration
Ft := σ(Xs, 0 ≤ s ≤ t). For an open subset U b S, τU denotes the stopping time given
by

τU := inf {t ≥ 0 | Xt 6∈ U or Xt− 6∈ U} . (2.1)

Denote by C(S) := C(S,R), respectively by C(S∆) := C(S∆,R), the set of real
continuous functions on S, respectively on S∆, and by C0(S) the set of functions f
belonging to C(S) and vanishing at ∆. We endow the set C(S) with the topology
of uniform convergence on compact sets, while C0(S) with the topology of uniform
convergence.
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We proceed by recalling the notion of martingale local problem. An operator L from
C0(S) to C(S) will be denoted as a subset of C0(S)×C(S). For L ⊂ C0(S)×C0(S) we
define

L∆ := span (L ∪ {(1S∆ , 0)}) ⊂ C(S∆)× C(S∆). (2.2)

The set M(L) of solutions of the martingale local problem associated to L is the set of
probabilities P ∈ P (Dloc(S)) such that, for all (f, g) ∈ L and open subset U b S,

f(Xt∧τU )−
∫ t∧τU

0
g(Xs)ds is a P-martingale

with respect to the filtration (Ft)t or, equivalently, to the filtration (Ft+)t.
In Theorem 3.10, p. 139 from [7], the following result of existence of solutions for

martingale local problem is stated:

Theorem 2.1. Let L be a linear subspace of C0(S)×C(S) such that its domain D(L) :=
{f ∈ C0(S) | ∃g ∈ C(S), (f, g) ∈ L} is dense in C0(S). Then, there is equivalence be-
tween

i) existence of a solution for the martingale local problem: for any a ∈ S there exists
an element P in M(L) such that P(X0 = a) = 1;

ii) L satisfies the positive maximum principle: for all (f, g) ∈ L and a0 ∈ S, if
f(a0) = supa∈S f(a) ≥ 0 then g(a0) ≤ 0.

A linear subspace L ⊂ C0(S) × C(S) satisfying the positive maximum principle is uni-
variate, so it can be equivalently considered as a linear operator L : D(L)→ C(S).

The martingale local problem is said well-posed if there is existence and uniqueness of
the solution, which means that for any a ∈ S there exists an unique element P inM(L)
such that P(X0 = a) = 1.

A family of probabilities (Pa)a ∈ P(Dloc(S))S is called locally Feller if there exists
L ⊂ C0(S)× C(S) such that D(L) is dense in C0(S) and

∀a ∈ S : P ∈M(L) and P(X0 = a) = 1⇐⇒ P = Pa.

The C0×C-generator of a locally Feller family (Pa)a ∈ P(Dloc(S))S is the set of functions
(f, g) ∈ C0(S)× C(S) such that, for any a ∈ S and any open subset U b S,

f(Xt∧τU )−
∫ t∧τU

0
g(Xs)ds is a Pa-martingale.

It was noticed in Remark 4.15, p. 150 from [7], that if h ∈ C(S,R∗+) and if L is the
C0 × C-generator of a locally Feller family, then

hL := {(f, hg) | (f, g) ∈ L} is the C0 × C-generator of a locally Feller family. (2.3)

Remind that a Feller semi-group (Tt)t∈R+ is a strongly continuous semi-group of
positive linear contractions on C0(S). A natural example of locally Feller family is
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the family of probability measures associated to a Feller semi-group (see Remark 4.6,
p. 144 from [7]). The C0 × C0-generator of the Feller semi-group is the set L0 of
(f, g) ∈ C0(S)× C0(S) such that, for all a ∈ S

lim
t→0

1

t

(
Ttf(a)− f(a)

)
= g(a).

Thanks to Propositions 4.2 and 4.4, pp. 142-143 from [7], the martingale problem
associated to L0 admits a unique solution and, if L denotes the C0(S)×C(S)-generator
of this solution then, taking the closure in C0(S)× C(S), we have

L0 = L ∩
(
C0(S)× C0(S)

)
and L = L0. (2.4)

The following result of convergence is crucial for our further developments and it was
stated in Theorem 4.17, p. 151, from [7]. We point out the fact that one does not need to
know the generator of the limit family, but only the fact that a martingale local problem
is well-posed. We denote the weakly convergence for the local Skorokhod topology by

the symbol
P(Dloc(S))−→
n→∞

.

Theorem 2.2 (Convergence of locally Feller family). For n ∈ N ∪ {∞}, let (Pn
a)a ∈

P(Dloc(S))S be a locally Feller family and let Ln be a subset of C0(S)× C(S). Suppose
that for any n ∈ N, Ln is the generator of (Pn

a)a. Furthermore assume that D(L∞) is
dense in C0(S) and that

∀a ∈ S : P ∈M(L∞) and P(X0 = a) = 1⇐⇒ P = P∞a .

Then we have equivalence between:
i) the mapping

N ∪ {∞} × P(S∆) → P (Dloc(S))
(n, µ) 7→ Pn

µ :=
∫

Paµ(da)

is weakly continuous for the local Skorokhod topology, where P∆(X0 = ∆) = 1;

ii) for any an, a ∈ S s.t. an −→
n→∞

a we have Pn
an

P(Dloc(S))−→
n→∞

P∞a ;

iii) for any f ∈ D(L∞), there exist fn ∈ D(Ln) for each n, such that we have fn
C0(S)−→
n→∞

f

and Lnfn
C(S)−→
n→∞

L∞f .

The Appendix contains the statements of other technical results proved in [7] and
which will be used only in some specific points of proofs of our results.

3 Convergence of discrete time locally Feller families

We start by introducing a discrete time version of the notion of locally Feller family.
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Definition 3.1 (Discrete time locally Feller family). Denote by Y the discrete time
canonical process on (S∆)N and endow (S∆)N with the canonical σ-algebra. A family

(Pa)a ∈ P
(
(S∆)N

)S
is said to be a discrete time locally Feller family if there exists

an operator T : C0(S) → Cb(S), called transition operator, such that for any a ∈ S:
Pa(Y0 = a) = 1 and

∀n ∈ N, ∀f ∈ C0(S), Ea (f(Yn+1) | Y0, . . . , Yn) = 1{Yn 6=∆}Tf(Yn) Pa-a.s. (3.1)

If we denote by P∆ the probability defined by P∆(∀n ∈ N, Yn = ∆) = 1, then for each
µ ∈ P(S∆), Pµ :=

∫
Paµ(da) satisfies also (3.1).

The following theorem contains our result of convergence of a discrete time locally
Feller family to a continuous time locally Feller family. Once again, the main difference
with respect to Theorem 19.27, p. 387 from [11], is that one only needs to know the fact
that a martingale local problem is well-posed. In what follows, as usual brc will denote
the integer part of the real number r.

Theorem 3.2 (Convergence). Let L ⊂ C0(S)×C(S) be an operator with D(L) a dense
subset of C0(S) and such that the martingale local problem associated to L is well-posed.
Let (Pa)a ∈ P(Dloc(S))S be the associated continuous time locally Feller family. For
each n ∈ N we introduce (Pn

a)a ∈ P((S∆)N)S a discrete time locally Feller family having
its transition operator denoted by Tn. Set Ln := (Tn − id)/εn, where (εn)n is a sequence
of positive constants, εn → 0, as n→∞. There is equivalence between:

a) for any µn, µ ∈ P(S∆) s.t. µn −→
n→∞

µ weakly, LPnµn

(
(Ybt/εnc)t

) P(Dloc(S))−→
n→∞

Pµ ;

b) for any an, a ∈ S s.t. an −→
n→∞

a, we have LPnan

(
(Ybt/εnc)t

) P(Dloc(S))−→
n→∞

Pa ;

c) for any f ∈ D(L), there exists (fn)n ∈ C0(S)N s.t. fn
C0(S)−→
n→∞

f and Lnfn
C(S)−→
n→∞

Lf .

Proof. Introduce Ω := (S∆)N ×RN
+ and G := B(S∆)⊗N ⊗ B(R+)⊗N. For any µ ∈ P(S∆)

and n ∈ N, we denote
Pnµ := Pn

µ ⊗ E(1)⊗N, (3.2)

where E(1) is the exponential distribution with expectation 1. We also set

Yn : Ω → S and(
(yk)k, (sk)k

)
7→ yn

En : Ω → R+(
(yk)k, (sk)k

)
7→ sn

(3.3)

and Nt := inf{n ∈ N
∣∣∣ E1 + . . .+ En+1 > t}, t ≥ 0, a standard Poisson process.

Step 1) For each n ∈ N we set
Znt := YNt/εn . (3.4)

We will prove that a′) ⇔ b′) ⇔ c), where a′) and b′) are the following assertions con-
cerning processes Zn:

a′) for any µn, µ ∈ P(S∆) s.t. µn −→
n→∞

µ, LPnµn (Zn)
P(Dloc(S))−→
n→∞

Pµ;
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b′) for any an, a ∈ S s.t. an −→
n→∞

a, LPnan (Zn)
P(Dloc(S))−→
n→∞

Pa.

