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Abstract: We characterise the convergence of a certain class of discrete time Markov processes
toward locally Feller processes in terms of convergence of martingale problems. We apply our
results of approximation to get convergence of some random walks to diffusions behaving into
singular potentials. As a consequence we deduce the convergence of random walks in random
medium to diffusions in random potential. The results on locally Feller processes are also applied
to Lévy-type processes in order to get (or to improve) convergence results, simulation methods
and Euler schemes.
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1 Introduction

A number of models for phenomena in several domains (physics, biology, ...) are based
on a large class of stochastic processes, which are Feller processes. The present paper
address some important questions focusing on two types of Feller processes : Brownian
particle evolving in a some irregular potentials and Lévy-type processes. Recall that
the Brownian particle evolving in a some irregular potentials is the solution of a SDE
driven by a Brownian motion with the considered potential as a drift. Also, a Lévy-type
process is a Markov process which, roughly speaking behaves locally like a Lévy process.

Our main goal is to study the convergence of sequences of such type of processes in
the setting of these two examples. In particular we try to use approximating Markov
sequences which could have continuous or discrete time parameter in order to cover
scaling transformations or discrete schemes.

In the context of Feller processes there exist two corresponding results of convergence
(see, for instance [11], Theorems 19.25, p. 385 and 19.27, p. 387). For instance in the
case of Lévy-type processes, when one needs to consider unbounded coefficients in the
Lévy triplet technical difficulties could appear in the framework of Feller processes. On



the other hand the cited results of convergence impose the knowledge of a core of the
generator. This could not be the case in some probabilistic constructions. Detailed
overviews on these topics and many other references on the subject can be found in
9], [8], [12] for the case of Lévy-type processes. Likely, for Brownian particles, it can
be possible to consider potentials with very few constraints, in particular it could be
singular, or random (see for instance [14],[2] or [4]).

Our method to tackle these difficulties is to consider the context of the martingale lo-
cal problems and of locally Feller processes, introduced in [7]. In this general framework
we have already analysed the question of convergence of sequences of locally Feller pro-
cesses. In the present paper we add the study of the convergence for processes indexed
by a discrete time parameter toward processes indexed by a continuous time parameter.
We obtain the characterisation of the convergence in terms of convergence of associated
operators, by using the uniform convergence on compact sets, and hence operators with
unbounded coefficients could be considered. Likewise, we do not impose that the opera-
tor is a generator, but we assume only the well-posed feature of the associated martingale
local problem. Indeed, it could be more easy to verify the well-posed feature (see for
instance, [19] for Lévy-type processes, [20] for diffusion processes, [13] for Lévy-driven
stochastic differential equations and forward equations...).

We apply our abstract results and we obtain sharp results of convergence in the
context of the dynamic of a Brownian particle in a potential. It is often given by the
solution of the one-dimensional stochastic differential equation

1
dX; = dB, — S V'(Xy)dt,

where V : R — R. We prove the continuous dependence of the diffusion with respect
to the potential. We point out that it can be possible to consider potentials with very
few constraints. In particular we consider diffusions in random potentials as limits of
random walks in random mediums, as an application of an approximation of the diffusion
by random walks on Z. An important example is the convergence of Sinai’s random walk
[18] to the diffusion in a Poisson potential (recovering Theorem 2 from [I7], p. 296), to
the diffusion in a Brownian potential, also called Brox’s diffusion (improving Theorem
1 from [17], p. 295) and, more generally, to the diffusion in a Lévy potential.

Using again our abstract results we obtain sharp results of convergence for discrete
and continuous time sequences of processes toward Lévy-type process, in terms of Lévy
triplet. We prefer the use of the Lévy triplet than the symbol associated to the operator,
since the results are more precise in the situation of possibly instantaneous explosions.
This is due essentially to the fact that the vague convergence of bounded measures
cannot be characterised in terms of characteristic function. Our results can also be used
to simulate Lévy-type processes and we improve Theorem 7.6 from [3], p. 172, which is an
approximation result of type Euler scheme. We state the results in terms of convergence
of operators, but essentially one can deduce the convergence of the associated processes.

Let us describe the organisation of the paper. The next section contains notations
and statements from our previous paper [7], which are useful for an easy reading of the
present paper. In particular, we give the statements concerning the existence of solutions



for martingale local problems and concerning the convergence of continuous time locally
Feller processes. Section 3 is devoted to the limits of sequences of discrete time processes,
while Section 4 contains the study of the diffusions evolving in a potential. Finally, two
results of convergence toward general Lévy-type processes are studied in Section 5. The
appendix contains the statements of several technical results already proved in [7].

2 Martingale local problem setting and related results

In the present section we recall some notations and results concerning the martingale lo-
cal problems and locally Feller processes. Complete statements and proofs are contained
in a entirely dedicated paper [7].

Let S be a locally compact Polish space. Take A ¢ S, and we will denote by S > S
the one-point compactification of S, if S is not compact, or the topological sum SLI{A},
if S is compact (so A is an isolated point). The fact that a subset A is compactly
embedded in an open subset U C S will be denoted by A € U. If z € (S®)®+ is a path
on S we will denote its ”explosion” time by

E(z) :=inf{t > 0| {zs}s<t & S}.
The set of exploding cadlag paths is defined by

vt > f(l‘), = A,
D]OC(S) =X E (SA)R7L Vvt > 0, T = limsu Ts, ,
Vt > 0s.t. {Ts}s<t €S, @ := limgy x5 exists

and it will be endowed with the local Skorokhod topology (see Theorem 2.4 from [6])
which also becomes Polish space. Recall also that a sequence (z%)gcn in Dyoe(S) converges
to x for the local Skorokhod topology if and only if there exists a sequence (A¥); of
increasing homeomorphisms on R satisfying

Vit > 0s.t. {Ts}s<t €S, lim sup d(xs,m';,?) =0 and lim sup|\F —s| =0.

—00 <t k—oo s<t

The local Skorokhod topology does not depend on the (arbitrary) metric d on S?, but
only on the topology on S. We will always denote by X the canonical process on Djo¢(S).
We endow Dy (S) with the Borel o-algebra F := 0(X;, 0 < s < 0o0) and the filtration
Fi:=0(Xs, 0<s<t). For an open subset U € S, 7¥ denotes the stopping time given
by

UV i=inf{t>0| X, ¢Uor X;_ ¢U}. (2.1)

Denote by C(S) := C(S,R), respectively by C(S?) := C(S*,R), the set of real
continuous functions on S, respectively on S2, and by Co(S) the set of functions f
belonging to C(S) and vanishing at A. We endow the set C(S) with the topology
of uniform convergence on compact sets, while Cy(S) with the topology of uniform
convergence.



We proceed by recalling the notion of martingale local problem. An operator L from
Co(S) to C(S) will be denoted as a subset of Cy(S) x C(S). For L C Cy(S) x Cy(S) we
define

LA :=span (LU {(14a,0)}) € C(52) x C(SA). (2.2)

The set M(L) of solutions of the martingale local problem associated to L is the set of
probabilities P € P (Djo(S)) such that, for all (f,g) € L and open subset U € S,

tarU
f(Xiprv) — / g9(Xs)ds is a P-martingale
0

with respect to the filtration (F;); or, equivalently, to the filtration (F;);.
In Theorem 3.10, p. 139 from [7], the following result of existence of solutions for
martingale local problem is stated:

Theorem 2.1. Let L be a linear subspace of Cy(S) x C(S) such that its domain D(L) :=
{f€Cy(S) | g€ C(S), (f,g) € L} is dense in Cy(S). Then, there is equivalence be-
tween

i) existence of a solution for the martingale local problem: for any a € S there exists
an element P in M(L) such that P(Xo =a) = 1;

i1) L satisfies the positive mazimum principle: for all (f,g) € L and ag € S, if
f(ap) = supgeg f(a) > 0 then g(ap) < 0.

A linear subspace L C Cg(S5) x C(S) satisfying the positive maximum principle is uni-
variate, so it can be equivalently considered as a linear operator L : D(L) — C(5).

The martingale local problem is said well-posed if there is existence and uniqueness of
the solution, which means that for any a € S there exists an unique element P in M(L)
such that P(Xo =a) = 1.

