
HAL Id: hal-01559315
https://hal.science/hal-01559315

Submitted on 10 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Online EM for Functional Data
Florian Maire, Éric Moulines, Sidonie Lefebvre

To cite this version:
Florian Maire, Éric Moulines, Sidonie Lefebvre. Online EM for Functional Data. Computational
Statistics and Data Analysis, 2017, 111, pp.27-47. �10.1016/j.csda.2017.01.006�. �hal-01559315�

https://hal.science/hal-01559315
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Online EM for functional data

Florian Maire a, Eric Moulines b, Sidonie Lefebvre c
a School of Mathematics and Statistics, University College Dublin, Ireland
b CMAP, École Polytechnique, 91128 Palaiseau, France
c ONERA - The French Aerospace Lab, F-91761 Palaiseau, France

Keywords:
Online Expectation–Maximization

algorithm
Deformable templates models
Unsupervised clustering
Markov chain Monte Carlo
Carlin and Chib algorithm
Big Data

A novel approach to perform unsupervised sequential learning for functional data is
proposed. The goal is to extract reference shapes (referred to as templates) from noisy,
deformed and censored realizations of curves and images. The proposedmodel generalizes
the Bayesian dense deformable templatemodel, a hierarchicalmodel inwhich the template
is the function to be estimated and the deformation is a nuisance, assumed to be random
with a known prior distribution. The templates are estimated using a Monte Carlo version
of the online Expectation–Maximization (EM) algorithm. The designed sequential inference
framework is significantly more computationally efficient than equivalent batch learning
algorithms, especially when the missing data is high-dimensional. Some numerical
illustrations on curve registration problem and templates extraction from images are
provided to support the methodology.

1. Introduction

Functional data analysis is concerned with the analysis of curves and shapes, which often display common patterns
but also variations (in amplitude, orientations, time–space warping, etc. . .). Extracting common patterns (referred to as
templates) from functional data, and the related problem of curves/images registration has given raised to a wealth of
research efforts; see Ramsay (2006), Zhong (2008), Ramsay (2011) and the references therein andWu and Hitchcock (2016)
and Nguyen et al. (2016) for two recent contributions.

Most of the proposed techniques used so far have been developed in a supervised classification context. The method
typically aims at finding a time/space warping transformation allowing to synchronize/register all the observations
associated to a given class of curves/shapes and to estimate a template by computing a cross-sectional mean of the aligned
patterns. In most cases, the deformation is penalized, to favor ‘‘small’’ time/space shifts. Many different deformationmodels

1

have been proposed for curves and for images. For curves, thewarping function is often assumed to bemonotone increasing.
In this context, the dynamic time warping algorithm is by far the most popular algorithm: it enables the alignment of
curves by minimizing a cost function of the warping path, which can be solved by a dynamic programming algorithm
(Wang and Gasser, 1997). Non-parametric (Kneip and Gasser, 1992; Silverman, 1985; Ramsay and Li, 1998) as well as
Bayesian approaches (Telesca and Inoue, 2008; Liu and Yang, 2009; Wu and Hitchcock, 2016) have also been proposed,
but they are still far less popular. The situation is more complex for shapes and images. Different deformation models have
been proposed, involving rigid deformations, small deformations (Castellanos et al., 2004) or deformation fields ruled by a
differential equation; see Christensen (1999).

In this paper, we introduce a commonBayesian statistical framework for unsupervised clustering and template extraction,
with applications to curve synchronization and shape registration. Following the seminal work by Allassonnière and Kuhn
(2010) and Allassonnière et al. (2007), we generalize the mixture of deformable template models. This approach models an
observed curve/shape as a template (defined as a function of time or space), selected from a collection of templates, which
undergoes a random deformation and is observed in presence of an additive noise; see Allassonnière et al. (2007), Bigot
and Charlier (2011), Christensen et al. (1996) and Allassonnière et al. (2013) for a complete survey. Contrary to the classical
time warping/spatial registration algorithms which consist in synchronizing all the observations of a shape in a supervised
framework, themixture of deformable templatemodels is an unsupervised classifier: it estimates functional templates from
a set of shapes/curves and considers the time warping/spatial deformations as random nuisance parameters. It is important
to stress that the model allows the integration of the deformation conditional on the observations while considering the
templates as unknowndeterministic functional parameters. In this context, the deformationmight be seen as a randomeffect,
which is similar to random effects in linear mixed models in longitudinal data analysis. Whereas this change in perspective
might seem rather benign, it makes a huge difference both in theory and in practice.