If we prove that for all µ ∈ P(S∆), LPnµ(Zn) ∈ M(Ln), then invoking Theorem 2.2
applied to Ln and L, our claim a′) ⇔ b′) ⇔ c) will be achieved. It is enough to prove
that, for each f ∈ C0(S) and 0 ≤ s ≤ t,

Enµ
[
f(Znt )− f(Zns )−

∫ t

s
Lnf(Znu )du

∣∣∣Gns ] = 0, (3.5)

where the filtration is given by Gnt := σ(Ns/εn , Z
n
s , s ≤ t), Let us introduce the (Gnt )t-

stopping times τnk := inf
{
u ≥ 0

∣∣Nu/εn = k
}

. Then, for all k ∈ N,

Enµ
[
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)
∣∣∣ Gnt∧(τnk ∨s)

]
= 1{t>τnk ,s<τ

n
k+1}E

n
µ

î
(f(Yk+1)− f(Yk))1{τnk+1≤t}

∣∣∣ Gnt∧(τnk ∨s)

ó
= 1{t>τnk ,s<τ

n
k+1}E

n
µ

î
(f(Yk+1)− f(Yk))1{τnk+1−τ

n
k ∨s≤t−τ

n
k ∨s}

∣∣∣ Gnτnk ∨só .
Recalling that Tn is a transition operator and the fact that (Nu/εn)u is a Poisson process,
we get for all k ∈ N,

Enµ
[
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)
∣∣∣ Gnt∧(τnk ∨s)

]
= 1{t>τnk ,s<τ

n
k+1}(Tnf(Yk)− f(Yk))

(
1− exp(−(t− τnk ∨ s)/εn)

)
= 1{t>τnk ,s<τ

n
k+1}Lnf(Znτnk ∨s

)εn
(
1− exp(−(t− τnk ∨ s)/εn)

)
. (3.6)

Similarly, we can compute, for all k ∈ N,

Enµ
[ ∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣Gnt∧(τnk ∨s)

]
= 1{t>τnk ,s<τ

n
k+1}Lnf(Znτnk ∨s

)Enµ
[
t ∧ τnk+1 − τnk ∨ s

∣∣∣Gnt∧(τnk ∨s)

]
= 1{t>τnk ,s<τ

n
k+1}Lnf(Znτnk ∨s

)Enµ
[
(t− τnk ∨ s) ∧ (τnk+1 − τnk ∨ s)

∣∣∣Gnτnk ∨s]
Once again, since the distribution of τnk+1 − τnk is exponential we get, for all k ∈ N,

Enµ
[ ∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣Gnt∧(τnk ∨s)

]
= 1{t>τnk ,s<τ

n
k+1}Lnf(Znτnk ∨s

)

∫ ∞
0

(1/εn) exp(−u/εn)((t− τnk ∨ s) ∧ u)du

= 1{t>τnk ,s<τ
n
k+1}Lnf(Znτnk ∨s

)εn
(
1− exp(−(t− τnk ∨ s)/εn)

)
. (3.7)

Hence, substracting (3.7) from (3.6), we get, for all k ∈ N,

Enµ
[
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣Gnt∧(τnk ∨s)

]
= 0. (3.8)
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Recalling the definition of the stopping times τnk and by summing on k ∈ N, we also get

Enµ
[
f(Znt )− f(Zns )−

∫ t

s
Lnf(Znu )du

∣∣∣Gns ]
= Enµ

[∑
k≥0

(
(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

)∣∣∣Gns ]
=
∑
k≥0

Enµ
[
Enµ
[
f(Znt∧(τnk+1∨s)

)− f(Znt∧(τnk ∨s)
)−

∫ t∧(τnk+1∨s)

t∧(τnk ∨s)
Lnf(Znu )du

∣∣∣Gnt∧(τnk ∨s)

]∣∣∣Gns ].
Owing (3.8) we get (3.5) and we end up with LPnµ(Zn) ∈M(Ln), for each n ∈ N.
Step 2. Set, for all t ≥ 0 and n ∈ N,

Γnt := εn

( bt/εnc∑
k=1

Ek + (t/εn − bt/εnc)Ebt/εnc+1

)
, (3.9)

where the exponential independent random variables Ek has been introduced in (3.3).
Thanks to (3.4), for any t ≥ 0 and n ∈ N, we have Ybt/εnc = ZnΓnt

. We claim that

∀t ≥ 0, ∀ε > 0, sup
µ∈P(S∆)

Pnµ
(

sup
s≤t
|Γns − s| ≥ ε

)
−→
n→∞

0. (3.10)

Fix t ≥ 0, ε > 0, n ∈ N and µ ∈ P(S∆). Since Γn is a continuous piecewise affine
function we have

sup
s≤t
|Γns − s| ≤ sup

k∈N
k≤dt/εne

|Γnkεn − kεn| = sup
k∈N

k≤dt/εne

∣∣∣εn k∑
i=1

Ei − kεn
∣∣∣ = εn sup

k∈N
k≤dt/εne

|Mk| ,

where Mk :=
∑k

i=1Ei − k. Here dre denotes the smallest integer larger or equal
than the real number r. Recalling again that Ei are independent random variables,
with exponential distribution E(1), we have that the discrete martingale (Mk)k satis-
fies Enµ[M2

k ] = kEnµ[(E1 − 1)2] = k. Applying Markov’s inequality and maximal Doob’s
inequality to the martingale Mk we get

Pnµ
(

sup
s≤t
|Γns − s| ≥ ε

)
≤ Pnµ

(
εn sup

k≤dt/εne
|Mk| ≥ ε

)
≤

Enµ
[

supk≤dt/εneM
2
k

]
ε2
n

ε2

≤
4Enµ

[
M2
dt/εne

]
ε2
n

ε2
=

4dt/εneε2
n

ε2
≤ 4(t+ εn)εn

ε2
.

The claim (3.10) is verified.
Step 3. To end the proof we need the following technical result
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Lemma 3.3. For n ∈ N, let (Ωn,Gn,Pn) be a probability space, let Zn : Ωn → Dloc(S)
and Γn : Ωn → C(R+,R+) be a increasing random bijection. Define Z̃n := Zn ◦ Γn.
Suppose that for each ε > 0 and t ∈ R+

Pn
(

sup
s≤t
|Γns − s| ≥ ε

)
−→
n→∞

0. (3.11)

Then for any P ∈ P(Dloc(S)),

LPn(Zn) −→
n→∞

P ⇔ LPn(Z̃n) −→
n→∞

P, (3.12)

where the limits are for the weak topology associated to the local Skorokhod topology.

Thanks to Lemma 3.3 we get a) ⇔ a′) and b ⇔ b′). By Step 1 we end up with
a)⇔ b)⇔ c). The proof is complete except for the proof of Lemma 3.3.

In fact we will state and prove a more general result:

Lemma 3.4. Let E be a Polish topological space, for n ∈ N, let (Ωn,Gn,Pn) be a
probability space and consider random variables Zn, Z̃n : Ωn → E. Suppose that for
each compact subset K ⊂ E and each open subset U ⊂ E2 containing the diagonal
{(z, z) | z ∈ E},

Pn
Ä
Zn ∈ K, (Zn, Z̃n) 6∈ U

ä
−→
n→∞

0. (3.13)

Then, for any P ∈ P(E),

LPn(Zn) −→
n→∞

P implies LPn(Z̃n) −→
n→∞

P, (3.14)

where the limits are for the weak topology on P(E).

Proof of Lemma 3.4. Assume that LPn(Zn) −→
n→∞

P. This means that for any bounded

continuous function f : E → R, limn→∞ En[f(Zn)] =
∫
fdP. Since E is a Polish space

the sequence (LPn(Zn))n is tight. Take an arbitrary ε > 0 and let K be a compact
subset of E such that

∀n ∈ N, Pn(Zn 6∈ K) ≤ ε. (3.15)

By (3.13) applied to K and U := {(z, z̃) | |f(z̃)− f(z)| < ε}, we have

Pn
Ä
Zn ∈ K, |f(Z̃n)− f(Zn)| ≥ ε

ä
−→
n→∞

0.

We decompose∣∣∣En[f(Z̃n)]−
∫
fdP

∣∣∣ ≤ ∣∣En[f(Zn)]−
∫
fdP

∣∣∣+ En
∣∣f(Z̃n)− f(Zn)

∣∣∣
9



and also we split the second term on the right hand side of the above inequality

En
∣∣f(Z̃n)− f(Zn)

∣∣ = En
[∣∣f(Z̃n)− f(Zn)

∣∣1{Zn∈K,|f(‹Zn)−f(Zn)|≥ε}

]
+ En

[∣∣f(Z̃n)− f(Zn)
∣∣1{Zn∈K,|f(‹Zn)−f(Zn)|<ε}

]
+ En

[∣∣f(Z̃n)− f(Zn)
∣∣1{Zn 6∈K}] .

Hence by (3.15)∣∣∣En[f(Z̃n)]−
∫
fdP

∣∣∣ ≤ ∣∣∣En[f(Zn)]−
∫
fdP

∣∣∣
+ 2‖f‖Pn

Ä
Zn ∈ K, |f(Z̃n)− f(Zn)| ≥ ε

ä
+ ε(1 + 2‖f‖).

Letting firstly n → ∞ and then ε → 0, we deduce that En[f(Z̃n)] −→
n→∞

∫
fdP. Hence,

since f is an arbitrary bounded continuous function, we get LPn(Z̃n) −→
n→∞

P.

We can now provide the

Proof of Lemma 3.3. We denote by Λ̃ the space of increasing bijections λ from R+ to
R+, and for t ∈ R+ we denote ‖λ− id‖t := sups≤t |λs − s|. Since

∀λ ∈ Λ̃, ∀t ∈ R+, ∀ε > 0, ‖λ− id‖t+ε < ε⇒ ‖λ−1 − id‖t < ε,

the hypotheses of the lemma are symmetric with respect to Z and Z̃, hence it suffices
to prove only one implication. Let us suppose LPn(Zn) −→

n→∞
P and we will verify that

LPn(Z̃n) −→
n→∞

P by using Lemma 3.4.