A family of probabilities (Py)q € P(Dioc(S))? is called locally Feller if there exists
L C Cy(S) x C(S) such that D(L) is dense in Cy(.S) and

Va e S: Pe M(L) and P(Xp=a)=1<=P =P,.
The Cq x C-generator of a locally Feller family (Pg)q € P(Dioc(S))? is the set of functions
(f,9) € Co(S) x C(S) such that, for any a € S and any open subset U € S,

tatU
F(Xiprv) — / 9(Xs)ds is a P,-martingale.
0

It was noticed in Remark 4.15, p. 150 from [7], that if h € C(S,R%) and if L is the
Cg x C-generator of a locally Feller family, then
bL :={(f,bg)|(f,g9) € L} is the Cy x C-generator of a locally Feller family. (2.3)

Remind that a Feller semi-group (7})icr, is a strongly continuous semi-group of
positive linear contractions on Cy(S). A natural example of locally Feller family is



the family of probability measures associated to a Feller semi-group (see Remark 4.6,
p. 144 from [7]). The Cy x Cy-generator of the Feller semi-group is the set Ly of
(f,9) € Co(S) x Cy(S) such that, for all a € S

o1
lim * (7,f(a) ~ f(@)) = gla).
Thanks to Propositions 4.2 and 4.4, pp. 142-143 from [7], the martingale problem
associated to Ly admits a unique solution and, if L denotes the Cy(S) x C(S)-generator
of this solution then, taking the closure in Cy(S) x C(S), we have

Lo=LnN (Co(S) X Co(S)) and L = fo (2.4)

The following result of convergence is crucial for our further developments and it was
stated in Theorem 4.17, p. 151, from [7]. We point out the fact that one does not need to
know the generator of the limit family, but only the fact that a martingale local problem
is well-posed. We denote the weakly convergence for the local Skorokhod topology by

the symbol P(MS)).

n—oo
Theorem 2.2 (Convergence of locally Feller family). For n € NU {oo}, let (P), €
P(Dyoe(S))° be a locally Feller family and let Ly, be a subset of Co(S) x C(S). Suppose
that for any n € N, L, is the generator of (P"),. Furthermore assume that D(Lso) is
dense in Co(S) and that

Va e S : PeM(Ly) and P(Xop=a) =1<= P =P;°.
Then we have equivalence between:

i) the mapping
NU{oco} x P(52) = P (D(9))

(np) v Phi=[Puu(da)
is weakly continuous for the local Skorokhod topology, where Pa(Xo = A) = 1;
ii) for any an,a € S s.t. ap —2 a we have Py P(ID);_)LC(}S)) |
iii) for any f € D(Lso), there exist f, € D(Ly,) for each n, such that we have f, Cg) f

and Lo, f» C%" Loof.

The Appendix contains the statements of other technical results proved in [7] and
which will be used only in some specific points of proofs of our results.

3 Convergence of discrete time locally Feller families

We start by introducing a discrete time version of the notion of locally Feller family.



Definition 3.1 (Discrete time locally Feller family). Denote by Y the discrete time
canonical process on (S2)N and endow (S°)N with the canonical o-algebra. A family
(Po)a € P ((SA)N)S is said to be a discrete time locally Feller family if there exists

an operator T : Cy(S) — Cp(S), called transition operator, such that for any a € S:
P.(Yp =a) =1 and

vneN, Vf € Co(S), Eo(f(Yar1) | Yo, .- Yn) = LpyunyTF(Ya) Po-as.  (3.1)

If we denote by Pa the probability defined by Pa(Vn € N, Y;, = A) = 1, then for each
p € P(S?), P, := [P,u(da) satisfies also (3.1)).

The following theorem contains our result of convergence of a discrete time locally
Feller family to a continuous time locally Feller family. Once again, the main difference
with respect to Theorem 19.27, p. 387 from [I1], is that one only needs to know the fact
that a martingale local problem is well-posed. In what follows, as usual || will denote
the integer part of the real number 7.

Theorem 3.2 (Convergence). Let L C Co(S) x C(S) be an operator with D(L) a dense
subset of Co(S) and such that the martingale local problem associated to L is well-posed.
Let (Po)a € P(De(S))° be the associated continuous time locally Feller family. For
each n € N we introduce (P?), € P((S®)N) a discrete time locally Feller family having
its transition operator denoted by T,. Set L, := (T,, —id)/e,, where (e,)n is a sequence
of positive constants, €, — 0, as n — co. There is equivalence between:

P(Doe(S
a) for any pin, € P(S?) s.t. pin 2 poweakly, Loy ((Ye/e,))t) (nljogo )

) POl p .
n—

P,;

b) for any an,a € S s.t. ay — a, we have Zpy ((YLt/enJ)t

)

¢) for any f € D(L), there exists (fn)n € Co(S)N s.t. fn Coj“i f and Lof, Ci—%) Lf.

Proof. Introduce Q := (S2)N x RY and G := B(S?)*N @ B(R4)®N. For any p € P(S2)
and n € N, we denote

— ®N
P =P, ®&(1)"", (3.2)
where £(1) is the exponential distribution with expectation 1. We also set
Yo : Q - S and E, : Q — Ry (3.3)
((We)k: (SK)k) = Un ((We)ks (sK)k) = Sn '
and Ny ;= inf{n € N ’ Ei+...4+ Eyt1 > t}, t >0, a standard Poisson process.
Step 1) For each n € N we set
Zp =Yy, . (3.4)

We will prove that a’) < V') < ¢), where ') and b') are the following assertions con-
cerning processes Z™:

a) for any pim, pn € P(S2) st pin — pt, Loy (Z7) P(legs)) Py;



P(Bioc(S))

n—oo

) for any an,a € S s.t. a, — a, Lpn (Z7) P,.
n—oo n

If we prove that for all u € P(S2), Zen(Z") € M(Ly), then invoking Theorem 2.2 .
applied to L,, and L, our claim o’) < ¥/ ) < ¢) will be achieved. It is enough to prove
that, for each f € Cy(S) and 0 < s <'t,

Bx 1) - 1z - [ Bas(zadgr] <o (55)

where the filtration is given by GI* := o(Ny/.,, Z¢, s <t), Let us introduce the (Gf'):-

stopping times 77 := inf {u >0 ’ Nuyje, = k} Then, for all £ € N
E; [f(ZtnA(T,gHvs)) — F(Zixivs) ‘ gm(va)}
= ]l{t>Tg,S<T]?+1}EZ [(f(Yk-i-l) (Yk))]l{Tg+1§t} ’ g?/\ "\/5)}
= Lisrps<rp, B [(f(YkH) SR Uy, —rpvs<t—rpvs) ‘ g7 nVS :

Recalling that 75, is a transition operator and the fact that (IV, ., ) is a Poisson process,
we get for all k € N,

B [ (Zinep, vs) = F(Zippvs) ‘ ng(TgvS)}
= Lo rpsarp, (T f (Vi) — F(Yi) (1 — exp(—(t — 74 V 5) /en))
= Lporpscrp, y Inf (Znys)en (1 — exp(—(t — 7 V 5) /2n)). (3.6)
Similarly, we can compute, for all £k € N,
an |:/t/\(TI?+1VS) Lo (2 du‘QM(TnVS)}
tA(TIVs)

= 1{t>7’£,s<7,?+1}Lnf(Z%\/s)EZ [t A Tl?—l—l - Tl? v S‘Q?A(TSVS)}

|

Once again, since the distribution of 77!, ; — 7;' is exponential we get, for all k € N,

t/\(T,?Jrl\/s)
Ej | /t Lof(Z2)du )

AT Vs)
= Vgt onf (Zip) [ () exploufen)((¢ =V ) A
= ]l{t>7,?,s<T£+1}Lnf(Z7%L\/s)5n (1 - exp(*(t - T’? \/ S)/&n)) . (37)

Hence, substracting (3.7)) from (3.6), we get, for all k € N,

= Lpsrpscrp, 3 Inf( n\/s)]EZ [(t —TE V8) A (T — TV 5)

(TR 1 Vs)

B[ 12 g, o) = F o) — | Lo f(Z3)du

tA(TRVS)

7



Recalling the definition of the stopping times 77" and by summing on k € N, we also get

t
B[ 120~ 1(2) ~ [ Lotz
t/\(T,?Jrl\/s)
= ]E[L |:Z <(Zt/\(7'g+l\/s)) - f( t/\(Tng)) - / Lnf(Zu)du> gs]
k>0 tA(T]Vs)
n n n n tA(T}’(’ILJrl\/S) n n n
= E, []Eu [f( inGp,vs) — F(Zippvs) / L f(Z)du gt/\(ﬁ?\/s)} gs},
k>0 tA(TPVs)
Owing (3.8) we get (3.5) and we end up with .Zpn(Z") € M(Ly), for each n € N.
Step 2. Set, for all t > 0 and n € N,
[t/en]
rp = en( D B+ (t/en — [t/en)) Blyjen i ) (3.9)
k=1

where the exponential independent random variables Fj has been introduced in ({3.3)).
Thanks to (3.4)), for any ¢t > 0 and n € N, we have Y};/. | = Z{l?. We claim that