In our model, the warping/deformation function and the cluster index are modeled as hidden data and we consequently
turn to an Expectation–Maximization (EM)-type algorithm (Dempster et al., 1977) to estimate the templates. However,
in our model the conditional expectation of the complete data log-likelihood is analytically intractable, compromising
a plain EM implementation. This situation has raised a significant research interest over the last decades and several
versions of so-called stochastic EM, in which the E-step is approximated, have been successfully applied to the template
extraction problem. A rough approximation of the conditional expectation was considered in Ma et al. (2008), in which the
posterior distribution is replaced by a point mass located at the posterior mode. Another elementary approach consists in
linearizing the deformed template in the neighborhood of its nominal shape, under the assumption of small deformations.
This alternative has been considered, among others by Liu and Yang (2009) and Frey and Jojic (2003), in which the
transformed mixture of Gaussian models was used. Another way to handle the E-step, suggested in Gaffney and Smyth
(2004) and Bernhardt et al. (2015), consists in performing an approximate Bayesian integration, which amounts to replace
the posterior distribution of the hidden data conditionally to the observation by a Gaussian distribution, obtained from a
Laplace approximation. Here again, such approximations are difficult to justify in our context. The expectation can also
be approximated by Markov chain Monte Carlo, an idea which was put forward by Allassonnière and Kuhn (2010) and
Kuhn and Lavielle (2004), extending the original Stochastic Approximation EM (SAEM) (Delyon et al., 1999) and known
as the MCMC-SAEM algorithm. This algorithm has been theoretically justified (Kuhn and Lavielle, 2004) and has shown to
perform satisfactorily in the template extraction application (Allassonnière and Kuhn, 2010). However it turns out to be a
time-consuming solution especially when a large number of observations are available and the dimension of the missing
data is huge. The extension of the model to multiple classes is even more computationally involved. This concern calls for
more sophisticated and efficient MCMC samplers, based for example on Langevin dynamics as successfully considered in
Allassonniere and Kuhn (2015). Finally, in Moffa and Kuipers (2014), the authors argue that integrating the E-step with a
Sequential Monte Carlo mechanism is more adapted to the EM iterative structure, but degeneracy of particles remains a
potential issue, especially in mixture models.

We propose the Monte Carlo online EM (MCoEM), an online algorithm in which the curves/shapes are processed one at a
time and only once, allowing to estimate the unknown parameters of themixture of deformable templatesmodel. We adapt
the online EM algorithm proposed in Cappé and Moulines (2009) to intractable E-step settings whereby casting MCoEM as
a noisy online EM. Our model is too general to allow the linearization or the use of Gaussian approximation of the complete
data log-likelihood, as it was done in Liu and Yang (2009) and Gaffney and Smyth (2004). We thus propose to approximate
the conditional expectation thanks to an MCMC algorithm adapted from the celebrated Carlin and Chib algorithm (Carlin
and Chib, 1995). Indeed, working online implies processing the data on the fly without storing them afterwards and this
requires the posterior distribution exploration to be more accurate than in the MCMC-SAEM framework which refines the
state-space exploration gradually, at each EM iteration. Building an online learning framework for template extraction has a
two-foldmotivation: (i) the data need not be storedwhich can be useful should the algorithm be implemented on a portable
device with limited memory/energy resources and (ii) MCoEM reduces significantly the computational burden that would
be generated by an equivalent batch algorithm such as the MCMC-SAEM (Kuhn and Lavielle, 2004).

This paper is organized as follows: in Section 2 the mixture of the dense deformable template model is generalized
and the Monte Carlo online EM algorithm is presented in Section 3. The sampling method of the posterior distribution,
necessary to approximate the E-step, is proposed in Section 4. Illustrations of templates obtained by applying MCoEM to
curves and shapes are proposed in Section 5 and are compared with those obtained using MCMC-SAEM. An application
of the methodology to a classification problem is provided in Section 6 and shows how competitive MCoEM is over batch

2

equivalent algorithms. Benefits and shortcomings of the MCoEM methodology are discussed in Section 7 and perspectives
are raised.

2. A mixture of deformable template models

2.1. A basic deformable model

In this section, we introduce a basic model for curves and images. A template is a function defined on a space U and taking
for simplicity real values. Typically, for curves U = R and for shapes U = R2. We denote by F the set of templates.

The observations are modeled as the stochastic process Y indexed by u ∈ U and given by:

Y (u) = λ f ◦ D(u, β)+ σW (u), (1)

where f ∈ F is a template function, λ ∈ R+ ∗ is a scaling factor, σ 2
∈ R+ ∗ is the noise variance and W a Gaussian process

with zero-mean, unit variance and known covariance function. D is a function, belonging to D, the set of mappings from
U to itself and parameterized by a vector β ∈ B, where B is an open subset of some Euclidean space of dimension dβ . For
curves, D can be chosen as the homotheties and translations mappings andmore generally as the set of monotone functions
(with appropriate smoothness conditions). For shapes, D can be taken as the set of rigid transformations of the plane, such
as rotations, homotheties or translations along with a local deformation field. The models for the set of deformations D are
problem dependent; see Section 5.

In this setting, β and λ are random variables and each realization of Y follows from different realizations of β and λ. The
quantity of interest is the template f (a deterministic functional parameter), while the deformation D and the global scaling
λ are regarded as nuisance parameters, that should be integrated out.