Let K be a compact subset of Dloc(S) and U be an open subset of Dloc(S)2 containing
the diagonal {(z, z) | z ∈ Dloc(S)}. We prove the assertion

∃t ≥ 0, ∃ε > 0, ∀z ∈ K, ∀λ ∈ Λ̃, ‖λ− id‖t < ε⇒ (z, z ◦ λ) ∈ U . (3.16)

If we suppose that (3.16) is false, then we can find two sequences (zn)n ∈ KN and
(λn)n ∈ Λ̃N such that, for all n ∈ N, (zn, zn ◦ λn) 6∈ U and for all t ≥ 0, ‖λn − id‖t → 0,
as n→∞. Since K is compact, possibly by taking a subsequence, we may suppose the
existence of z ∈ K such that zn → z as n→∞. Then, it is straightforward to obtain

U 63 (zn, zn ◦ λn) −→
n→∞

(z, z) ∈ U .

This is a contradiction with the fact that U is open, so (3.16) is proved. Take t and ε
given by (3.16), then

Pn
Ä
Zn ∈ K, (Zn, Z̃n) 6∈ U

ä
≤ Pn (‖Γn − id‖t ≥ ε) −→

n→∞
0.

Hence, thanks to Lemma 3.4, LPn(Z̃n) −→
n→∞

P.
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4 Approximate diffusions evolving in measurable potential

As usual we denote by L1
loc(R) the space of locally Lebesgue integrable functions. A

real continuous function f is called locally absolutely continuous if its distributional
derivative f ′ belongs to L1

loc(R). We introduce the set of potential functions

V :=
¶
V : R→ R measurable

∣∣∣ e|V | ∈ L1
loc(R)

©
.

It is straightforward to prove that there exists a unique Polish topology on V such that
a sequence (Vn)n in V converges to V ∈ V if and only if

∀M ∈ R+, lim
n→∞

∫ M

−M
|eV (a) − eVn(a)| ∨ |e−V (a) − e−Vn(a)|da = 0.

For a potential V ∈ V , the operator

LV :=
1

2
eV

d

da
e−V

d

da
(4.1)

is the set of couples (f, g) ∈ C0(R)×C(R) such that f and e−V f ′ are locally absolutely
continuous and g = 1

2eV (e−V f ′)′. Notice that it is a particular case of the operator
DmD

+
p described in [14], pp. 21-22. Heuristically, the solutions of the martingale local

problem associated to LV are solutions of the stochastic differential equation

dXt = dBt −
1

2
V ′(Xt)dt,

where B is a standard Brownian motion. Our first main result of this section are ap-
plications of Theorems 2.1 and 2.2 (or Theorems 3.10 and 4.17 in [7]). In particular we
will say that the sequence of operators Ln converges to L∞ in the sense of Theorem 2.2
if iii) of that theorem holds.

Theorem 4.1 (Diffusions in a potential).

1. For any potential V ∈ V , the operator LV is the generator of a locally Feller family.

2. For any sequence of potentials (Vn)n in V converging to V ∈ V for the topology of
V , the sequence of operators LVn converges to LV , in the sense of Theorem 2.2.

The proof of this theorem involves the use of a technical lemma which is stated below.
Its proof is essentially an application of the second chapter of [14] and it will postponed
at the end of this section.

Lemma 4.2. Let V be a potential in V and let h ∈ C(R,R∗+) be a function such that,
for all n ∈ N,

inf
n≤|a|≤n+1

h(a) ≤ 1

n

[ ∫ n+1

n

∫ a

0
eV (b)−V (a)dbda ∧

∫ n+2

n+1

∫ n+1

n
eV (a)−V (b)dbda

∧
∫ −n
−n−1

∫ 0

a
eV (b)−V (a)dbda ∧

∫ −n−1

−n−2

∫ −n
−n−1

eV (a)−V (b)dbda
]
. (4.2)

11



Then the operator (hLV ) ∩
(
C0(R)× C0(R)

)
is the C0 × C0-generator of a Feller semi-

group, with hLV introduced in (2.3).

Remark 4.3. Consider a1, a2 ∈ R and let V : [a1 ∧ a2, a1 ∨ a2] → R be a measurable
function such that e|V | ∈ L1([a1 ∧ a2, a1 ∨ a2]). For any absolutely continuous function
f ∈ C([a1∧a2, a1∨a2],R) such that e−V f ′ is absolutely continuous and g := 1

2eV (e−V f ′)′

is continuous, we have

f(a2) = f(a1) +

∫ a2

a1

f ′(b)db = f(a1) +

∫ a2

a1

eV (b)
(

(e−V f ′)(a1) +

∫ b

a1

(e−V f ′)′(c)dc
)

db.

Hence

f(a2) = f(a1) +

∫ a2

a1

eV (b)
(

(e−V f ′)(a1) + 2

∫ b

a1

e−V (c)g(c)dc
)

db , (4.3)

and furthermore

f(a2) = f(a1) + (e−V f ′)(a1)

∫ a2

a1

eV (b)db+ 2g(a1)

∫ a2

a1

∫ b

a1

eV (b)−V (c)dcdb

+ 2

∫ a2

a1

∫ b

a1

eV (b)−V (c)(g(c)− g(a1))dcdb. (4.4)

♦

Proof of Theorem 4.1. The first part is an application of Theorem 2.1. Thanks to
Lemma 4.2 and using (2.3)-(2.4) we deduce that the operator

L̃ :=
1

h
(hLV ) ∩

(
C0(R)× C0(R)

)
is the generator of a locally Feller family. Here the closure is taken in C0(R)×C(R), and
it is clear that L̃ ⊂ LV . Secondly, thanks to the representation (4.3) it is straightforward
to obtain LV = LV and thanks to (4.4) it is straightforward to obtain that LV satisfies
the positive maximum principle. Finally, using Theorem 2.1 we deduce the existence
for the martingale local problem associated to LV . Hence LV = L̃ is the generator of a
locally Feller family.

We proceed with the proof of the second part of the theorem. Let us denote by
(Pn

a)a and (P∞a )a the locally Feller families associated, respectively, to LVn and LV .
Owing Theorem 2.2 it is enough to prove that for each sequence of real numbers (an)n
converging to a∞ ∈ R, Pn

an converges weakly to P∞a∞ for the local Skorokhod topology.
At this level we need to employ one of the results in the Apendix : thanks to Lemma

A.1, for M ∈ N∗, there exists hM ∈ C(R, [0, 1]) such that

{hM 6= 0} = (−2M, 2M), {hM = 1} = [−M,M ],

and, for all n ∈ N, the martingale local problems associated to hML
V and to hML

Vn

are well-posed. For n ∈ N and M ∈ N∗, denote by (Pn,M
a )a and (P∞,Ma )a the locally

12



Feller families associated, respectively with hML
Vn and hML

V . For n ∈ N, define the
extension of hML

Vn :flLn,M :=
{

(f, g) ∈ C0(R)× C(R)
∣∣∣ g =

1

2
hMeVn(e−Vnf ′)′1(−2M,2M)

}
,

where f and e−Vnf ′ are supposed locally absolutely continuous only on (−2M, 2M).

Thanks to (4.4) it is straightforward to obtain that flLn,M satisfies the positive maximum

principle, so using again Theorem 2.1, we get that flLn,M is a linear subspace of the

generator of the family (Pn,M
a )a. We will prove that the sequence of operators flLn,M

converges to the operator hML
V in the sense of Theorem 2.2. Let f ∈ D(L) be and

define fn ∈ C0(R) by

fn(a) :=


f(a), a /∈ (−2M − n−1, 2M + n−1)

f(0) +

∫ a

0
eVn(b)

[
(e−V f ′)(0) + 2

∫ b

0
e−Vn(c)LV f(c)dc

]
db, a ∈ [−2M, 2M ],

with fn affine on [−2M − n−1,−2M ] and on [2M, 2M + n−1]. Hence fn ∈ D(flLn,M ) andflLn,Mfn = hML
V f . We have

‖fn − f‖ ≤ sup
a∈[−2M,2M ]

|fn(a)− f(a)|+ sup
2M≤|a1|,|a2|≤2M+n−1

0≤a1a2

|f(a2)− f(a1)|.

Since f is continuous, the second supremum in the latter equation tends to 0. It is
straightforward to deduce from (4.3), by using the expression of fn and the convergence
Vn → V , that

sup
a∈[−2M,2M ]

|fn(a)− f(a)| −→
n→∞

0.

Hence ‖fn − f‖ → 0 as n→∞, so the by Theorem 2.2:

Pn,M
an −→

n→∞
P∞,Ma∞ . (4.5)

Again, we need to use two results stated in the Appendix : thanks to Lemma A.2, for
all M ∈ N∗ and n ∈ N ∪ {∞},

L
Pn,Man

Ä
Xτ (−M,M)

ä
= LPnan

Ä
Xτ (−M,M)

ä
. (4.6)

Finally, we employ the result of localisation of the continuity contained in Lemma A.3.
Gathering (4.5) and (4.6) and letting M →∞, we end up with Pn

an −→n→∞ P∞a∞ .

The second main result of this section gives an approximation result of a diffusion
in a potential by using a sequence of random walks. Its proof is based on the result
Theorem 3.2 in the preceding section.
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Theorem 4.4 (Approximation by random walks on Z). For (n, k) ∈ N × Z, choose
real numbers qn,k and strictly positive numbers εn. For all n ∈ N, in accordance with
Definition 3.1, let (Pn

k)k ∈ P(ZN)Z be the unique discrete time locally Feller family such
that

Pn
k(Y1 = k + 1) = 1−Pn

k(Y1 = k − 1) =
1

eqn,k + 1
.

We introduce the sequence of potentials in V given by

Vn(a) :=

ba/εnc∑
k=1

qn,k1a≥εn −
−ba/εnc−1∑

k=0

qn,−k1a<0 ,

such that Vn converges for the topology of V to a potential of V , say V . Let (Pa)a be the
locally Feller family associated with LV . If the sequence εn → 0, then, for any sequence
µn ∈ P(Z) such that their pushforwards with respect to the mappings k 7→ εnk converge
to a probability measure µ ∈ P(R), we have

LPnµn

(
(εnYbt/ε2nc)t

) P(Dloc(S))−→
n→∞

Pµ.