Vvt >0, Ve >0, sup ]P’ﬁ(sup 'y —s| > 5) — 0. (3.10)
HEP(SA) s<t oo

Fixt >0, >0,n € Nand u € P(S?). Since I'" is a continuous piecewise affine
function we have

k
sup[T7 = 5| < sup [T —heal = sup [en D Bi—hea| =cu sup My,
s<t keN keN = keN
k<[t/en] k<[t/en] - k<[t/en]

where M = Zle E; — k. Here [r]| denotes the smallest integer larger or equal
than the real number r. Recalling again that FE; are independent random variables,
with exponential distribution £(1), we have that the discrete martingale (My)y satis-
fies IEZ[M]?] = KE}[(Er — 1)?] = k. Applying Markov’s inequality and maximal Doob’s
inequality to the martingale M} we get

B [ supiciye,) M|

PZ(sup II'Y —s| > 5) < ]P’Z(en sup | M| > 8) <
s<t kg[t/sn-‘

2 2
4B (M n]eh afrje)e it ce
=~ 52 52 —

The claim (3.10)) is verified.
Step 3. To end the proof we need the following technical result



Lemma 3.3. For n € N, let (Q",G",P") be a probability space, let Z™ : Q" — Dyye(S)
and T™ : Q" — C(R4+,Ry) be a increasing random bijection. Define Z™ = Z™ o T'™.
Suppose that for each € >0 and t € Ry

]P’"(sup Iy —s| > €> — 0. (3.11)

s<t n—00
Then for any P € P(Dy,.(S)),

Lon(2") — P & Lpn(Z") — P, (3.12)

n—o0 n—o0

where the limits are for the weak topology associated to the local Skorokhod topology.

Thanks to Lemma we get a) & a') and b < V). By Step 1 we end up with
a) < b) < ¢). The proof is complete except for the proof of Lemma O

In fact we will state and prove a more general result:

Lemma 3.4. Let E be a Polish topological space, for n € N, let (Q",G",P") be a
probability space and consider random variables Z™ Z™ : Q" — E. Suppose that for
each compact subset K C E and each open subset U C E? containing the diagonal

{(z,2)|z € E},

P (2" ek, (272" ¢U) — 0. (3.13)
n—oo
Then, for any P € P(E),
Lon(Z") — P implies Lo (Z7) — P, (3.14)

where the limits are for the weak topology on P(E).

Proof of Lemma([3.4 Assume that Zpn(Z™) — P. This means that for any bounded
—00

n

continuous function f : E — R, lim,_,o E"[f(Z")] = [ fdP. Since E is a Polish space
the sequence (Zpn(Z™))y is tight. Take an arbitrary ¢ > 0 and let I be a compact
subset of E such that

VneN, PYZ"¢K)<e. (3.15)
By applied to K and U := {(2,2) | | f(Z2) — f(2)| < €}, we have
P" (2" €K, |f(Z7) ~ f(Z2")] 2 <) — 0.

We decompose

B'((2") - [ faP| < [E"(f(2") - [ jap|+ B2 - £(27)



and also we split the second term on the right hand side of the above inequality
En|f(Zn) - f(Zn)| =E" [|f(Zn) - f(Zn>\]l{Z"EIC,|f(2")—f(Z")\Zg}:|
+ E" [lf(Zn) - f(Zn)’]l{zne,c,‘f(gn)_f(zn)|<a}} +E" [‘f(Zn) - f(Zn)}]l{Z"QIC}} .

Hence by ((3.15))

(12" - [ jap| < [ziszm) - [ gap|

+2|fIIP" (2" € K, [£(Z") = £(Z7)] = &) + (1 + 2| £]).

Letting firstly n — oo and then ¢ — 0, we deduce that E"[f(Z")] — [ fdP. Hence,

since f is an arbitrary bounded continuous function, we get Zpn (Z”) — P. O
n—o0

We can now provide the

Proof of Lemma[3.3 We denote by A the space of increasing bijections A from R, to
R, and for t € Ry we denote ||A —id||; := sup,<; |As — s|. Since

VAe A, VEeR,, Ve >0, [A—idllie <e= A" —id]; <e,
the hypotheses of the lemma are symmetric with respect to Z and Z , hence it suffices
to prove only one implication. Let us suppose Zpn(Z") ? P and we will verify that
n—oo
Zpn(Z") — P by using Lemma
n—oo
Let K be a compact subset of Dy, (S) and U be an open subset of Dy, (S)? containing
the diagonal {(z, 2) |2z € Dioc(S)}. We prove the assertion
>0, 3e>0,V2ek, VA€ A, [[A—id];<e= (z,20)) €U. (3.16)

If we suppose that is false, then we can find two sequences (z"), € KV and
(A™M),, € AN such that, for all n € N, (2,2 0 \*) € U and for all t > 0, ||\, — id||; — O,
as n — oo. Since K is compact, possibly by taking a subsequence, we may suppose the
existence of z € KC such that 2" — z as n — co. Then, it is straightforward to obtain

UZ (20N — (2,2) € U.

n—o0

This is a contradiction with the fact that U is open, so (3.16)) is proved. Take ¢ and e
given by ({3.16)), then

P" (2" €K, (2", Z2") ¢U) <P (|1 —id||; > e) — 0.

n—oo

Hence, thanks to Lemma Lon(Z") —> P. O
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4 Approximate diffusions evolving in measurable potential

As usual we denote by L%OC(R) the space of locally Lebesgue integrable functions. A
real continuous function f is called locally absolutely continuous if its distributional
derivative f’ belongs to Li (R). We introduce the set of potential functions

Vo= {V : R — R measurable | ¢/l € L%OC(R)} .

It is straightforward to prove that there exists a unique Polish topology on ¥ such that
a sequence (V,,), in ¥ converges to V' € 7 if and only if

M
VM e Ry, lim eV (@) _ eVala) |y e=VI(a) _ g=Vala)| qq = 0.

n—oo |_ar

For a potential V' € ¥, the operator

1, d d

v v4a v

= eV eV — 4.1
L 2° da° da (4.1)
is the set of couples ( f, ) € Co(R) x C(R) such that f and e~V f’ are locally absolutely
continuous and g = 1e¥(e”V f’). Notice that it is a particular case of the operator

D, D+ described in [14], pp. 21-22. Heuristically, the solutions of the martingale local
problem associated to LY are solutions of the stochastic differential equation

1
dX = dB; — JV/(X)dt,

where B is a standard Brownian motion. Our first main result of this section are ap-
plications of Theorems and (or Theorems 3.10 and 4.17 in [7]). In particular we
will say that the sequence of operators L,, converges to Lo, in the sense of Theorem
if 4ii) of that theorem holds.

Theorem 4.1 (Diffusions in a potential).

1. For any potential V- € ¥, the operator LV is the generator of a locally Feller family.

2. For any sequence of potentials (Vy,)n in ¥ converging to V. € ¥ for the topology of
¥, the sequence of operators LV» converges to LY, in the sense of Theorem .

The proof of this theorem involves the use of a technical lemma which is stated below.
Its proof is essentially an application of the second chapter of [14] and it will postponed
at the end of this section.

Lemma 4.2. Let V be a potential in ¥ and let h € C(R,R%) be a function such that,
for alln € N,

1 n+1 n+2 pntl
inf a) < — / / V)=V(a)qpda A / / eV (@=Vqapdq
n§|a\§n+1 n n+

/ / dbda/\/_n 1/ "V ®dbda] . (4.2)

11



Then the operator (hLY) N (Co(R) x Co(R)) is the Co x Co-generator of a Feller semi-
group, with hLY introduced in (2.3)).

Remark 4.3. Consider aj,as € R and let V' : [a; A ag,a1 V az] — R be a measurable
function such that elV! € L'([ay A ag, a1 V as]). For any absolutely continuous function
f € C(la1 Aag, a1 Vas],R) such that eV f” is absolutely continuous and g := 3e" (™" f')’
is continuous, we have

f(az) =f(a1)+/aa2 f’(b)db:f(a1)+/aa2 ev(b)((eVf’)(al)—i—/ab(eVf’)’(c)dc)db.