Finally, we assume that the set of templates F is the linear subspace spanned by the basis vectors {φℓ}1≤ℓ≤m. Hence, a
template fα ∈ F may be expressed as:

fα =

m
ℓ=1

αℓφℓ, where α = (α1, . . . , αm)
T

∈ A, (2)

where for all ℓ ∈ {1, . . . ,m}, φℓ : U → R and A is a subset of Rm. The pattern is observed at some design points denoted
Ω = {u1, . . . , u|Ω|}, where |Ω| is the dimension of the observations such that for all s ∈ {1, . . . , |Ω|}, us ∈ U. LetΦβ be the
|Ω| × m matrix defined such that for all (s, ℓ) in {1, . . . , |Ω|} × {1, . . . ,m},

[Φβ]s,ℓ = φℓ ◦ D(us, β). (3)

Defining Y = (Y (u1), . . . , Y (u|Ω|))
T and W = (W (u1), . . . ,W (u|Ω|))

T and using (1), the vector of observations can be
expressed in a matrix–vector form as:

Y = λΦβα + σW. (4)

2.2. A mixture of deformable templates

We extend the model to include multiple templates corresponding to the different ‘‘typical’’ shapes that we are willing
to cluster and then recognize. To that purpose, we construct a mixture of the template model introduced in the previous
section. Denote by C the number of classes (C1, . . . ,CC). We associate to each observation Y a (hidden) class index I ∈ I,
where I = {1, . . . , C}. To each class {Cj}j∈I is attached a template function {fj}j∈I inF, which is parameterized by {αj}j∈I ∈ Rm.
Moreover, a weightωj ∈ (0, 1) is assigned to the class I = j ∈ I andwe denote byω = (ω1, . . . , ωC) the set of prior weights
(
C

j=1 ωj = 1). To sum up, we consider the following hierarchical model:

Y ∈ Cj, Y = λΦβαj + σW. (5)

It is assumed that the observations {Yn}n≥1 are independent random variables, generated as follows:In ∼ Multi(1,ω),
λn ∼ Gamma(a, 1/a),
βn | In = j ∼ Ndβ (0dβ ,Γj),

(6)

where Multi denotes the multinomial distribution, a is the shape parameter of the Gamma distribution (assumed to be
known). We assume that the scale parameter is 1/a to ensure that a priori E(λn) = 1. The choice of a should reflect the
expected range of scales, the tolerated variation in scale being inversely proportional to a. Finally, 0dβ is the dβ-dimensional
null vector and Γj the deformation covariance matrix associated to the class Cj. In Section 5, different covariance models are
used in function of the deformation model adopted. We stress that the distribution of the scaling parameter is independent
of the class index, while the deformation prior distribution is class-dependent. Indeed, on the one hand, the scaling factor
accounts for different ranges of observation and is thus independent of what is actually being observed. On the other hand,

3

considering different prior distributions for the deformation might help to learn typical relevant distortions for each class
and thus ease the warping process.

In the sequel we assume that {Wn}n≥1 is a vector-valued white noise with zero-mean and identity covariance matrix.
The extension to more general covariance is straightforward. Hence, conditionally on the class index In, the global scale λn
and local deformation βn, the likelihood of Yn given the missing data is:

Yn | In = j, λn, βn ∼ N|Ω|(λnΦβn αj, σ
2Id|Ω|), (7)

where Id|Ω| is the |Ω| × |Ω| identity matrix. Denote byΘ the set of parameters

Θ =

C
j=1


αj,Γj, ωj, σ


| αj ∈ A, Γj ∈ M+(R), ωj ∈ (0, 1), σ > 0


∩


C

j=1

ωj = 1


, (8)

where M+(R) is the set of dβ × dβ positive definite matrices.
Let Xn be the random vector Xn = (βn, λn) taking its values in X = B × R+∗ with dimension dX = dβ + 1. In the sequel,

we will use the formalism and the terminology of the incomplete data model; see McLachlan and Krishnan (2007). In this
formalism, the observation Yn stands for the incomplete data, (In,Xn) are the missing data and (In,Xn, Yn) are the complete
data. For a given value of the parameter θ ∈ Θ , the complete data likelihood Lθ writes:

Lθ (In,Xn, Yn) = gθ (Yn | In,Xn)pθ (Xn | In)ωIn , (9)

where, for a given value of the parameter θ ∈ Θ , gθ is the conditional density of the observations given the missing data
and pθ is prior density of the scaling factor and the local deformation parameter conditionally on the class index. Using (7)
and (6), these densities write

gθ (Yn | In,Xn) ∝ exp

−(1/2σ 2)∥Yn − λnΦβnαIn∥

2 , (10)

pθ (Xn | In) ∝ exp

−(1/2)βT

nΓ
−1
In βn


λa−1
n exp(−aλn). (11)

The incomplete data likelihood is obtained by marginalizing the complete data likelihood with respect to the missing data.

3. Sequential parameter estimation using the Online EM algorithm

In its original version (Dempster et al., 1977), the Expectation–Maximization (EM) is a batch algorithm, i.e. that uses a
fixed set of observations, performing maximum likelihood estimation in incomplete data models. It produces a sequence of
parameters, in such a way that the observed likelihood is increased at each iteration. Each iteration is decomposed into two
steps. In the E-step, the conditional expectation of the complete data log-likelihood function given the observations and
the current fit of the parameters is computed; in the M-step, the parameters are updated by maximizing the conditional
expectation computed in the E-step.