Before proving this theorem, we give an important consequence concerning a random
walk and a diffusion in random environment. Then we will discuss some examples.

Corollary 4.5. For each n ∈ N, let (Ωn,Gn,Pn) be a probability space and consider the
random variables

(qn,k)k : Ωn → RZ, (Znk )k : Ωn → ZN and εn : Ωn → R∗+ .

Suppose that for any n ∈ N and k ∈ N, Pn-almost surely,

Pn
(
Znk+1 = Znk + 1

∣∣ εn, (qn,`)`∈Z, (Zn` )0≤`≤k
)

=
1

eqn,Zk + 1

Pn
(
Znk+1 = Znk − 1

∣∣ εn, (qn,`)`∈Z, (Zn` )0≤`≤k
)

=
1

e−qn,Zk + 1
= 1− 1

eqn,Zk + 1
.

For any n ∈ N and a ∈ R, denote the random potential in V by

Wn(a) :=

ba/εnc∑
k=1

qn,k1a≥εn −
−ba/εnc−1∑

k=0

qn,−k1a<0 . (4.7)

Furthermore on a probability space (Ω,G,P) consider the random variables W : Ω→ V
and Z : Ω → Dloc(R), such that the conditional distribution of Z with respect to W
satisfies, P-a.s.

LP (Z | W ) ∈M(LW ).

If εn converges in distribution to 0, if εnZ
n
0 converges in distribution to Z0 and if Wn

converges in distribution to W for the topology of V , then (εnZ
n
bt/ε2nc

)t converges in
distribution to Z for the local Skorokhod topology.
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Proof of Corollary 4.5. For any a ∈ R, V ∈ V and ε > 0, let Pa,V,ε ∈ P(ZN) be the
unique probability such that Pa,V,ε(Y0 = ba/εc) = 1 and, Pa,V,ε-almost surely, for all
k ∈ N,

Pa,V,ε (Yk+1 = Yk + 1 | Y0, . . . , Yk) = 1−Pa,V,ε (Yk+1 = Yk − 1 | Y0, . . . , Yk)

=

∫ εYk

εYk−ε
eV (a)da

¬ ∫ εYk+ε

εYk−ε
eV (a)da.

Let Pa,V,0 ∈ P(Dloc(R)) be the unique element belonging to M(LV ) and starting from
a. Consider F a bounded continuous function from Dloc(R) to R and define the bounded
mapping G : R× V × R+ → R as follows:

G(a, V, ε) := Ea,V,ε
[
F
(
(εYbt/ε2c)t

)]
and G(a, V, 0) := Ea,V,0 [F (X)] .

Thanks to Theorem 4.4, the mapping G is continuous at every point of R × V × {0}.
Therefore we have

En [G(εnZ
n
0 ,Wn, εn)] −→

n→∞
E [G(Z0,W, 0)] .

Hence

En
[
F
(
(εnZ

n
bt/ε2nc)t

)]
= En

[
En
[
F
(
(εnZ

n
bt/ε2nc)t

)∣∣∣εn, Zn0 , (qn,`)`∈Z

]]
= En

[
G(εnZ

n
0 ,Wn, εn)

]
−→
n→∞

E
[
G(Z0,W, 0)

]
= E

[
E
[
F (Z)

∣∣Z0, W
]]

= E
[
F (Z)

]
.

We conclude that (εnZ
n
bt/ε2nc

)t converges in distribution to Z.

Example 4.6. 1) Let (qk)k be a sequence of centred real i.i.d random variables with
finite variance σ2 and suppose that qn,k =

√
εnqk, where εn are strictly positive numbers.

Suppose also that W is a Brownian motion with variance σ2. Clearly, by Donsker’s theo-
rem, Wn given by (4.7) converges in distribution to W . Therefore we can apply Corollary
4.5 to deduce the convergence of Sinai’s random walk in a random i.i.d. medium (in-
troduced in [18]) to the diffusion in a Brownian potential (introduced in [2]). Hence,
we recover Theorem 1 from [17], p. 295, without assuming the hypothesis that the
distribution of q0 is compactly supported.

2) Fix deterministic q ∈ R and λ ∈ R∗+. Suppose that, for each n ∈ N, (qn,k)k is a
sequence of real i.i.d random variables such that Pn(qn,k = q) = 1− Pn(qn,k = 0) = λεn,
where again εn are strictly positive numbers.. Suppose also that W (a) = qNλa, where
N is a standard Poisson process on R. Then, it is classical (see for instance [4]), that Wn

given by (4.7) converges in distribution to W , so we can apply again Corollary 4.5. We
deduce the convergence of Sinai’s random walk to the diffusion in a Poisson potential.
so we recover Theorem 2 from [17], p. 296.

3) More generally, suppose that for each n ∈ N, (qn,k)k is an i.i.d sequence of random
variables. Likewise, suppose that Wn given again by (4.7), converges in distribution to
a Lévy process W . We can apply Corollary 4.5 to deduce the convergence of Sinai’s
random walk to the diffusion in a Lévy potential and introduced in [4]. ♦

15



Proof of Theorem 4.4. For n ∈ N, define the continuous function ϕn : R×R→ R+ given
by

ϕn(a, h) := 2

∫ a+h

a

∫ b

a
eVn(b)−Vn(c)dcdb.

For each a ∈ R, it is clear that ϕn(a, ·) is strictly increasing on R+ and ϕn(a, 0) = 0.
Furthermore, since Vn is constant on the interval

[
εnda/εne, εn(da/εne+ 1)

)
,

ϕn(a, 2εn) ≥ 2

∫ εn(da/εne+1)

εnda/εne

∫ b

εnda/εne
eVn(b)−Vn(c)dcdb = ε2

n.

Hence, there exists a unique ψ1,n(a) ∈ (0, 2εn] such that

ϕn(a, ψ1,n(a)) = ε2
n. (4.8)

Using the continuity of ϕn and the compactness of [0, 2εn], it is straightforward to verify
that ψ1,n is continuous. In the same manner, we may prove that, for each a ∈ R, there
exists a unique ψ2,n(a) ∈ (0, 2εn] such that

ϕn(a,−ψ2,n(a)) = ε2
n, (4.9)

and also that ψ2,n is continuous. Introduce the continuous function pn : R→ (0, 1) given
by

pn(a) :=

∫ a

a−ψ2,n(a)
eVn(b)db

¬ ∫ a+ψ1,n(a)

a−ψ2,n(a)
eVn(b)db, (4.10)

and define a transition operator Tn : C0(R)→ C0(R) by

Tnf(a) := pn(a)f(a+ ψ1,n(a)) + (1− pn(a))f(a− ψ2,n(a)).

According to Definition 3.1, let (‹Pn
a)a ∈ P

(
RN)R be the discrete time locally Feller

family with transition operator Tn. Since Vn is constant on [εnk, εn(k + 1)) and on
[εn(k − 1), εnk), for any k ∈ Z, we have

ϕn(εnk,±εn) = 2

∫ εn(k±1)

εnk

∫ b

εnk
dcdb = ε2

n.

Therefore we get ψ1,n(εnk) = ψ2,n(εnk) = εn. Furthermore

pn(εnk) =

∫ εnk
εn(k−1) eVn(b)db∫ εn(k+1)
εn(k−1) eVn(b)db

=
εneVn(εn(k−1))

εneVn(εn(k−1)) + εneVn(εnk)
=

1

1 + eqn,k
.

Reporting in the definition of the transition operator, for any f ∈ C0(R), we obtain

Tnf(εnk) =
1

1 + eqn,k
f(εn(k + 1)) +

1

1 + e−qn,k
f(εn(k − 1)).
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We deduce that for any µ ∈ P(Z) and n ∈ N, LPnµ(εnY ) = ‹Pn
µ̃ , where µ̃ is the pushfor-

ward measure of µ with respect to the mapping k 7→ εnk.
We will employ Theorem 3.2 of convergence of discrete time Markov families. If

f ∈ D(LV ), we need to prove that there exists a sequence of continuous functions
fn ∈ C0(R) converging to f such that (Tnfn − fn)/ε2

n converges to LV f . Thanks to the
second part of Theorem 4.1, there exists a sequence of continuous functions fn ∈ D(LVn)
such that fn converges to f and LVnfn converges to LV f . Applying (4.4) to fn and Vn
and invoking (4.8) and (4.9), we have for all a ∈ R and n ∈ N,

f(a+ ψ1,n(a)) =f(a) + (e−V f ′)(a)

∫ a+ψ1,n(a)

a
eV (b)db+ ε2

nL
Vnfn(a)

+ 2

∫ a+ψ1,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb,

and

f(a− ψ2,n(a)) =f(a)− (e−V f ′)(a)

∫ a

a−ψ2,n(a)
eV (b)db+ ε2

nL
Vnfn(a)

+ 2

∫ a−ψ2,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb.

Employing once again the definition of the transition operator we can bound, for all
a ∈ R and n ∈ N,∣∣∣Tnfn(a)− fn(a)

ε2
n

− LVnfn(a)
∣∣∣

≤ 2pn(a)

ε2
n

∣∣∣ ∫ a+ψ1,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb

∣∣∣
+

2(1− pn(a))

ε2
n

∣∣∣ ∫ a−ψ2,n(a)

a

∫ b

a
eV (b)−V (c)(LVnfn(c)− LVnfn(a))dcdb

∣∣∣.
It is then straightforward to deduce that, for all a ∈ R and n ∈ N,∣∣∣Tnfn(a)− fn(a)

ε2
n

− LVnfn(a)
∣∣∣ ≤ sup

|h|≤2εn

|LVnfn(a+ h)− LVnfn(a)|.