Hence )

Flas) = flar) + / " eV“’)((e*V #)(a1) + 2 / e Vg(c )dc)db (4.3)

al al

and furthermore
fla2) = f(a1) + (e_vf/)(al)/ Dap + 2g(ay / / dedb

+2 / / VOV (g(c) — glar))dedb.  (4.4)

O

Proof of Theorem[].1. The first part is an application of Theorem Thanks to
Lemma and using (2.3))-(2.4]) we deduce that the operator

L= (V) 1 (Call) x CoR)

is the generator of a locally Feller family. Here the closure is taken in Co(R) x C(R), and
it is clear that L C LY. Secondly, thanks to the representation (4.3 it is straightforward
to obtain LY = LV and thanks to it is straightforward to obtain that LV satisfies
the positive maximum principle. Finally, using Theorem we deduce the existence
for the martingale local problem associated to LY. Hence LY = L is the generator of a
locally Feller family.

We proceed with the proof of the second part of the theorem. Let us denote by
(P"), and (P2°), the locally Feller families associated, respectively, to LY* and LY.
Owing Theorem it is enough to prove that for each sequence of real numbers (ay, ),
converging to a € R, Py converges weakly to Pg°  for the local Skorokhod topology.

At this level we need to employ one of the results in the Apendix : thanks to Lemma
for M € N*, there exists hpr € C(RR, [0, 1]) such that

{bar # 0} = (=2M,2M),  {bar = 1} = [-M, M],

and, for all n € N, the martingale local problems associated to hy;LY and to hpsLV»
are well-posed. For n € N and M € N*, denote by (P2™), and (P3>™), the locally

12



Feller families associated, respectively with hy,LY" and by LY. For n € N, define the
extension of hyLV7:

Ly = {(f7 g9) € Co(R) x C(R) ‘9 = %f)MeV" (e_an,)/]l(—QM,QM)}a

where f and e~V» f’ are supposed locally absolutely continuous only on (—2M,2M).

Thanks to (4.4]) it is straightforward to obtain that L, js satisfies the positive maximum

principle, so using again Theorem we get that L, »s is a linear subspace of the

generator of the family (PZ’M)G. We will prove that the sequence of operators Ly, as
converges to the operator hp/L"Y in the sense of Theorem Let f € D(L) be and
define f,, € Co(R) by

fla), a¢ (—2M —n=1t 2M +n~1)

fn(a> = a
£0) + / eVn(®) [(e—V £1(0) +2 / VoY f(c)dc}db, a € [~2M,2M],
0 0

with f, affine on [-2M —n~!, —2M] and on [2M,2M +n~']. Hence f, € D(m) and
Ly vfn = ha LY f. We have

Ifo=fIl<  sup  |fu(a) = fla)] + sup |f(a2) — f(a1)].
a€[—2M,2M)| 2M<|a1|,las|<2M+n"1
0<aiaz

Since f is continuous, the second supremum in the latter equation tends to 0. It is
straightforward to deduce from , by using the expression of f,, and the convergence
V., — V, that
sup  |fala) — f(@)] — .
a€[—2M,2M) n—o0

Hence || fn — f|| = 0 as n — 0o, so the by Theorem [2.2}

prM _, poM, (4.5)

Again, we need to use two results stated in the Appendix : thanks to Lemma for
all M € N* and n € NU {00},

+(=M,M) (=M, M)
Lpp (x ) =Ly (X ). (4.6)
Finally, we employ the result of localisation of the continuity contained in Lemma
Gathering (4.5) and (4.6)) and letting M — oo, we end up with P — Pg° . O
n—oo

The second main result of this section gives an approximation result of a diffusion
in a potential by using a sequence of random walks. Its proof is based on the result
Theorem [3.2] in the preceding section.
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Theorem 4.4 (Approximation by random walks on Z). For (n,k) € N X Z, choose
real numbers qy 1 and strictly positive numbers ,. For all n € N, in accordance with
Definition let (P?)), € P(ZN)Z be the unique discrete time locally Feller family such
that

1
We introduce the sequence of potentials in ¥V given by
la/en] —la/en] -1
Vn(a) = Z Qn,k]laZEn - Z qn,—k]la<07
k=1 k=0

such that V,, converges for the topology of ¥ to a potential of ¥, say V. Let (Pg), be the
locally Feller family associated with LY . If the sequence €, — 0, then, for any sequence
tn € P(Z) such that their pushforwards with respect to the mappings k — enk converge
to a probability measure p € P(R), we have

) P0uf5)

n—oo

Loy, ((enY]1/e2))t Py.

Before proving this theorem, we give an important consequence concerning a random
walk and a diffusion in random environment. Then we will discuss some examples.

Corollary 4.5. For each n € N, let (2", G",P") be a probability space and consider the
random variables

(@) Q" = RE (Z1): Q" 2N and &, : Q" — R .

Suppose that for any n € N and k € N, P"-almost surely,

1
P (Zisy = 2 +1 | en, (@ oeen: (ZiDose<k) = oy
1 1
Pr(Z% . = 7" —1 YA = =1 .
( k41 k | €n; (Qn,E)ZEZa ( I )Oﬁfgk) e InZy 4 1 IS |

For any n € N and a € R, denote the random potential in ¥V by

I_a/anj - \_a/anj -1
Whi(a) := Z Gnkla>e, — Z In,—kLa<o - (4.7)
k=1 k=0

Furthermore on a probability space (2, G,P) consider the random variables W : Q — ¥
and Z : Q — Dye(R), such that the conditional distribution of Z with respect to W
satisfies, P-a.s.

Lo (Z | W) e M(IWY).

If €, converges in distribution to 0, if €,Z§ converges in distribution to Zy and if W,
converges in distribution to W for the topology of ¥, then (571Zﬁ/a2j)t converges in
distribution to Z for the local Skorokhod topology.
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Proof of Corollary[f.5. For any a € R, V € ¥ and € > 0, let P%V¢ € P(ZN) be the
unique probability such that P*Y¢(Yy = |a/e]) = 1 and, P»Y*-almost surely, for all
keN,

PV (Vg1 =Y +1 | Yo,...,Yk):1—P“7V’E(Yk+1:Yk—1 | Yo,...,Y3)

/sYk +e
Yk € Yi—¢

Let P%Y9 € P(D}c(R)) be the unique element belonging to M(L") and starting from
a. Consider F' a bounded continuous function from Dy, (R) to R and define the bounded
mapping G : R x ¥ x Ry — R as follows:

G(a,V,e) :=E“V* [F ((eYy)e2))¢)] and  G(a,V,0) :=E“’[F(X)].

Thanks to Theorem the mapping G is continuous at every point of R x ¥ x {0}.
Therefore we have

E" [G(en 28, Wi, )] — E[G(Zo, W,0)].

n—oo

Hence

E"[F((enZfyyea))e) | = B [E" [F((enZiyyea))e) |ons 28, (anoeez]|

— E"[G(enZf}, Was2n)] — E[G(Z0,W,0)] = E|E[F(2)|Z0, W]| =E[F(2)] .

We conclude that (anﬁ Je2 J)t converges in distribution to Z. O

Example 4.6. 1) Let (gx)r be a sequence of centred real i.i.d random variables with
finite variance o2 and suppose that Gn,k = \/Enqk, Where g, are strictly positive numbers.
Suppose also that IV is a Brownian motion with variance o. Clearly, by Donsker’s theo-
rem, W, given by converges in distribution to W. Therefore we can apply Corollary
to deduce the convergence of Sinai’s random walk in a random i.i.d. medium (in-
troduced in [I8]) to the diffusion in a Brownian potential (introduced in [2]). Hence,
we recover Theorem 1 from [I7], p. 295, without assuming the hypothesis that the
distribution of gy is compactly supported.

2) Fix deterministic ¢ € R and A € R. Suppose that, for each n € N, (g, 1)r is a
sequence of real i.i.d random variables such that P"(¢,r = ¢) =1 —P"(gp 1 = 0) = Aep,
where again ¢, are strictly positive numbers.. Suppose also that W (a) = qN,,, where
N is a standard Poisson process on R. Then, it is classical (see for instance [4]), that W),
given by converges in distribution to W, so we can apply again Corollary We
deduce the convergence of Sinai’s random walk to the diffusion in a Poisson potential.
so we recover Theorem 2 from [17], p. 296.