In this paper, we focus on a learning setup in which the observations are obtained sequentially and the parameters
are updated as soon as a new observation is available. Among several sequential learning algorithms designed to estimate
parameters inmissing datamodels, the online EM algorithmproposed in Cappé andMoulines (2009) (see also Liu et al., 2006
for a similar version in a specific setting) sticks closely to the original EM methodology (Dempster et al., 1977). It does not
require to compute the gradient of the incomplete data likelihood nor the inverse of the complete data Fisher information
matrix. Under somemild assumptions, it is shown in Cappé andMoulines (2009) that, even when themodel is misspecified,
the algorithm converges to the set of stationary points of the Kullback–Leibler divergence between the observed likelihood
(which does not necessarily belongs to the statistical model) and the incomplete data likelihood. For a given value of the
parameter θ ∈ Θ , we denote by πθ (· | Yn) the posterior distribution of the missing data (In,Xn), given the observation Yn.
The online EM (Cappé and Moulines, 2009) is initiated with an initial guess θ̂0 ∈ Θ . At the nth iteration, the E-step consists
in computing the function Q̂n : Θ → R defined recursively for all n > 0 by:

Q̂n(θ) = Q̂n−1(θ)+ ϱn


Eθ̂n−1

[log Lθ (In,Xn, Yn) | Yn] − Q̂n−1(θ)

, (12)

where Eθ̂n−1
(· | Yn) stands for the conditional expectation under πθ̂n−1

(· | Yn), {ϱn}n>0 is a decreasing sequence of positive

step sizes, with ϱ1 = 1, such that Q̂0 needs not be specified. In the M-step, the next estimate θ̂n is obtained by maximizing

θ̂n = arg max
θ∈Θ

Q̂n(θ). (13)

Under our model specification, the complete data log-likelihood belongs to a curved exponential family. Indeed, for a
given parameter θ ∈ Θ , log Lθ can be written as

log Lθ (I,X, Y) = t(θ)+ ⟨r(θ), S(I,X, Y)⟩ , (14)

4

where the function t is given by

t(θ) = log
aa

G(a)
−

|Ω|

2
log 2πσ 2

− dβ log 2π,

G is the Gamma function, S(I,X, Y) = (S1(I,X, Y), . . . , SC (I,X, Y)), such that for all j ∈ {1, . . . , C}

Sj(I,X, Y) = δI,j

1, λφT

βY, λ
2φT
βφβ , ββ

T , ∥Y∥
2, λ, log λ


and the functions r(θ) = (r1(θ), . . . , rC (θ)) are defined as:

rj(θ) = (1/2)

2 log(ωj)− log detΓj, 2σ−2αj,−σ

−2(αjα
T
j),−Γ

−1
j

T
,−σ−2,−2a, 2(a − 1)


.

As a consequence, the two steps of the online EM consist in (i) computing for all j ∈ {1, . . . , C} the stochastic
approximation (SA) recursion

ŝn,j = ŝn−1,j + ϱn


s̄n,j(Yn; θ̂n−1)− ŝn−1,j


, (15)

where s̄n,j(Yn; θ̂n−1) = Eθ̂n−1


Sj(In,Xn, Yn) | Yn


and (ii) updating the parameters according to

θ̂n = arg max
θ∈Θ


t(θ)+

C
j=1


rj(θ), ŝn,j


. (16)

The maximization is in closed form. However, this algorithm remains essentially of theoretical interest, since in many
situations the conditional expectation s̄n,j(Yn; θ̂n−1) is not analytically tractable. This is the case in our model. Intractable
E-steps have already been addressed for batch EM algorithms. In Delyon et al. (1999), the authors proved the convergence
of the Stochastic Approximation EM (SAEM) algorithm in which the E-step is replaced by a stochastic approximation
making use of realizations of the missing data generated according to the posterior distribution. Still, extending the SAEM
algorithm to the online setup is not feasible in our case. Indeed, independent and identically distributed (i.i.d.) samples from
πθ̂n−1

(· | Yn) cannot be simulated. An alternative to the SAEM algorithm, known asMCMC-SAEM, was proposed in Kuhn and
Lavielle (2004): the authors suggested to use Markov chain Monte Carlo (MCMC) methods (see Andrieu et al., 2003 for an
introduction) to obtain samples from the posterior distribution.