Then it is not difficult to conclude that (Tnfn − fn)/ε2
n converges to LV f . Finally, we

will use Theorem 3.2 of convergence of discrete time Markov families. For µn ∈ P(Z)
we denote by µ̃n the push-forward of µn with respect to the mappings k 7→ εnk. Then
for any sequence µn ∈ P(Z) such that µ̃n converges to a probability measure µ ∈ P(R),
we deduce that

LPnµn

(
(εnYbt/ε2nc)t

)
= L‹Pn

µ̃n

(
(Ybt/ε2nc)t

) P(Dloc(S))−→
n→∞

Pµ.
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Proof of Lemma 4.2. As was already announced this proof is essentially an application
of the second chapter of [14]. For the sake of completeness we give here some details.

The operator hLV coincides on C0(R) × C0(R) with the operator described in [14],
pp. 21-22, DmD

+
p ⊂ C(R) × C(R) on the extended real line R. This operator involves

the measures

dm(a) :=
2e−V (a)

h(a)
da and dp(a) := eV (a)da.

Owing the hypothesis (4.2), we have∫ ∞
0

∫ a

0
dm(b)dp(a) ≥ lim sup

n→∞

∫ n+2

n+1

∫ n+1

n
dm(b)dp(a) ≥ lim sup

n→∞
2n =∞,∫ ∞

0

∫ a

0
dp(b)dm(a) ≥ lim sup

n→∞

∫ n+1

n

∫ a

0
dp(b)dm(a) ≥ lim sup

n→∞
2n =∞,∫ 0

−∞

∫ 0

a
dm(b)dp(a) ≥ lim sup

n→∞

∫ −n−1

−n−2

∫ −n
−n−1

dm(b)dp(a) ≥ lim sup
n→∞

2n =∞,∫ 0

−∞

∫ 0

a
dp(b)dm(a) ≥ lim sup

n→∞

∫ −n
−n−1

∫ 0

a
dp(b)dm(a) ≥ lim sup

n→∞
2n =∞.

Thus the boundary points −∞ and +∞ are natural, according to the definition given
in [14], pp. 24-25. Thanks to Theorem 1 and Remark 2 p. 38 of [14], DmD

+
p is the

generator of a conservative Feller semi-group on C(R). Furthermore

DmD
+
p f(−∞) = DmD

+
p f(+∞) = 0, ∀f ∈ D(DmD

+
p ),

invoking Steps 7 and 8 in [14], pp. 31-32. Therefore, the operator

(hLV ) ∩
(
C0(R)× C0(R)

)
= DmD

+
p ∩

(
C0(R)× C0(R)

)
is the C0 × C0-generator of a Feller semi-group.

5 Convergence toward some Lévy-type processes

In this section d denotes a strictly positive integer, | · | the Euclidean norm on Rd,
and Rd∆ denotes the one point compactification of Rd. Let also C∞c (Rd) be the set of
compactly supported infinitely differentiable functions from Rd to R. We are interested
in the dynamics which locally looks like as Lévy processes dynamic.

All along of the present section we will use a linear functional on C∞c (Rd) which
describes dynamic in a neighbourhood of a point a ∈ Rd: for any f ∈ C∞c (Rd),

Tχ,a(δ, γ, ν)f :=

1

2

d∑
i,j=1

γij∂
2
ijf(a) + δ · ∇f(a) +

∫
Rd∆

(
f(b)− f(a)− χ(a, b) · ∇f(a)

)
ν(db), (5.1)

where
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(H1)

– the compensation function χ : Rd ×Rd∆ → Rd is a bounded measurable
function satisfying for any compact subset K ⊂ Rd,

sup
b,c∈K, b6=c

|χ(b, c)− (c− b)|
|c− b|2

<∞;

(H2(a))

– the drift vector is δ ∈ Rd, the diffusion matrix γ ∈ Rd×d is symmet-
ric positive semi-definite and the jump measure ν is a measure on Rd∆

satisfying ν({a}) = 0 and

ν({a}) = 0 and

∫
Rd∆

(1 ∧ |b− a|2)ν(db) <∞.

Usually, the compensation function is

χ1(a, b) := (b− a)/(1 + |b− a|2) or χ2(a, b) := (b− a)1|b−a|<1. (5.2)

It is well known (see for instance Theorem 2.12 pp. 21-22 from [8], see also [5], [9],
[10]) that for any linear operator L : C∞c (Rd)→ C(Rd) satisfying the positive maximum
principle and for any χ satisfying (H1): for each a ∈ Rd there exist δ(a), γ(a) and ν(a)
satisfying (H2(a)) such that

∀f ∈ C∞c (Rd), ∀a ∈ Rd, Lf(a) = Tχ,a(δ(a), γ(a), ν(a))f.

In the following we will call a such expression of L a Lévy-type operator.
In order to obtain a converse sentence and to get the convergence of sequences of

Lévy-type operators, we need to impose a more restrictive hypothesis on the couple
(χ, ν): for a ∈ Rd

(H3(a))

– the compensation function χ : Rd ×Rd∆ → Rd is a bounded measurable
function satisfying, for any compact subset K ⊂ Rd,

sup
b,c∈K, 0<|c−b|≤ε

|χ(b, c)− (c− b)|
|c− b|2

−→
ε→0

0,

and ν
({
b ∈ Rd∆

∣∣ χ is not continuous at (a, b)
})

= 0.

For example, χ1 given in (5.2) satisfies (H3(a)) for any ν and χ2(a, b) satisfies (H3(a))
whenever ν

(
{b ∈ Rd : |b− a| = 1}

)
= 0.

The main result of this section is stated below. It has some similarities with Theorem
8.7, pp. 41-42 from [16].

Theorem 5.1. For each n ∈ N ∪ {∞} take an ∈ Rd such that an → a∞ and con-
sider (δn, γn, νn) satisfying (H2(an)). Let also χ be such that the couple (χ, ν∞) satisfies
(H3(a∞)). Then, there is equivalence between

∀f ∈ C∞c (Rd), Tχ,an(δn, γn, νn)f −→
n→∞

Tχ,a∞(δ∞, γ∞, ν∞)f, (5.3)
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and the following three conditions

δn −→
n→∞

δ∞,

∀f ∈ C(Rd∆) vanishing in a neighbourhood of a∞,
∫
f(b)νn(db) −→

n→∞

∫
f(b)ν∞(db),

(
γn,ij +

∫
(χiχj)(an, b)νn(db)

)
i,j
−→
n→∞

(
γ∞,ij +

∫
(χiχj)(a∞, b)ν∞(db)

)
i,j
.

(5.4)

Remark 5.2. Let us point out that this theorem is not contradictory with the statement
of Theorem 8.7 in Sato’s book. We will see that there is an equivalence with a condition
with double limit as in Sato’s result, as a consequence of the part ii) of our Lemma 5.9
below. ♦

Before proving Theorem 5.1, let us first look to some of its consequences. We get
necessary and sufficient conditions for the continuity of the limit function in (5.3) or for
the convergence of sequences of Lévy-type operators (and processes) in terms of their
Lévy triplets. We start by introducing other notations to simplify our statements.
• Let χ : Rd × Rd∆ → Rd be a compensation function. For each a ∈ Rd consider
(δ(a), γ(a), ν(a)) and (χ, ν(a)) satisfying respectively (H2(a)) and (H3(a)). We denote

Lf(a) := Tχ,a(δ(a), γ(a), ν(a))f for any f ∈ C∞c (Rd). (5.5)

• For each n ∈ N and a ∈ Rd consider (δn(a), γn(a), νn(a)) satisfying (H2(a)). We
denote

Lnf(a) := Tχ,a(δn(a), γn(a), νn(a))f for any f ∈ C∞c (Rd). (5.6)

• For each n ∈ N and a ∈ Rd let µn(a) be a probability measure on Rd∆. We denote

Tnf(a) :=

∫
f(b)µn(a,db), for any f ∈ C(Rd∆). (5.7)

Corollary 5.3 (Continuity feature). The function Lf given by (5.5) is continuous for
any f ∈ C∞c (Rd) if and only if the following three conditions hold

• a 7→ δ(a) is continuous on Rd,

• a 7→
∫
f(b)ν(a,db) is continuous on the interior of {f = 0} ∩ Rd, for any f ∈

C(Rd∆),

• a 7→ γij(a) +
∫
χi(a, b)χj(a, b)ν(a,db) is continuous on Rd, for any 1 ≤ i, j ≤ d.

Example 5.4 (Neveu’s counterexample). In [1], pp. 423-424 one describes the following
example due to Neveu (see also [15]). Let ϕ be an arbitrary function in C(R). Considers
the operator

Lf(x) :=

ß
[f(x+ ϕ(x)) + f(x− ϕ(x))− 2f(x)]/[ϕ(x)2], on {ϕ 6= 0}
2 · 1

2 f
′′(x), on {ϕ = 0} .
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The jump measure associated to this operator is

ν(x) =
1

ϕ(x)2

(
δx+ϕ(x) + δx−ϕ(x)

)
1ϕ(x)6=0

and its diffusion coefficient is γ(x) = 2 · 1ϕ(x)=0. A consequence of Corollary 5.3 is the
fact that, for the present case, Lf is a continuous function, for any f ∈ C∞c (R). Indeed,
considering the compensation function χ1 given in (5.2), the third condition is clearly
verified since

γ(x) +

∫
(y − x)2

(1 + (y − x)2)2
ν(x, dy) =

2

(1 + ϕ(x)2)2
.