3) More generally, suppose that for each n € N, (g, %) is an i.i.d sequence of random
variables. Likewise, suppose that W, given again by , converges in distribution to
a Lévy process W. We can apply Corollary to deduce the convergence of Sinai’s
random walk to the diffusion in a Lévy potential and introduced in [4]. O
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Proof of Theorem[{.4. For n € N, define the continuous function ¢, : Rx R — R given

by
a+h b
n(a, h) =2 / / eVn®)=Vale)qc db.

For each a € R, it is clear that ¢,(a,-) is strictly increasing on Ry and ¢, (a,0) = 0.
Furthermore, since V;, is constant on the interval [en[a/en],en([a/en] + 1)),

en(fa/en]+1) b
onla,2e,) > 2/ / eVn(0)=Va(©qedp = 5
En ’—a/an.l En I—a’/‘S"-‘

Hence, there exists a unique 11 ,(a) € (0, 2¢,] such that
#n(a,v1,n(a)) = e (4.8)

Using the continuity of ¢,, and the compactness of [0, 2¢,], it is straightforward to verify
that 11, is continuous. In the same manner, we may prove that, for each a € R, there
exists a unique ¥ ,(a) € (0,2, such that

(Pn(av —¢27n<a)) - 57217 (4'9)

and also that v ,, is continuous. Introduce the continuous function p, : R — (0, 1) given

by
a +'¢}1 n
pn(a) == / Va(®)qp, / / eV ®)dp, (4.10)
a— w2 n a— ¢2 ’ﬂ(a

and define a transition operator 7, : Co(R) — Co(R) by
Tnf(a) :=pn(a)f(a+¢1n(a)) + (1 = pn(a)) fa = than(a)).
According to Definition let (P2), € P (RN)R be the discrete time locally Feller

family with transition operator T,. Since V,, is constant on [e,k,en(k + 1)) and on
[en(k —1),e,k), for any k € Z, we have

en(k£1) b
GnlEnk, £20) = 2 / / dedb = 2.
enk enk

Therefore we get Y1 n(enk) = V2, (enk) = €,. Furthermore

o fsa:(lzil) V() qp - 8neVn(En(k’—l)) B 1
P (Enk) = fg"((kkﬁl)) a0y EneVeEnED) | g oValenk) 1+ ok
En(kK—

Reporting in the definition of the transition operator, for any f € Co(R), we obtain

T, f(eak) = Flenlk+ 1) + o flen(k — 1).

1+ eIk 1+e
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We deduce that for any p € P(Z) and n € N, Zpn(e,Y) = ﬁg , where 1 is the pushfor-
ward measure of p with respect to the mapping k — e, k.

We will employ Theorem of convergence of discrete time Markov families. If
f € D(LY), we need to prove that there exists a sequence of continuous functions
fn € Co(R) converging to f such that (T, f, — fn)/e2 converges to LY f. Thanks to the
second part of Theorem there exists a sequence of continuous functions f,, € D(L"")
such that f,, converges to f and LY f,, converges to LY f. Applying to fn and V,
and invoking and , we have for all a € R and n € N,

at11 n(a) .
Fa+ bin(@) =f(@) + (& £)(a) / &V Odb + 2L £, (a)

a+y1,n(a) b
Lo / / VOV (LVa . (¢) — LV £, (a))de db,

and

F(a— ban(a)) =f(a) — (¢ £)(a) / eV Odb + 2LV £, (a)
a—12 n(a)

a—2,n(a) b
w2 f OO 6) - L () de

Employing once again the definition of the transition operator we can bound, for all
a€Randn €N,

Tnfn(a) — fn(a)

8

— LV fu(a)]
2pn ‘ /“*w“‘(“ / VOV (LVa fo(e) — LY fu(a))dedb

l—pn ’/“ vanle / VOVE(LY f(0) L fu(a))dedb].

It is then straightforward to deduce that, for all a € R and n € N,

Inful@) Z1n0) _ i, ()] < sup | fulat h) = LY fufa)]

Then it is not difficult to conclude that (T}, f, — fn)/e2 converges to LY f. Finally, we
will use Theorem of convergence of discrete time Markov families. For u, € P(Z)
we denote by i, the push-forward of u, with respect to the mappings k — e,k. Then
for any sequence u,, € P(Z) such that 1, converges to a probability measure u € P(R),
we deduce that

)) P e

Ly, ((EnYiye))e) = Lo (Ve ))e P,

n—o0
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Proof of Lemma[{.3 As was already announced this proof is essentially an application

of the second chapter of [I4]. For the sake of completeness we give here some details.
The operator hLY coincides on Co(R) x Co(R) with the operator described in [I4],

pp. 21-22, D;, D € C(R) x C(R) on the extended real line R. This operator involves

the measures
QG_V(a)

b(a)
Owing the hypothesis (4.2), we have

00 a n+2 n+1
/ / dm(b)dp(a) > lim sup/ / dm(b)dp(a) > lim sup 2n = oo,
0 0 n—o0 n+ n—00
o0 a n+1
/ / dp(b)dm(a) > lim sup/ / dp(b)dm(a) > limsup 2n = oo,
0 0 n—o00 n—o0o
0 0 —n—1
/ / dm(b)dp(a) > lim Sup/ / p(a) > limsup 2n = oo,
—o0 Ja n—o0 n—oo

0 (0
/ / dp(b)dm(a) > lim sup / / dp(b)dm(a) > lim sup 2n = oo.
—0o0 a n—oo n—o0

Thus the boundary points —oo and 400 are natural, according to the definition given
n [14], pp. 24-25. Thanks to Theorem 1 and Remark 2 p. 38 of [14], DmD;' is the

generator of a conservative Feller semi-group on C(R). Furthermore

DmD;rf(—oo) = DmD;f(—i—oo) =0, Vfe D(DmD;),

dm(a) := da and dp(a) := " @da.

invoking Steps 7 and 8 in [I4], pp. 31-32. Therefore, the operator
(6LY) N (Co(R) x Co(R)) = Dy D;f N (Co(R) x Co(R))

is the Cy x Cp-generator of a Feller semi-group. O

5 Convergence toward some Lévy-type processes

In this section d denotes a strictly positive integer, | - | the Euclidean norm on RY,
and R% denotes the one point compactification of R?. Let also C*(R%) be the set of
compactly supported infinitely differentiable functions from R? to R. We are interested
in the dynamics which locally looks like as Lévy processes dynamic.

All along of the present section we will use a linear functional on C*(RY) which
describes dynamic in a neighbourhood of a point a € R?%: for any f € C(R?),

by =
LS @) 5V + L (0 = @) = (@) - V(@)w(ah). (6.)

t,j=1

where
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— the compensation function y : R? x R¥ — R? is a bounded measurable
function satisfying for any compact subset K C R¢,

(H1)
b,c)—(c—1b
sup 1x(b, ) (2 )l .
b,cEK, b#c lc — 0|
— the drift vector is § € R, the diffusion matrix v € R%? js symmet-
ric positive semi-definite and the jump measure v is a measure on R
satisfying v({a}) = 0 and (H2(a))

v({a}) =0 and / (1A [b— a2)v(db) < .
RIA
Usually, the compensation function is
xi(a,b):==(b—a)/(1+|b—al*) or xa(a,b):=(b— a)ljp_q<1- (5.2)

It is well known (see for instance Theorem 2.12 pp. 21-22 from [g], see also [5], [9],
[10]) that for any linear operator L : C°(R?) — C(R?) satisfying the positive maximum
principle and for any Y satisfying (H1): for each a € R? there exist d(a), y(a) and v(a)
satisfying (H2(a)) such that

Vf e CPRY), YaeR?, Lf(a)=Tya(d(a),v(a),v(a))f.

In the following we will call a such expression of L a Lévy-type operator.

In order to obtain a converse sentence and to get the convergence of sequences of
Lévy-type operators, we need to impose a more restrictive hypothesis on the couple
(x,v): for a € R4

— the compensation function y : R¢ x R% — R? is a bounded measurable
function satisfying, for any compact subset K C R%,

bec)—(c—b
sup x(b; ) (C2 N 0.
b,ceK,0<|c—b|<e |C - b| =0

(H3(a))

and v ({be R4A | X is not continuous at (a,b)}) = 0.

For example, x; given in satisfies (H3(a)) for any v and x2(a,b) satisfies (H3(a))
whenever v({b € R? : |b—a| =1}) = 0.

The main result of this section is stated below. It has some similarities with Theorem
8.7, pp. 41-42 from [16].