In this paper, we adapt this approach to the sequential setting outlined above leading to the MCoEM (Monte Carlo online
EM) algorithm. It is a 3-step iterative algorithm. Given the current fit of parameter θ̂n−1 and a new observation Yn, the
algorithm proceeds as follows:
(1) simulation step: simulate, using a Markov kernel Kn that admits πθ̂n−1

(· | Yn) as stationary distribution, a Markov chain
{In[k],Xn[k]}k>0,

(2) stochastic approximation step: update for each class j ∈ {1, . . . , C}, the complete data sufficient statistics using the
following recursion

s̃n,j = s̃n−1,j + ϱn


1
mn

mn
k=1

Sj(In[k],Xn[k], Yn)− s̃n−1,j


, (17)

wheremn is the number of MCMC iterations performed at the nth iteration of the MCoEM algorithm,
(3) maximization step: update the parameter θ̂n by maximizing the function:

θ̂n = arg max
θ∈Θ


t(θ)+

C
j=1


rj(θ), s̃n,j


. (18)

For numerical stability, it is recommended not to update the parameter θ̂n at each iteration, especially in the first
iterations of the algorithm (see discussion in Section 5). MCoEM updates θ̂n according to a user-defined update schedule
N ⊂ N. Algorithm 1 provides a pseudo-code representation of MCoEM.

4. Sampling from the missing data joint posterior distribution

In this section, we construct a transition kernel K to sample the target distribution πθ (· | Y) (for notational simplicity,
the iteration index n of the EM algorithm is omitted in this section).

Remark 1. At this stage, one might legitimately wonder why special care must be taken when choosing K, while valid
MCMC routines are by nowwell established and available. Having a closer look at the target distribution dismisses resorting
to standard MCMC methods such as the Gibbs sampler (Gelfand and Smith, 1990; Geman and Geman, 1984) to simulate
samples from πθ (· | Y). Indeed, the target distribution is not defined on the product space (I,X) but on the following union
of spaces (I = 1,X) ∪ · · · ∪ (I = C,X). This is because, in our framework, the deformation X should always be consistent
with the class of the observation it applies to.

5

Algorithm 1Monte Carlo online EM
1: Input:

• Initial guess: θ̂0 ∈ Θ

• A stream of observations: Y1, Y2, . . .
• Parameter update schedule: N ⊆ N
• An iteration counter n, initialized to 0
• A sequence of positive step sizes {ϱ1, ϱ2, . . .} with ϱ1 = 1
• MCMC length schedule {m1,m2, . . .}

2: When a new observation Y is available do
3: Increment the iteration counter: n = n + 1
4: Simulation step: Samplemn missing data {In[k],Xn[k]}

mn
k=1 from a Markov chain targeting πθ̂n−1(· | Y)

I See Algorithm 2
5: SA step: Update the sufficient statistics s̃n,1, . . . , s̃n,C via the stochastic approximation step

I See Eq. (17)
6: If n ∈ N then
7: Maximization step: Update the parameter estimate to θ̂n

I See Eq. (18)
8: else
9: Set θ̂n = θ̂n−1

10: end if

11: Output: A sequence of parameters θ̂1, θ̂2,

4.1. MCMC on an extended state space

We now explain the approach we followed. The basic idea, stemming from Carlin and Chib (1995), is to specify a joint
distribution over the class index I and auxiliary variables X̃1, . . . , X̃C , where for all j ∈ {1, . . . , C}, X̃j ∈ X is a deformation
parameter associated to the class Cj. We stress that, in this approach, we sample at each iteration deformation parameters
for each class. To specify the joint distribution, we introduce the pseudo-priors or linking densities, denoted {κθ,j}

C
j=1. Note

that whereas the knowledge of the normalizing constant is not required for an MCMC algorithm, the normalizing constant
of the pseudo-priors are assumed to be known, i.e. the pseudo-priors {κθ,j}

C
j=1 should integrate to 1. Also, it is assumed

that exact sampling from the pseudo-priors is doable (and is computationally inexpensive). We define an auxiliary joint
posterior density π̃θ (· | Y) on the product space I × X × · · · × X by:

π̃θ (I, X̃1, . . . , X̃C | Y) = πθ (I, X̃I | Y)

j≠I

κθ,j(X̃j)

∝ gθ (Y | I, X̃I)pθ (X̃I | I)ωI


j≠I

κθ,j(X̃j), (19)

where ωI , gθ and pθ are defined in (6), (10) and (11) respectively. It can be noted that the marginal of π̃θ (· | Y)with respect
to to the auxiliary deformation parameters is the target distribution πθ (· | Y):

πθ (I,X | Y) =


· · ·


π̃θ (I, x̃1:I−1,X, x̃I+1:C | Y)dx̃−I , (20)

where for all (i, j) ∈ I2, such that i < j, ai:j = (ai, ai+1, . . . , aj) and for all i ∈ I, a−i = {aj}Cj=1,j≠i. Remarkably, this property
does not depend on the choice of pseudo-priors.

AMetropolis-within-Gibbs sampler targeting π̃θ (· | Y) is used to simulate aMarkov chain (I[k], X̃1[k], . . . , X̃C [k]) on the
product space (I×X×· · ·×X). Suppose theMarkov chain is at state (I, X̃1, . . . , X̃C), the so-called full conditional posterior
distributions required for the Gibbs sampler are:

π̃θ (I | X̃1:C , Y) ∝ gθ (Y | I, X̃I)pθ (X̃I | I)ωI


j≠I

κθ,j(X̃j), (21)

π̃θ (X̃j | I, X̃−j, Y) ∝


gθ (Y | I, X̃I)pθ (X̃I | I) = πθ (X̃I | I, Y), j = I,
κθ,j(X̃j), j ≠ I.