♦

Corollary 5.5 (Convergence towards Lévy-type operators). Assume that Lf given by
(5.5) is continuous for any f ∈ C∞c (Rd). The uniform convergence on compact sets,
Lnf → Lf , as n → ∞, holds for all f ∈ C∞c (Rd) if and only if the following three
conditions hold

• δn(a)→ δ(a), uniformly for a varying in compact subsets of Rd,

•
∫
f(b)νn(a,db)→

∫
f(b)ν(a,db), uniformly for a varying in compact subsets of the

interior of {f = 0} ∩ Rd, for any f ∈ C(Rd∆),

• γn,ij(a) +
∫

(χiχj)(a, b)νn(a,db) → γij(a) +
∫

(χiχj)(a, b)ν(a,db), uniformly for a
varying in compact subsets of Rd, for any 1 ≤ i, j ≤ d.

Corollaries 5.3 and 5.5 are straightforward consequences of Theorem 5.1.

Corollary 5.6 (Convergence towards Lévy-type operators - discrete context). Assume
that Lf given by (5.5) is continuous for any f ∈ C∞c (Rd). The uniform convergence on
compact sets, (Tnf − f)/εn → Lf , as n → ∞, holds for all f ∈ C∞c (Rd) if and only if
the following three conditions hold

• 1
εn

∫
Rd∆\{a} χ(a, b)µn(a,db)→ δ(a), uniformly for a in compact subsets of Rd,

• 1
εn

∫
f(b)µn(a,db) →

∫
f(b)ν(a,db), uniformly for a in compact subsets of the in-

terior of {f = 0} ∩ Rd, for any f ∈ C(Rd∆),

• 1
εn

∫
Rd∆\{a}(χiχj)(a, b)µn(a,db) → γij(a) +

∫
(χiχj)(a, b)ν(a,db), uniformly for a

in compact subsets of Rd, for any 1 ≤ i, j ≤ d.

Proof of Corollary 5.6. Notice that for any f ∈ C∞c (Rd), n ∈ N and a ∈ Rd, we have

(Tnf(a)− f(a))/εn = Tχ,a(δn(a), 0, νn(a))f,

with

δn(a) := ε−1
n

∫
Rd∆\{a}

χ(a, b)µn(a,db) and νn(a,db) := ε−1
n 1Rd∆\{a}(b)µn(a,db).

We conclude by applying again Theorem 5.1.
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Remark 5.7. Combining Theorems 2.2, 3.2 and Corollaries 5.5, 5.6 we can deduce some
sharp results of convergence for the processes associated to Ln, Tn and L. In particular,
Corollary 5.6 could be think as an improvement of the classical Donsker theorem, and
for instance, allows us to simulate Lévy-type processes. We illustrate this fact in the
following example. ♦

Example 5.8 (Symmetric stable type operator). Consider two continuous functions
c ∈ C(Rd,R+) and α ∈ C(Rd, (0, 2)) and denote, for f ∈ C0(Rd) and a ∈ Rd,

Lf(a) :=

∫
Rd

(f(b)− f(a)− (b− a) · ∇f(a)1|b−a|≤1)c(a)|b− a|−d−α(a)db.

As a consequence of Corollary 5.3, L maps C0(Rd) to C(Rd). For a ∈ Rd and n ∈ N∗,
define the probability measure

µn(a,db) :=
c(a)

n
|b− a|−d−α(a)1|b−a|≥εn(a)db, with εn(a) :=

Å
c(a)Sd−1

nα(a)

ã1/α(a)

.

Here Sd−1 = 2πd/2/Γ(d/2) is the measure of the unit sphere in Rd. Thanks to Corollary
5.6, for any f ∈ C∞c (Rd),

lim
n→∞

n
(∫

f(b)µn(a,db)− f(a)
)

= Lf(a), uniformly for a in compact subsets of Rd.

It is straightforward that for any a ∈ Rd and n ∈ N∗, µn(a) is the distribution of the
random variable

a+Q

Å
c(a)Sd−1

nα(a)U

ã1/α(a)

, with independent r.v. Q ∼ U(Sd−1), U ∼ U([0, 1]).

Here U(Sd−1) and U([0, 1]) denote the uniform distribution, respectively on the unity
sphere of Rd and on [0, 1]. To simulate a discrete time locally Feller processes associated
to (µn(a))a we can proceed as follows. Let (Qk, Uk)k be a sequence of i.i.d. random
variables with distributions U(Sd−1)⊗ U([0, 1]) and define, for n ∈ N∗ and k ∈ N,

Znk+1 := Znk +Qk

Å
c(Znk )Sd−1

nα(Znk )Uk

ã1/α(Znk )

.

Thanks to Theorem 3.2, provided that the martingale local problem associated to L is
well-posed, the sequence of processes (Znbntc)t converges in distribution to the solution
of the martingale local problem.

Let us note that it is possible to adapt this example when we try to simulate more
general Lévy-type processes. The heuristics is as follows: first we approximate the Lévy
measure by finite measures, we renormalise them, and then we convolute with a Gaussian
measure having well chosen parameters. ♦

The proof of Theorem 5.1 requires to use a technical lemma concerning the conver-
gence of measures.
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Lemma 5.9. For n ∈ N ∪ {∞} let an ∈ Rd be such that an → a∞. Consider also νn
a sequence of Radon measures on Rd∆ \ {an}. Suppose that, for any f ∈ C(Rd∆) such
that f vanishes on a neighbourhood of a∞, it is constant on a neighbourhood of ∆ and
it is infinitely differentiable in Rd, we have∫

f(b)νn(db) −→
n→∞

∫
f(b)ν∞(db). (5.8)

i) Let (fn)n∈N∪{∞} be a sequence of measurable uniformly bounded functions from Rd∆

to R such that, all fn, with n ∈ N ∪ {∞}, vanish on the same neighbourhood of a∞. In
addition, suppose that

ν∞

(
Rd∆ \

{
b0 ∈ Rd∆

∣∣ lim
n→∞,b→b0

fn(b) = f∞(b0)
})

= 0. (5.9)

Then we have ∫
fn(b)νn(db) −→

n→∞

∫
f∞(b)ν∞(db). (5.10)

ii) Assume, furthermore, that there exists η > 0 such that

sup
n∈N∪{∞}

∫
|b− an|21|b−an|≤η νn(db) <∞. (5.11)

Then, for any sequence (fn)n∈N∪{∞} of measurable uniformly bounded functions from

Rd∆ to R satisfying (5.9), fn(an) = 0 and that

lim
δ→0

lim sup
n→∞

sup
0<|h|≤δ

fn(an + h)

|h|2
= 0, (5.12)

we have the same conclusion, that is (5.10).

Proof of Theorem 5.1. Suppose first (5.3). Let f ∈ C(Rd∆) be such that f vanishes
on a neighbourhood of a∞, it is constant on a neighbourhood of ∆ and it is infinitely
differentiable in Rd. Hence f − f(∆) ∈ C∞c (Rd), and

Tχ,a∞(δ∞, γ∞, ν∞)(f − f(∆)) =

∫
f(b)ν∞(db),

while, for n large enough,

Tχ,an(δn, γn, νn)(f − f(∆)) =

∫
f(b)νn(db).

We deduce that ∫
f(b)νn(db) −→

n→∞

∫
f(b)ν∞(db).

Therefore we can apply the first part of Lemma 5.9 and in particular, for any f ∈ C(Rd∆)
vanishing on a neighbourhood of a, we get the second statement in (5.4).
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Consider θ ∈ C(R+, [0, 1]) such that θ(r) = 1 for r ≤ 1 and θ(r) = 0 for r ≥ 2. For
(a, b) ∈ Rd × Rd∆ and n ∈ N ∪ {∞}, define

χ̃(a, b) := θ(|b− a|)(b− a)1b 6=∆ and δ̃n := δn +

∫
(χ̃(an, b)− χ(an, b))νn(db). (5.13)

Therefore, for all f ∈ C∞c (Rd) and all n ∈ N ∪ {∞}, we recast

Tχ,an(δn, γn, νn)f = T χ̃,an(δ̃n, γn, νn)f.

Let φ be an arbitrary linear form on Rd and consider f ∈ C∞c (Rd) such that f(b) =
(b− a∞)φ on a neighbourhood of a∞. Then we have

T χ̃,a∞(δ̃∞, γ∞, ν∞)f = δ̃∞φ+

∫
(f(b)− χ̃(a∞, b)φ)ν∞(db)

and for n large enough

T χ̃,an(δ̃n, γn, νn)f = δ̃nφ+

∫
(f(b)− f(an)− χ̃(an, b)φ)νn(db).

Thanks to the first part of Lemma 5.9 we deduce∫
(f(b)− f(an)− χ̃(an, b)φ)νn(db) −→

n→∞

∫
(f(b)− χ̃(a∞, b)φ)ν∞(db).

We conclude that δ̃nφ −→
n→∞

δ̃∞φ, and since φ was chosen arbitrary, δ̃n −→
n→∞

δ̃∞.

Let Φ be an arbitrary symmetric bilinear form on Rd and if (e1, . . . , ed) is the canonical
basis of Rd, we denote Φij = Φ(ei, ej), i, j = 1, . . . , d. Consider f ∈ C∞c (Rd) such that
f(b) = Φ(b− a∞, b− a∞) on a neighbourhood of a∞. Then, for n large enough, we can
write

Tχ̃,an(δ̃n, γn, νn)f

=
d∑

i,j=1

Φijγn,ij + 2Φ(an − a∞, δ̃n) +

∫ (
f(b)− f(an)− 2Φ(an − a∞, χ̃(an, b))

)
νn(db),

or equivalently,

Tχ̃,an(δ̃n, γn, νn)f =
d∑

i,j=1

Φij

Å
γn,ij +

∫
(χ̃iχ̃j)(an, b)νn(db))

ã
+ 2Φ(an − a∞, δ̃n)

+

∫ (
f(b)− f(an)− 2Φ(an − a∞, χ̃(an, b))−

d∑
i,j=1

Φij (χ̃iχ̃j)(an, b)
)
νn(db).
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A similar equality holds with the index n replaced by ∞:

Tχ̃,a∞(δ̃∞, γ∞, ν∞)f =
d∑

i,j=1

Φijγ∞,ij +

∫
f(b)ν∞(db)

=
d∑

i,j=1

Φij

(
γ∞,ij+

∫
(χ̃iχ̃j)(a∞, b)ν∞(db))

)
+

∫ (
f(b)−

d∑
i,j=1

Φij (χ̃iχ̃j)(a∞, b)
)
ν∞(db).