Theorem 5.1. For each n € NU {co} take a, € R? such that a, — as and con-
sider (Op, Yn, Vn) satisfying (H2(ay)). Let also x be such that the couple (X, Vso) Satisfies
(H3(aso)). Then, there is equivalence between

vf E C?(Rd)a Tx,an (577,7 ’Ym Vn)f TL:;O T Qoo (5007 7007 VOO)fJ (53)
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and the following three conditions

(0, — Ooos

n—o0

Vf € C(R¥) vanishing in a neighbourhood of as, [ f(b)vn(db) — [ f(b)veo(db),

n—oo

| (s + SO0 (@, B)va(@8)) — (Yoouis + S (03 (@0, BV (d0))

i,j Mm—o0

Z?j

(5.4)
Remark 5.2. Let us point out that this theorem is not contradictory with the statement
of Theorem 8.7 in Sato’s book. We will see that there is an equivalence with a condition

with double limit as in Sato’s result, as a consequence of the part ii) of our Lemma
below. o

Before proving Theorem let us first look to some of its consequences. We get
necessary and sufficient conditions for the continuity of the limit function in or for
the convergence of sequences of Lévy-type operators (and processes) in terms of their
Lévy triplets. We start by introducing other notations to simplify our statements.

o Let x : RY x R¥ — R? be a compensation function. For each a € RY consider
(6(a),v(a),v(a)) and (x,v(a)) satisfying respectively (H2(a)) and (H3(a)). We denote

Lf(a) :=Tyq((a),v(a),v(a))f for any f € C?(Rd). (5.5)

e For each n € N and a € R? consider (6,(a),y(a),v,(a)) satisfying (H2(a)). We
denote

Lnf(a) := Tya(6n(a), y(a),vn(a))f  for any f € C(R?). (5.6)
e For each n € N and a € R? let p,(a) be a probability measure on R, We denote

T f(a) = / FB)n(a,db),  for any f € C(RIL). (5.7)

Corollary 5.3 (Continuity feature). The function Lf given by (5.5) is continuous for
any f € CX(R?) if and only if the following three conditions hold

e o+ 6(a) is continuous on RY,

e a— [f(b)r(a,db) is continuous on the interior of {f = 0} NR%, for any f €
C(R™),
e a— ij(a) + [ xila,b)x;(a,b)v(a,db) is continuous on RY, for any 1 <i,j < d.

Example 5.4 (Neveu’s counterexample). In [I], pp. 423-424 one describes the following
example due to Neveu (see also [I5]). Let ¢ be an arbitrary function in C(R). Considers
the operator

[ e+ o) + fo = pl@) — 2@ o). on {0 #0)
L@ = {55 oy on {p = 0}
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The jump measure associated to this operator is

1
v(r) = W(%w(z) + 0z (@) Lip(a)£0

and its diffusion coefficient is y(x) = 2 - 1,;)=0- A consequence of Corollary is the
fact that, for the present case, Lf is a continuous function, for any f € C°(R). Indeed,
considering the compensation function y; given in (5.2)), the third condition is clearly

verified since
(y _ x)? _ 2
0+ [ e e = T
O

Corollary 5.5 (Convergence towards Lévy-type operators). Assume that Lf given by
is continuous for any f € CX(R?). The uniform convergence on compact sets,
L.f — Lf, as n — oo, holds for all f € CX(R?) if and only if the following three
conditions hold

e 0,(a) — 6(a), uniformly for a varying in compact subsets of R?,

o [ f(B)vy(a,db) — [ f(b)v(a,db), uniformly for a varying in compact subsets of the
interior of {f = 0}y NRY, for any f € C(R?),

e Tmij(a) + [(xix;)(a, b)vn(a,db) = vij(a) + [(xix;)(a, b)v(a, db), uniformly for a
varying in compact subsets of R%, for any 1 <1i,j < d.

Corollaries and are straightforward consequences of Theorem

Corollary 5.6 (Convergence towards Lévy-type operators - discrete context). Assume
that Lf given by is continuous for any f € CX(RY). The uniform convergence on
compact sets, (Tnf — f)/en — Lf, as n — oo, holds for all f € C*(RY) if and only if
the following three conditions hold

o i fRdA\{a} x(a, b) i (a, db) — §(a), uniformly for a in compact subsets of RY,

. a% J F(®)pn(a,db) — [ f(b)r(a,dbd), uniformly for a in compact subsets of the in-
terior of {f = 0} NRY, for any f € C(R),

° éfRdA\{a}(Xin)(a’ b)pn(a,db) — ~ij(a) + f(xixj)(a,b)v(a, db), uniformly for a
in compact subsets of R%, for any 1 <1i,j < d.

Proof of Corollary[5.6, Notice that for any f € C®(R%), n € N and a € R?, we have
(Tnf(a) = f(a))/en = Tya(0n(a),0,vn(a))f,

on(a) := 6;1/ x(a,b)pun(a,db) and  v,(a,db) := sgllleA\{a}(b)un(a,db).
RI2\{a}

We conclude by applying again Theorem O
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Remark 5.7. Combining Theorems [2.2] 3.2 and Corollaries[5.5] [5.6] we can deduce some
sharp results of convergence for the processes associated to Ly, T), and L. In particular,
Corollary could be think as an improvement of the classical Donsker theorem, and
for instance, allows us to simulate Lévy-type processes. We illustrate this fact in the
following example. O

Example 5.8 (Symmetric stable type operator). Consider two continuous functions
c€ C(RY,Ry) and a € C(RZ,(0,2)) and denote, for f € Co(R?) and a € RY,

Li@ = | (F0) = F@) = (6= a) - V@) p-ajcr)ela)}p = a] 4=

As a consequence of Corollary L maps Co(R?) to C(R?). For a € R? and n € N*,
define the probability measure
1/a(a)
pin(a, db) == la) b — a‘idia(a)]l\bfa\ZEn(a)db’ with  en(a) := (C(@)Sd—1> .

n na(a)

Here Sy = 2n%2/T'(d/2) is the measure of the unit sphere in R%. Thanks to Corollary
for any f € C(RY),

li_)In n(/f(b)un(a, db) — f(a)) = Lf(a), uniformly for a in compact subsets of RY.
n—oo

It is straightforward that for any a € R? and n € N*, y,(a) is the distribution of the
random variable

S, 1/a(a)
+Q (%) , with independent r.v. Q ~ U(S¥™ 1), U ~ U([0,1]).

Here U(S%!) and U([0,1]) denote the uniform distribution, respectively on the unity
sphere of R? and on [0, 1]. To simulate a discrete time locally Feller processes associated

to (un(a))e we can proceed as follows. Let (Q,Uk)r be a sequence of i.i.d. random
variables with distributions (S%1) ® U([0, 1]) and define, for n € N* and k € N,

c(Zi)Sa- ) YelZi)

Z0 =47 (
. et Qx na(Zy)Uy

Thanks to Theorem provided that the martingale local problem associated to L is
well-posed, the sequence of processes (Z’L“nt J)t converges in distribution to the solution
of the martingale local problem.

Let us note that it is possible to adapt this example when we try to simulate more
general Lévy-type processes. The heuristics is as follows: first we approximate the Lévy
measure by finite measures, we renormalise them, and then we convolute with a Gaussian
measure having well chosen parameters. O

The proof of Theorem requires to use a technical lemma concerning the conver-
gence of measures.
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Lemma 5.9. For n € NU {co} let a, € R? be such that a, — as. Consider also v,
a sequence of Radon measures on R* \ {a,}. Suppose that, for any f € C(R¥) such
that f vanishes on a meighbourhood of ax, it is constant on a neighbourhood of A and
it is infinitely differentiable in R, we have

[ 1o — [ o). (55)

i) Let (fn)nenufoc} be a sequence of measurable uniformly bounded functions from R4
to R such that, all f,,, with n € NU {oo}, vanish on the same neighbourhood of a~,. In
addition, suppose that

dA dA : _ —
Voo (R%\ {by € R™ | lm0) = foo(b0)}) = 0. (5.9)
Then we have
[ a0t = [ f@nstan), (5.10)
i1) Assume, furthermore, that there exists n > 0 such that
sup / |b— an\2]1|b_an|<,7 vn(db) < 0. (5.11)
neNU{oo} B

Then, for any sequence (fn)nenu{oo} Of measurable uniformly bounded functions from

R to R satisfying (5.9), fulan) =0 and that

h
lim limsup sup M

— 0, 5.12
=0 n—oo 0<|h|<s |2 (5:12)

we have the same conclusion, that is (5.10)).