(22)

From (21) and (22), it can be seen that sampling the class index and the auxiliary deformations from their respective
full conditional posterior distribution is straightforward. However, since sampling the new parameter from the current
class cannot be achieved directly, a Random Walk Metropolis–Hastings (RWMH) (Metropolis et al., 1953) kernel Pθ (X̃I; · |

6

X̃−I , I, Y) having πθ (· | I, Y) as its stationary distribution is applied r times to X̃I to generate X̃′

I . TheMarkov chain transition
writes:
(i) I ′ ∼ π̃θ (· | X̃1:C , Y),
(ii) X̃′

j ∼ κθ,j, for j ≠ I ′,
(iii) X̃′

I ′ ∼ P r
θ (X̃I ′; · | X̃′

−I ′ , I
′, Y),

and the transition kernel K̃CC may thus be expressed as:

K̃CC(I ′, dX̃′

1:C | I, X̃1:C) = π̃θ (I ′ | X̃1:C , Y)P r
θ (X̃I ′; dX̃′

I ′ | X̃′

−I ′ , I
′, Y)


j≠I

κθ,j(dX̃′

j). (23)

In stationary regime, the Markov chain {I[k], X̃1[k], . . . , X̃C [k]}k>0, simulated through a Metropolis-within-Gibbs algo-
rithm, provides samples from π̃θ (· | Y). However, only the marginal samples {I[k],X[k] = X̃I[k]}k>0, distributed under
πθ (· | Y) (20), are of interest and will be used in the approximation of the E-step of the MCoEM algorithm (17). Pseudo-code
of the Markov chain simulation algorithm is reported in Algorithm 2.

Algorithm 2Markov chain simulating missing data
1: Input:

• An observation: Y
• A parameter estimate: θ
• Number of components: C
• Length of the Markov chain:m
• Number of RWMH iterations: r

2: Specification of the pseudo-prior densities κθ,1, . . . , κθ,2
I See Section 4.2

3: Set X̃j[0] ∼ κθ,j for j = 1, . . . , C
4: for k = 1, . . . ,m do
5: Class sampling: I[k] ∼ π̃θ (I | X̃1:C [k − 1], Y)

I See Eq. (21)
6: Let i = I[k]
7: RandomWalk Metropolis–Hastings move:

X̃i[k] ∼ P r
θ (X̃i[k − 1]; · | i, Y)

8: for j ∈ {1, . . . , C}\{i} do
9: Pseudo-prior update: X̃j[k] ∼ κθ,j

10: end for
11: Set X[k] = X̃i[k]
12: end for
13: Output: A Markov chain (I[1],X[1], . . . , I[m],X[m]).

4.2. Choice of the pseudo-prior densities

The specification of the linking densities is essential for sampling efficiency. Ideally, these densities should be close to the
marginal posterior: for all j ∈ {1, . . . , C}, the density X → κθ,j(X) should be chosen as a proxy to X → πθ (X | j, Y). An idea
is for instance to set the pseudo-prior density as a Gaussian approximation of the target density. Such an approximation
can be obtained using the Laplace method (Wolfinger, 1993) or other approximate Bayesian sampling method. Under the
(weak) assumption that the function X → πθ (X | j, Y) admits a maximum,

X⋆j = argmax
X∈X

πθ (X | j, Y), (24)

the Taylor-expansion of logπθ (· | j, Y) at X⋆j writes:

logπθ (X | j, Y) = logπθ (X⋆j | j, Y)+
1
2
(X − X⋆j)

THj(X − X⋆j)+ o(∥X − X⋆j ∥
2), (25)

where for all j ∈ {1, . . . , C}, Hj is the Hessian matrix, whose coefficients are given for all (q, r) ∈ {1, . . . , dX}2 by:

[Hj]q,r =
∂2

∂Xq∂Xr
logπθ (X | j, Y)


X=X⋆j

. (26)

7

Note that for better readability, for all j ∈ {1, . . . , C}, the dependence of the linking densities κθ,j, on the parameters X⋆j , Hj
on Y and θ is not made explicit in these notations, but does exist.

The previous discussion suggests that NdX(X
⋆
j ,−H−1

j) is a sensible candidate for κθ,j. The pseudo-priors parameters X⋆j
may be obtained using standard nonlinear optimization methods. Since X⋆ is only used in the pseudo-prior specification,
the precision of the optimizer does not matter much and simple heuristics can be used (see related discussion in Section 5).

Remark 2. Our proposed kernel shares some similarities with that proposed in Allassonnière and Kuhn (2010), which also
makes use of auxiliary variable {X̃1, . . . , X̃C }. These authors propose to first sample the class index I from πθ (· | Y) and
then draw X ∼ πθ (· | I, Y). However, since sampling the class index from the posterior distribution is not doable (indeed
π(I = j | Y) ∝ πθ (j, Y) which is not analytically tractable), auxiliary variables {X̃1[k], . . . , X̃C [k]}k>0 are sampled from C
independent Markov chains each targeting πθ (· | j, Y), j ∈ {1, . . . , C}, in an attempt to approximate the posterior weights
{πθ (j | Y)}Cj=1. These approximateweights allow to sample I and thenparameter samples {X[k]}k>0 are drawnusing aMarkov
chain targeting πθ (· | I, Y). Since the inference in Allassonnière and Kuhn (2010) is conducted in a batch learning setup, this
scheme is computationally intensive. Indeed, at each iterations, C Markov chains {X̃1[k], . . . , X̃C [k]}k>0 per observation need
to be sampled.