Invoking again the first part of Lemma 5.9 we can write

∫ (
f(b)− f(an)− 2Φ(an − a∞, χ̃(an, b))−

d∑
i,j=1

Φij (χ̃iχ̃j)(an, b)
)
νn(db)

−→
n→∞

∫ (
f(b)−

d∑
i,j=1

Φij (χ̃iχ̃j)(a∞, b)
)
ν∞(db).

Hence we get

d∑
i,j=1

Φij

(
γn,ij +

∫
(χ̃iχ̃j)(an, b)νn(db))

)
−→
n→∞

d∑
i,j=1

Φij

(
γ∞,ij +

∫
(χ̃iχ̃j)(a∞, b)ν∞(db))

)
.

Since Φ was chosen arbitrary, for all 1 ≤ i, j ≤ d we get

γn,ij +

∫
(χ̃iχ̃j)(an, b)νn(db)) −→

n→∞
γ∞,ij +

∫
(χ̃iχ̃j)(a∞, b)ν∞(db)).

Due to the second part of Lemma 5.9 we deduce in particular

lim
n→∞

∫
(χ̃(an, b)− χ(an, b))νn(db) =

∫
(χ̃(a∞, b)− χ(a∞, b))ν∞(db).

Owing (5.13) we ends up with δn −→
n→∞

δ∞, which is the first sentence in (5.4).

Invoking again the second part of Lemma 5.9 we also have, for all 1 ≤ i, j ≤ d,∫
((χ̃iχ̃j)(an, b)− (χiχj)(an, b))νn(db) −→

n→∞

∫
((χ̃iχ̃j)(a∞, b)− (χiχj)(a∞, b))ν∞(db),

so we deduce the third sentence in (5.4).
We prove the converse, so we suppose that (5.4) holds. Let f ∈ C∞c (Rd) be. For

each n ∈ N ∪ {∞},

Tχ,an(δn, γn, νn)f =
1

2

d∑
i,j=1

γn,ij∂
2
ijf(an) + δn · ∇f(an)

+

∫
(f(b)− f(an)− χ(an, b) · ∇f(an))νn(db),
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or, equivalently,

Tχ,an(δn, γn, νn)f =
1

2

d∑
i,j=1

Å
γn,ij +

∫
(χiχj)(an, b)νn(db)

ã
∂2
ijf(an) + δn · ∇f(an)

+

∫ (
f(b)− f(an)− χ(an, b) · ∇f(an)−

d∑
i,j=1

(χiχj)(an, b)∂
2
ijf(an)

)
νn(db).

Applying the second part of Lemma 5.9 to the last term of the previous equation we
deduce

Tχ,an(δn, γn, νn)f −→
n→∞

Tχ,a∞(δ∞, γ∞, ν∞)f.

The proof is complete except for the proof of Lemma 5.9.

Proof of Lemma 5.9. Consider a sequence of functions (fn)n∈N∪{∞} as in the first part

of lemma. Let U1 be an open subset such that U1 b Rd∆ \ {a∞} and

U1 ⊃
⋃

n∈N∪{∞}

{
fn 6= 0

}
⊃ Rd∆ \

{
b0 ∈ Rd∆

∣∣∣ lim
n→∞,b→b0

fn(b) = f∞(b0)
}
.

Let ϕ1 ∈ C(Rd∆) be such that ϕ1 ≥ 1U1 , ϕ1 is infinitely differentiable in Rd, it vanishes
in a neighbourhood of a∞ and is constant in a neighbourhood of ∆, ϕ1. Then we have∫

ϕ1(b)νn(db) −→
n→∞

∫
ϕ1(b)ν∞(db).

Therefore

sup
n∈N∪{∞}

νn(U1) ≤ sup
n∈N∪{∞}

∫
ϕ1(b)νn(db) <∞.

Since Rd∆ \ {a∞} is a Polish space, the measure ν∞ is inner regular on this set. Hence,
if ε > 0 is chosen arbitrary, there exists a compact subset Kε ⊂ U1 satisfying

Kε ⊂
{
b0 ∈ Rd∆

∣∣ lim
n→∞,b→b0

fn(b) = f∞(b0)
}

and ν∞(Kε) ≥ ν∞(U1)− ε. (5.14)

Hence f∞ is continuous on Kε and fn converges uniformly to f∞ on Kε. There exists a
function ϕ2 ∈ C(Rd∆) such that {ϕ2 6= 0} ⊂ U1, ‖ϕ2‖ ≤ ‖f∞‖ and ‖ϕ2 − f∞‖Kε ≤ ε,
ϕ2 is infinitely differentiable in Rd and is constant in a neighbourhood of ∆. Combining
(5.14) and a compactness argument, we deduce that there exists an open subset U2 ⊂ U1

such that
Kε ⊂ U2 ⊂

{
b0 ∈ Rd∆

∣∣ lim sup
n→∞,b→b0

∣∣fn(b)− ϕ2(b0)
∣∣ ≤ 2ε

}
.

Arguing by dominated convergence, there exists a function ϕ3 ∈ C(Rd∆) such that
1U2 ≥ ϕ3 and

∫
ϕ3(b)ν∞(db) ≥ ν∞(U2) − ε, ϕ3 is infinitely differentiable in Rd, it
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vanishes in a neighbourhood of a∞ and is constant in a neighbourhood of ∆. Hence

lim inf
n→∞

νn(U2) ≥ lim inf
n→∞

∫
ϕ3(b)νn(db) =

∫
ϕ3(b)ν∞(db) ≥ ν∞(U2)− ε

≥ ν∞(Kε)− ε ≥ ν∞(U1)− 2ε.

Therefore we have

lim sup
n→∞

∣∣∣ ∫ fn(b)νn(db)−
∫
f∞(b)ν∞(db)

∣∣∣ ≤ lim sup
n→∞

∣∣∣ ∫ ϕ2(b)νn(db)−
∫
ϕ2(b)ν∞(db)

∣∣∣
+ lim sup

n→∞

∣∣∣ ∫
U2

(fn(b)− ϕ2(b))νn(db)
∣∣∣+ lim sup

n→∞

∣∣∣ ∫
U1\U2

(fn(b)− ϕ2(b))νn(db)
∣∣∣

+ lim sup
n→∞

∣∣∣ ∫
Kε

(f∞(b)− ϕ2(b))ν∞(db)
∣∣∣+ lim sup

n→∞

∣∣∣ ∫
U1\Kε

(f∞(b)− ϕ2(b))ν∞(db)
∣∣∣,

and we deduce

lim sup
n→∞

∣∣∣ ∫ fn(b)νn(db)−
∫
f∞(b)ν∞(db)

∣∣∣
≤ 0 + 2ε sup

n∈N
νn(U1) + 4ε sup

n∈N∪{∞}
‖fn‖+ εν∞(U1) + 2ε‖f∞‖

≤ 3ε
(

sup
n∈N∪{∞}

νn(U1) + 2 sup
n∈N∪{∞}

‖fn‖
)
.

Letting ε→ 0 we obtain that∫
fn(b)νn(db) −→

n→∞

∫
f∞(b)ν∞(db).

We proceed with the proof of the part ii) of lemma. Fix η > 0 as in the statement
and choose an arbitrary ε > 0. Thanks to (5.12), there exists 0 < δ < η/2 such that

lim sup
n→∞

sup
0<|h|≤2δ

fn(an + h)

|h|2
≤ ε

1 ∨ sup
n∈N∪{∞}

∫
|b− an|21|b−an|≤ηνn(db)

.

Consider a function ϕ ∈ C(Rd∆, [0, 1]) which vanishes in a neighbourhood of a∞ and
such that ϕ(a) = 1 for any a satisfying |a− a∞| ≥ δ. Then, using the first part i),∫

ϕ(b)fn(b)νn(db) −→
n→∞

∫
ϕ(b)f∞(b)ν∞(db).

Clearly for n ∈ N large enough, |a− an| ≤ δ, hence∣∣∣ ∫ (1− ϕ(b))fn(b)νn(db)
∣∣∣ ≤ ∫ |b− an|21|b−an|≤η νn(db) · sup

0<|h|≤2δ

fn(an + h)

|h|2
.
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We deduce that lim sup
n→∞

∣∣∣ ∫ (1− ϕ(b))fn(b)νn(db)
∣∣∣ ≤ ε. Similarly,

∣∣∣ ∫ (1− ϕ(b))f∞(b)ν∞(db)
∣∣∣

≤
∫
|b− a∞|21|b−a∞|≤η νn(db) · lim sup

n→∞
sup

0<|h|≤2δ

fn(an + h)

|h|2
≤ ε.

Therefore

lim sup
n→∞

∣∣∣ ∫ fn(b)νn(db)−
∫
f∞(b)ν∞(db)

∣∣∣ ≤ 2ε.

Letting ε→ 0 we can conclude the proof of ii).