Proof of Theorem [5.1. Suppose first (5.3). Let f € C(R%) be such that f vanishes
on a neighbourhood of a, it is constant on a neighbourhood of A and it is infinitely

differentiable in RY. Hence f — f(A) € C°(R?), and

Ty (oo Yoo voo) (f — F(A)) = / F(b)ve(db),

while, for n large enough,

Ty (O o o) (f — F(A)) = / £ (b)n(db).

We deduce that
[ 1ot = [ o).

Therefore we can apply the first part of Lemma and in particular, for any f € C(R%?)
vanishing on a neighbourhood of a, we get the second statement in (5.4)).
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Consider § € C(R4,[0,1]) such that 6(r) = 1 for » < 1 and 6(r) = 0 for » > 2. For
(a,b) € R x R¥ and n € NU {oo}, define

X(a,b) :=0(]b — a|)(b — a)lpza and 6, :=d, + /()A{(an, b) — x(an, b))y (db). (5.13)

Therefore, for all f € C°(R?) and all n € NU {co}, we recast

Tx,an (5717 Tns Vn)f = T%,an (6117 Yrs Vn)f

Let ¢ be an arbitrary linear form on R? and consider f € C°(R?) such that f(b) =
(b — ax)¢ on a neighbourhood of as,. Then we have

T o (oo Yoo Vo) = Bos + / (£(6) = T(ao0, D))o (dD)

and for n large enough

Ti,an (gna Yns Vn)f = gnﬁb + /(f(b) - f(an> - %(ana b)¢)yn(db)

Thanks to the first part of Lemma [5.9 we deduce

n—o0

/ () — Fan) — K(an D)Own(dD) — [ (F(B) = Tlctoor b)8)ve(dD).

We conclude that gnqb — gooqﬁ, and since ¢ was chosen arbitrary, gn — goo.
n—oo n—oo

Let ® be an arbitrary symmetric bilinear form on R? and if (e1,. .., eq) is the canonical
basis of R, we denote ®;; = ®(e;,¢5), 4,5 = 1,...,d. Consider f € C°(R?) such that
f(b) = ®(b— ano, b — o) on a neighbourhood of ae,. Then, for n large enough, we can
write

T%,an (571,7 Tns Vn)f
d

= Z (Dij’)/n,ij + 2(1)(an - aooygn) + / (f(b) - f(an) - 2(1)(an - aoo,;(l(ana b)))Vn(db),

i,j=1
or equivalently,

d
Tj(”7an(gn77nyl/n)f = Z (I)ij <'7n,ij + /(i%%j)(anyb)yn(db))) + 2<I>(an - aooagn)

1,j=1

d
+ / (f(b) — flan) — 2®(an — aoo, X(an, b)) — Z ;5 (XiX;)(an, b)>Vn(db)'

ij=1
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A similar equality holds with the index n replaced by oc:

d
T%,aoo(goo)’)/omyoo)f = Z (I)ij’)/oo,ij +/f(b)yoo(db)

d o d
= 3 @ (it [ (@) (ames Da (@) + [ (FO)= D iy (R 00,0 (1),

i,j=1 i,j=1

Invoking again the first part of Lemma [5.9 we can write

d
[ (10 = @) = 2000 — ane, TlanB) = Y 0y (ReT)lans b)) ()

ij=1
UG Ed: Dij (XiXj) (00, b) ) Voo (dD).
ij=1
Hence we get
d d
> (i +/ (%% (o, ) (0))) = D @i (ot + / (Ri57) (a0 B)vc(dD)) ).
wI=t ij=1

Since ® was chosen arbitrary, for all 1 < 4,5 < d we get
Yo + [ () @n (D) = o + [ () s B ()
Due to the second part of Lemma [5.9 we deduce in particular

lim [ (F(nb) — X(an, b))va(db) = / (R0, 5) — x(t00: b))oo (D).

n—0o0

Owing (5.13) we ends up with d,, —> d0, which is the first sentence in ([5.4)).
n—oo
Invoking again the second part of Lemma [5.9] we also have, for all 1 <1i,5 <d,

SO @n:8) = ) e Dn(@8) [ (BT ame,D) = (65) (e, D) (),
so we deduce the third sentence in (5.4]).

We prove the converse, so we suppose that (5.4) holds. Let f € C(RY) be. For
each n € NU {00},

d
1
Ty an (Ons Ynsvn) f 25 Z ’Vn,ijaz?jf(an) + 0 - Vf(an)

2,j=1

+ / (F5) = F(an) = x(an,b) - V £ (an))n(dD),
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or, equivalently,

d
Ty.an (On, Y, vn) f = % Z <')’n,ij + /(Xin)(am b)l/n(db)) az?jf(an) +dn - Vf(an)
7,7=1
d
+ / (f(b) - f(an) - X(ana b) : vf(an) - Z (XZ'X]')(CL”, b)afgf(an)>yn(db)
Q=1

Applying the second part of Lemma to the last term of the previous equation we
deduce

Tx,ayL (5717 Tns Vn)f njo Tx,aoo (5007 Yoo Voo)f-
The proof is complete except for the proof of Lemma 5.9 O

Proof of Lemmal[5.9 Consider a sequence of functions (fy)nenufoo} as in the first part
of lemma. Let U; be an open subset such that U; € R \ {aso} and

no Y {fn#O}DRdA\{bOGRdA

neNU{oco}

lim  fa(b) = foo(bo)}.

n—00,b—bg

Let 1 € C(R?) be such that ¢ > 1y, o1 is infinitely differentiable in R?, it vanishes
in a neighbourhood of a., and is constant in a neighbourhood of A, ¢1. Then we have

[ermaar) — [ e,

Therefore

sup vp(Ur) < sup /apl(b)l/n(db) < 00.
neNU{oo} neNU{oo}

Since R4\ {aso} is a Polish space, the measure v, is inner regular on this set. Hence,

if € > 0 is chosen arbitrary, there exists a compact subset K. C U; satisfying

Koo {b €R™[ tim  fu(b) = foolbo)} and vao(Ke) > aol(Uh) ==, (5.14)
n—00,b—bg
Hence fo, is continuous on K, and f, converges uniformly to fo, on K.. There exists a
function gy € C(R) such that {py # 0} C Uy, |2l < ||fsoll and |2 — foollx. < &,
(9 is infinitely differentiable in R? and is constant in a neighbourhood of A. Combining
(5.14]) and a compactness argument, we deduce that there exists an open subset Uy C U
such that
K. cU;C {bo € R4 | lim sup |fn(b) — @2(b0)| < 26}.
n—o0,b—bg

Arguing by dominated convergence, there exists a function @3 € C(R?) such that
1y, > 3 and [ p3(b)veo(db) > veo(Us) — &, 3 is infinitely differentiable in R?, it
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vanishes in a neighbourhood of as, and is constant in a neighbourhood of A. Hence

lim inf v, (U) > hnmlnf/<p3(b)un(db) = /wg(b)uoo(db) > veo(Us) — &

n—oo

> Voo(Ke) — € > Voo (Ur) — 26.

Therefore we have

limsup‘ / Fa(B)vp(db) — / Foo (D) Voo (db) <hmsup’ / oo (b)vp(db) — / oo (b)veo! db

n—00 n—0o0
—|—limsup‘ (frn(b) — p2(b))vy(db) —i—hmsup‘/ (fn(b) — p2(b))vy (db) ‘
n—o00 Us n—oo U1\U2
+nmsup(/ (Foo(B) — (b) )mo (dlD) —i—hmsup‘/ (Foo(B) — 93(b) ) vao (D)
n—o0 . n—o00 Ul\K,S

and we deduce

nmsup( / Fu(D)vp(db) — / foo(b)yoo(db)‘

n—oo

<04 2esupv,(Ur) +4e sup || full + evoo(U1) + 22| fool|

neN neNU{oo}
<3e( s w@)+2 s |fll).
n€ENU{cc} neNU{oo}

Letting ¢ — 0 we obtain that

[ 1a0n@r) — [ g@ctan),

We proceed with the proof of the part 1'1') of lemma. Fix n > 0 as in the statement
and choose an arbitrary € > 0. Thanks to , there exists 0 < § < n/2 such that

limsup sup fnlan + 1) < c

+h) |
ooz Ty sy 1 0P, ()
neNU{oo}

Consider a function ¢ € C(R%,[0,1]) which vanishes in a neighbourhood of as and
such that ¢(a) = 1 for any a satisfying |a — as| > §. Then, using the first part i),

[ a0n(@) = [ o)l
Clearly for n € N large enough, |a — a,| < §, hence

nlan +h
‘/ (1 — o(0)) fn(b)vn( db /|b—an| 1<y valdb) - sup f(|h|2)