5. Numerical illustration

We evaluate the performance of our online learning algorithm by inferring two types of data: growth velocity curves
and handwritten digits. These two examples illustrate the flexibility, the stability and the computational effectiveness of
the proposed MCoEM. MCoEM is then compared to an equivalent SAEM algorithm on the handwritten digits templates
extraction task.

5.1. Growth velocity curve study

The growth velocity curve example is a classical benchmark in curve registration; see Ramsay (2006), Zhong (2008),
Dimeglio et al. (2014) and Wu and Hitchcock (2016). It is used here for illustrative purposes, because the rationale of the
model is easy to grasp. The growth curves are obtained from the Berkeley Growth Study data (Tuddenham and Snyder, 1954)
and display the evolution of the growth velocity between 2 and 18 years, for 39 boys and 54 girls; see Fig. 1. Even though
each observation is known to arise from either a boy or a girl, this information is unused, as MCoEM is designed to perform
unsupervised inference on mixture models. The objective of the algorithm is therefore to retrieve a standard growth profile
for boys and girls from the unlabeled set of growth velocity curves. The growth velocity curves, plot the growth velocity
of individuals observed at |Ω| = 31 landmarks Ω = {u1, . . . , u|Ω|}, irregularly spaced, such that for all s ∈ {1, . . . , |Ω|},
2 ≤ us ≤ 18.

5.1.1. Deformable template model
Growth profiles may vary from an individual to another, both as a function of the time and in amplitude. The algorithm

aims to extract templates for the growth velocity curves: it associates to each observation Yn a monotonically increasing
time warping function u → D(u, βn) as well as a global scaling parameter λn. We consider a mixture model with C = 2,
implying that we aim at retrieving templates for boys and girls growth velocity separately: the class index In ∈ {1, 2}
models the boys and girls clusters. In this illustration, the template is a function fαi (i ∈ {1, 2}) defined on an open segment
U = (ui, uf) = (2, 18) parameterized as:

fαi(u) =

m
ℓ=1

αi,ℓφℓ(u), (αi,1, . . . , αi,m) ∈ A = R+m
, (27)

where {φℓ}
m
ℓ=1 is set as u → φℓ(u) = exp(νℓ−2(u − rℓ)2), where {rℓ}mℓ=1 are regularly spaced landmark points in U. The

choice of {φℓ}mℓ=1 and A ensures that the template function u → fαi(u) is a positive function, which is a natural constraint
for growth velocity curves. For all ℓ ∈ {1, . . . ,m}, the bandwidth of φℓ is set as νℓ2 = −minu∈Ω\{rℓ} ∥rℓ − u∥2/ log ε,
where ε ∈ (0, 1) is the value of φℓ at the nearest design point of rℓ. This choice of bandwidth enables to take into account
the irregularly spaced measurement points in Ω . In this implementation, we used m = 35, so that kernels φ1, φ2, . . . are
centered on landmarks distant from a 6-month interval and ε = 0.1. The deformable template model (1) simply writes for
all u ∈ U:

Yn ∈ Ci, Yn(u) = λnf αi ◦ D(u, βn)+ σWn(u).

In this setting, the time warping function u → D(u, β) is monotonically increasing and should satisfy D(ui, β) ≥ ui and
D(uf , β) ≤ uf (indeed, outside (ui, uf), the template vanishes (27)). In order to satisfy these constraints, we write D(·, β)
as:

D(u, β) = ui + (uf − ui)H(u, β), (28)

8

Fig. 1. Growth velocity samples and templates extraction obtained through 1000 iterations of the MCoEM algorithm.

where H(·, β) is modeled as proposed in Ramsay and Li (1998) with:

H(u, β) =

 u
u′
i
exp


dβ
k=1
βkψk(v)


dv

 u′
f

u′
i
exp


dβ
k=1
βkψk(v)


dv

, (29)

where u′

i ≤ ui and u′

f ≥ uf allow to satisfy the constraints stated above. For all k in {1, . . . , dβ}, βk ∈ R and {ψk}
dβ
k=1 is a

dictionary of Gaussian kernels centered on the landmark points {qk}
dβ
k=1 with the same bandwidth τ 2. In this implementation,

we setu′

i = 0,u′

f = 20 anduse dβ = 20 regularly spaced landmarkpoints such that q1 = u′

i and qdβ = u′

f ; the kernel variance
is set to τ 2 = 1. Moreover, the prior distribution (10) of β is set with a mean equals to (1, . . . , 1)T and for all j ∈ {1, 2}
a covariance matrix Γj parameterized by the variance γj, such that Γj = γ 2

j Iddβ . The estimate γ̂ 2
j,n of γ 2

j after n = 1000
iterations is γ̂ 2

1,1000 = 0.08 and γ̂ 2
2,1000 = 0.07. The hyper-parameter of the prior distribution for the scaling parameter λ is

set to a = 10.