To conclude this section let us give another consequence of Theorem 5.1. It is an
approximation result inspired from [3], Theorem 7.6 p. 172. Let L : C∞c (Rd) → C(Rd)
be an operator satisfying the positive maximum principle. We will denote by τhf(a) =
f(a+ h) the translation of f by h ∈ Rd. For a0 ∈ Rd, we introduce the operator

L(a0) : C∞c (Rd)→ C0(Rd) given by L(a0)f(a) := L(τa−a0f)(a0). (5.15)

Clearly Lf(a) = L(a)f(a). Since L(a0) is invariant with respect to the translation
and satisfies the positive maximum principle then its closure in C0(Rd)× C0(Rd) is the
C0 × C0-generator of a Lévy family (see for instance, Section 2.1 pp. 32-41 from [3]).
We denote by (Pt(a0))t≥0 its Feller semi-group.

Corollary 5.10 (Approximation with Lévy increments). Let (εn)n be a sequence of
positive numbers such that εn → 0 and define the transition operators Pn by

Pnf(a) := Pεn(a)f(a), for f ∈ C0(Rd).

Then, for any f ∈ C∞c (Rd),

1

εn
(Pnf − f) −→

n→∞
Lf, uniformly on compact sets.

Remark 5.11. 1) If the martingale local problem associated to L is well-posed, by
Theorem 3.2, one then deduces the convergence of the associated probability families.
2) Excepting the fact that the present convergence is for the local Skorokhod topology,
Corollary 5.10 is an improvement of Theorem 7.6 p. 172 from [3]. More precisely, we
do not ask that the closure of L should be a generator of a Feller semi-group, but only
suppose that the martingale local problem is well-posed. ♦

Proof of Corollary 5.10. Recall that χ1(a, b) is given by (5.2). Thanks to Theorem 2.12
pp. 21-22 from [8], for each a ∈ Rd there exists a triplet (δ(a), γ(a), ν(a)) satisfying
(H2(a)) such that, Lf(a) := Tχ1,a(δ(a), γ(a), ν(a))f , for all f ∈ C∞c (Rd). It is clear that
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for any a0, a ∈ Rd and f ∈ C∞c (Rd), the Lévy operator L(a0) defined by (5.15) satisfies
also

L(a0)f(a) = Tχ1,a(δ(a0), γ(a0), νa(a0)).

Here and elsewhere νa(a0) is the pushforward measure of ν(a0) with respect to the
translation b 7→ b− a0 + a.

To get the result of the corollary it suffices to prove that for any function f0 ∈ C∞c (Rd)
and any sequence an ∈ Rd converging to a∞ ∈ Rd, we have

1

εn

(
Pnf0(an)− f0(an)

)
−→
n→∞

Lf0(a∞). (5.16)

Thanks to Theorem 5.1 we have,

δ(an) −→
n→∞

δ(a∞),

∀f ∈ C(Rd∆) vanishing in a neighbourhood of a∞,

∫
f(b)ν(an, db) −→

n→∞

∫
f(b)ν(a∞,db),

and for all 1 ≤ i, j ≤ d

γij(an) +

∫
(χiχj)(an, b)ν(an, db) −→

n→∞
γij(a∞) +

∫
(χiχj)(a∞, b)ν(a∞,db).

It is not difficult to deduce that, there exists C ∈ R+ such that, for all n ∈ N∪{∞} and
f ∈ C∞c (Rd),

‖L(an)f‖ ≤ C‖f‖ ∨ max
1≤i≤d

‖∂if‖ ∨ max
1≤i,j≤d

‖∂2
ijf‖.

Hence supn∈N∪{∞} ‖L(an)f0‖ < ∞. Consider b∞ ∈ Rd, a sequence bn → b∞ and a

function f ∈ C(Rd∆) vanishing on a neighbourhood of b∞. Owing the first part of
Lemma 5.9 we deduce that∫

f(b)νbn(an,db) =

∫
f(b− an + bn)ν(an, db)

−→
n→∞

∫
f(b− a∞ + b∞)ν(a∞,db) =

∫
f(b)νb∞(a∞,db).

Thanks to Corollary 5.5, L(an)f converges uniformly on compact sets toward L(a∞)f ,
for all f ∈ C∞c (Rd). In particular, for each ε > 0 there exists an open neighbourhood U
of a∞ and n0 ∈ N such that

∀n ≥ n0, ∀a ∈ U, |L(an)f0(a)− L(a∞)f0(a∞)| ≤ ε. (5.17)

Let Pn be the unique element of M(L(an)) such that Pn(X0 = an) = 1. Then,∣∣∣ 1

εn

(
Pnf0(an)−f0(an)

)
−L(a∞)f0(a∞)

∣∣∣ =
∣∣∣ 1

εn

(
En[f0(Xεn)]−f0(an)

)
−L(a∞)f0(a∞)

∣∣∣
=
∣∣∣En

1

εn

∫ εn

0

(
L(an)f0(Xs)− L(a∞)f0(a∞)

)
ds
∣∣∣
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On the right hand side we split the expectation into two terms, by using the position of
τU introduced in (2.1) with respect to εn, and we get∣∣∣ 1

εn

(
Pnf0(an)− f0(an)

)
− L(a∞)f0(a∞)

∣∣∣
≤ En

[
1{τU<εn}

1

εn

∫ εn

0

∣∣L(an)f0(Xs)− L(a∞)f0(a∞)
∣∣ds]

+ En

[
1{τU≥εn}

1

εn

∫ εn

0

∣∣L(an)f0(Xs)− L(a∞)f0(a∞)
∣∣ds].

Plugging (5.17) into the second term we obtain, for all n ≥ n0∣∣∣ 1

εn

(
Pnf0(an)− f0(an)

)
− L(a∞)f0(a∞)

∣∣∣ ≤ 2Pn(τU < εn) sup
m∈N∪{∞}

‖L(am)f0‖+ ε.

At this level we apply Lemma A.4 result stated in the Apendix, concerning the uniform
continuity along stopping times with a compact neighbourhood K ⊂ U of a∞ and with
U :=

(
Rd × U

)
∪
(
(Rd \K)× Rd

)
. We deduce that

lim
n→∞

Pn(τU < εn) = 0.

Hence

lim sup
n→∞

∣∣∣ 1

εn

(
Pnf0(an)− f0(an)

)
− L(a∞)f0(a∞)

∣∣∣ ≤ ε,
and we end up with (5.16) by letting ε→ 0.

Appendix

We collect in this appendix several results proved in [7] and used in some proofs in
Sections 4 and 5. These results have technical statements and we use the notations
introduced in Section 2. We refer the reader to the article [7] for the introductory
context and for the proofs of each of the following lemmas.

Lemma A.1 (cf. Lemma 4.22, p. 154, in [7]). Let U be an open subset of S and L be
a subset of C0(S)×C(S) such that D(L) is dense in C(S). Assume that the martingale
local problem associated to L is well-posed. Then there exist a subset L0 of L and a
function h0 of C(S,R+) with {h0 6= 0} = U , such that the following properties hold.

i) L = L0 and h0L0 ⊂ C0(S)× C0(S).

ii) If h ∈ C(S,R+) is an arbitrary function such that {h 6= 0} = U and sup
a∈U

h

h0
(a) <∞,

then the (classical) martingale problem associated to (hL0)∆, obtained as in (2.2),
is well-posed in the space of càdlàg paths having values in S∆.
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Lemma A.2 (cf. Proposition 4.20, p. 153, in [7]). Let L1, L2 be two subsets of C0(S)×
C(S) such that D(L1) = D(L2) is a dense subset in C0(S) and take an open subset
U ⊂ S. Assume that the martingale local problems associated to L1 and L2 are well-
posed and let P1 ∈ M(L1) and P2 ∈ M(L2) be two solutions of these problems having
the same initial distribution. If for all f ∈ D(L1), (L2f)|U = (L1f)|U , then

LP2

Ä
XτU
ä

= LP1

Ä
XτU
ä
,

where τU is given by (2.1).

Lemma A.3 (cf. Lemma A.1, p. 159, in [7]). Consider Un ⊂ S an increasing sequence
of open subsets such that S =

⋃
n Un. For (n, a) ∈ N× R, let Pn

a ∈ P(Dloc(S)) be, such
that

i) for each n ≤ m and a ∈ R, LPma

Ä
XτUn

ä
= LPna

Ä
XτUn

ä
;

ii) for each n ∈ N, a 7→ Pn
a is weakly continuous for the local Skorokhod topology.

Then we have

j) for a ∈ R, there exists a unique P∞a ∈ P(Dloc(S)), such that for any (n, a) ∈ N×R,

LP∞a

Ä
XτUn

ä
= LPna

Ä
XτUn

ä
;

jj) the mapping (a, n) 7→ Pn
a on

(
N ∪ {∞}

)
× R with values in P(Dloc(S)) is weakly

continuous for the local Skorokhod topology.

Lemma A.4 (cf. Lemma 3.8, p. 139, in [7]). Let L1, . . . , Ln, . . . and L∞ be subsets of
C0(S)×C(S). Assume that D(L∞) is dense in C0(S) and that, the sequence of operators
Ln converges to L∞, in the sense of Theorem 2.2. Consider K a compact subset of S
and U an open subset of S × S containing {(a, a) | a ∈ S}. Then for each ε > 0 there
exist n0 ∈ N, δ > 0 such that, for any τ1 ≤ τ2 two (Ft+)t-stopping times, for any n ≥ n0,
and for any P ∈M(Ln) satisfying E[(τ2 − τ1)1{Xτ1∈K}] ≤ δ, we have

P(Xτ1 ∈ K, τ(τ1) ≤ τ2) ≤ ε,

with the convention X∞ := ∆ and where τ(τ1) denotes the (Ft+)t-stopping time

τ(τ1) := inf {t ≥ τ1 | {(Xτ1 , Xs)}τ1≤s≤t 6b U} .
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dans C satisfaisant au principe du maximum. In Sém. Théorie du potentiel. Exposé
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