0<|h|<26
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We deduce that lim sup ( / (1 — () fn(b)vp(db)| < e. Similarly,

n—oo

| [ o) bt

n n h
< / |b— aoo,Q]l\b—aooKn Vp(db) - limsup sup f(ai;i—) <e
N n—00  0<|h|<2§ ’h’
Therefore
lim sup ‘ / Fu(B)n(db) — / Foo(D)voo(db)| < 2¢.
n—oo
Letting € — 0 we can conclude the proof of ii). O

To conclude this section let us give another consequence of Theorem [5.1] It is an
approximation result inspired from [3], Theorem 7.6 p. 172. Let L : C*(R%) — C(R9)
be an operator satisfying the positive maximum principle. We will denote by 73, f(a) =
f(a+ h) the translation of f by h € R%. For ag € R, we introduce the operator

L(ag) : C*(RY) — Co(RY)  given by  L(ag)f(a) == L(Ta—ayf)(ao). (5.15)

Clearly Lf(a) = L(a)f(a). Since L(ag) is invariant with respect to the translation
and satisfies the positive maximum principle then its closure in Co(R%) x Co(R?) is the
Co x Cp-generator of a Lévy family (see for instance, Section 2.1 pp. 32-41 from [3]).
We denote by (P(ap))>o0 its Feller semi-group.

Corollary 5.10 (Approximation with Lévy increments). Let (e,), be a sequence of
positive numbers such that €, — 0 and define the transition operators Py, by

Pof(a) =P, (a)f(a), for f€ Co(R?).

Then, for any f € CX(RY),
1 .
—(Ppof — f) — Lf, wuniformly on compact sets.
En n—00

Remark 5.11. 1) If the martingale local problem associated to L is well-posed, by
Theorem one then deduces the convergence of the associated probability families.

2) Excepting the fact that the present convergence is for the local Skorokhod topology,
Corollary is an improvement of Theorem 7.6 p. 172 from [3]. More precisely, we
do not ask that the closure of L should be a generator of a Feller semi-group, but only
suppose that the martingale local problem is well-posed. O

Proof of Corollary[5.10. Recall that x1(a,b) is given by (5.2)). Thanks to Theorem 2.12
pp. 21-22 from [§], for each a € R? there exists a triplet (§(a),y(a),v(a)) satisfying
(H2(a)) such that, Lf(a) := Ty, q(6(a),v(a),v(a))f, for all f € C(RY). It is clear that
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for any ap,a € R? and f € C°(R?), the Lévy operator L(ag) defined by (5.15) satisfies
also

L(ao) f(a) = Ty, a((a0), (ao); va(ao))-

Here and elsewhere v,(ag) is the pushforward measure of v(ag) with respect to the
translation b — b — ag + a.

To get the result of the corollary it suffices to prove that for any function fo € C°(R?)
and any sequence a,, € R? converging to as, € R%, we have

= (Pafolan) ~ folan) 2, Lfv(ae). (5.16)

Thanks to Theorem [5.1] we have,

0(an) — d(aco),

n—o0

Vf € C(R) vanishing in a neighbourhood of aso, / f)v(an, db / f(b)v(ax,db),

and for all 1 <4,j <d

Yij(an) +/(Xin)(anvb)V(amdb) —2 7ij(aco) +/(Xin)(a007b)V(aooadb)‘

It is not difficult to deduce that, there exists C' € Ry such that, for all n € NU {co} and
f € CE®RY),

1E(an) fIl < ClFIV max [0:F] v max (107 Sl

Hence sup,enuqoo} [L(an) fol < co. Consider boo € RY, a sequence b, — bs and a
function f € C(R?) vanishing on a neighbourhood of b,,. Owing the first part of
Lemma [5.9 we deduce that

/f(b)ubn(an,db) :/f(b—an—i—bn)u(an,db)

— | f(b— oo + boo)V (Ao, db) = /f(b)yboo(aoo,db).

n—o0

Thanks to Corollary L(ay,)f converges uniformly on compact sets toward L(a)f,
for all f € C°(R?). In particular, for each € > 0 there exists an open neighbourhood U
of as, and ng € N such that

VYn > ng, Ya € U, |L(ayp)fo(a) — L(aso)fo(as)| < €. (5.17)
Let P, be the unique element of M(L(ay)) such that P, (Xo = ay,) = 1. Then,

= (Bal (X))~ folan) ~ Laoe) folas)|
- \En; / " (L) Jo(X5) — Las) folanc)) s
n JO

L (Puffan) — folan)) ~ Lo

n
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On the right hand side we split the expectation into two terms, by using the position of
7V introduced in (2.1)) with respect to ¢,, and we get

= (Pufolan) — folen) = L(aw) folas)|
<Eu[Lcey [ L) (X0 ~ L)oo |
B[l [ L@ () - Llas) folaue)ds]

Plugging (5.17)) into the second term we obtain, for all n > ng

L (Pufolan) — folan)) — Llasc)fo(a)]| < 2Pu(r <c) sup [ L(am)foll + =
n meNU{oco}

At this level we apply Lemma[A4] result stated in the Apendix, concerning the uniform
continuity along stopping times with a compact neighbourhood K C U of as and with
U= (Rd x U)U ((Rd \ K) x Rd). We deduce that

lim P, (1Y < ¢e,) = 0.

n—oo
Hence 1
limsup ;(PnfO(an) - fO(an)) - L(aoo)fO(aoo) <eg,
n—oo n
and we end up with (5.16)) by letting ¢ — 0. O
Appendix

We collect in this appendix several results proved in [7] and used in some proofs in
Sections 4 and 5. These results have technical statements and we use the notations
introduced in Section 2. We refer the reader to the article [7] for the introductory
context and for the proofs of each of the following lemmas.

Lemma A.1 (cf. Lemma 4.22, p. 154, in [7]). Let U be an open subset of S and L be
a subset of Co(S) x C(S) such that D(L) is dense in C(S). Assume that the martingale
local problem associated to L is well-posed. Then there exist a subset Ly of L and a
function by of C(S,Ry) with {ho # 0} = U, such that the following properties hold.

i) z:fo and hoLg C Co(S) X Co(S)

it) Ifh € C(S,R) is an arbitrary function such that {h # 0} = U and sup bh(a) < 00,
acU Y0
then the (classical) martingale problem associated to (§Lg)*>, obtained as in (2.2)),

is well-posed in the space of cadlag paths having values in S™.
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Lemma A.2 (cf. Proposition 4.20, p. 153, in [7]). Let Ly, Ly be two subsets of Co(S) x
C(S) such that D(L1) = D(L2) is a dense subset in Co(S) and take an open subset
U C S. Assume that the martingale local problems associated to L1 and Lo are well-
posed and let P' € M(L;) and P? € M(Ls) be two solutions of these problems having
the same initial distribution. If for all f € D(L1), (Laf)jr = (L1f)w, then

Loz (X7) = Lor (X7,

where TV is given by ([2.1)).

Lemma A.3 (cf. Lemma A.1, p. 159, in [7]). Consider U, C S an increasing sequence
of open subsets such that S =J,, Up. For (n,a) € N xR, let P} € P(Djoe(S)) be, such
that

i) for eachn <m and a € R, Lpn (XTUH) = Zpn (XTU");
i1) for each n € N, a — P is weakly continuous for the local Skorokhod topology.
Then we have
j) fora € R, there exists a unique Py° € P(Doc(S)), such that for any (n,a) € NxR,
Lo (X7) = oy (X7);

7j) the mapping (a,n) — Pl on (NU {oo}) x R with values in P(Dy(S)) is weakly
continuous for the local Skorokhod topology.

Lemma A.4 (cf. Lemma 3.8, p. 139, in [7]). Let Ly,...,Ly,... and Ly be subsets of
Co(S) x C(S). Assume that D(Ls) is dense in Co(S) and that, the sequence of operators
L,, converges to Lo, in the sense of Theorem[2.3 Consider K a compact subset of S
and U an open subset of S x S containing {(a,a)|a € S}. Then for each € > 0 there
exist ng € N, § > 0 such that, for any 11 < 1o two (Fiy)¢-stopping times, for any n > ny,
and for any P € M(Ly,) satisfying E[(T2 — Tl)]l{XTleK}] <4, we have

P(X, € K, 7(1) <) <e¢,
with the convention X := A and where 7(11) denotes the (Fy4)i-stopping time

7(r) ==inf {t > 7 [ {(X7y, Xs)}ry<s<t € UL
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