5.1.2. Sampling the missing data
Figs. 2–4 illustrate the sampling scheme proposed in Section 4, taking place at a given iteration n of theMCoEM algorithm

(the index n is omitted hereafter). For j ∈ {1, 2}, the auxiliary variable X̃j consists in X̃j = (λj, βj). In Fig. 2, green dots
represent an observation Y along with the templates in plain curves (boys on the top panel and girls on the bottom panel).
In each panel, the dashed curves illustrate different realizations of the distorted template under the action of deformation
parameters X̃1[k] = (β1[k], λ1[k]) and X̃2[k] = (β2[k], λ2[k]) sampled using the kernel K̃CC. For each new observation Y, we
used 300 iterations of theMarkov chain detailed in Section 4.1, discarding the first 100 states for burn-in. The pseudo-priors
κ1 and κ2 were set as Gaussian distributions, as specified in Section 4.2. For j ∈ {1, 2}, the mean (λ⋆j , β

⋆
j) were obtained

through a quasi-Newton optimization method (with an early stopping rule, because the precision of the fit does not matter
much). For computational efficiency, the pseudo-prior κj covariance matrix was set as Γ̂j,n = γ̂ 2

j,nIddβ (which is the jth
class prior covariance matrix estimate). Even though, the pseudo-prior distributions provide inappropriate deformation
parameters (see some samples from D(·, β1[k]) on the top panel of Fig. 2), they nevertheless achieve their two-fold target,
namely (i) allowing to switch betweenmodels as illustrated in Fig. 3 and (ii) sampling deformations that are consistent with
Y: the distorted templates tend to match the observation. Fig. 3 shows two warping functions D(·, β1[k]) and D(·, β2[k])
corresponding to the samples β1[k] and β2[k] obtained at the k = 300th iteration of the Markov chain. This shows that,
in order to register the template with the observation, the boys time warping function (in black, parameterized by β1)
accelerates the time from 9 years old onwards much faster than its girls counterpart (in red, parameterized by β2). This is
an evidence that this observation is more likely to arise from a girl record. The sampling of the cluster index (21) makes use
of the complete data log-likelihood and promotes models involving small deformations. Therefore, the class I = 2 is more
likely as confirmed by Fig. 4 representing the class sampling scheme throughout the 300 MCMC iterations.

9

Fig. 2. Sampling of the hidden data posterior distribution. {λ1[k], β1[k], λ2[k], β2[k], I[k]} for some k ∈ {101 . . . , 300} are samples from the Markov
chain produced by K̃CC that admits π̃θ (· | Y) (19) as stationary distribution. The sampled deformation/scale is then applied to the template of the class it
corresponds to (the thick black/red line), yielding a distorted template (the dashed black/red line) that tends to match the observation (the green dotted
line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.1.3. Template estimation
Starting with two m = 35 dimensional random vectors α̂1,0 and α̂2,0, the two templates fα̂1,1000 and fα̂2,1000 , displayed

in Fig. 1 were obtained after N = 1000 iterations of the MCoEM algorithm. Since a limited number of observations are
available, each observation is processed several times, drawn at random throughout the iterations. The templates show that
the girls reach the pubertal growth spurt earlier (between 11 and 12 years) than boys (between 13 and 14 years). Moreover,
we notice that the boys growth velocity profile features a pre-pubertal dipmore pronounced than for the girls. The estimated
templates are comparable to those obtained for example in Wu and Hitchcock (2016) (see Figure 8) using a similar model
in a fully Bayesian inference framework.

5.2. Handwritten digits template extraction

We apply MCoEM to a collection of handwritten digits, the US postal database. It contains N = 1000 samples of each
handwritten digit from 0 to 9 and each observation is a 16 × 16 pixel image. The USPS digits data were gathered at the
Center of Excellence in Document Analysis and Recognition (CEDAR) at SUNY Buffalo, as part of a project sponsored by the
US Postal Service; see Hull (1994). Themain difficulty with these data stems from the geometric dispersionwithin each class
of digit. Two sources of variability are considered:

10

Fig. 3. Time warping functions for the deformation parameters β1 and β2 sampled at the last iteration (k = 300) of the Markov chain produced by K̃CC

that admits π̃θ (· | Y) (19) as stationary distribution; see Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Class sampling {I[1], . . . , I[300]} from the Markov chain produced by K̃CC that admits π̃θ (· | Y) (19) as stationary distribution. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

(i) The first type is assumed meaningful, since intrinsically related to the class of digit, and MCoEM seeks to learn them:
the templates. A digit may indeed need more than a single prototype shape to be efficiently modeled by a mixture of
deformable templates. For example, a digit twomay be written with or without a loop in the lower left-hand corner and
a digit seven may feature an horizontal bar on the diagonal line.

(ii) The second type is regarded as nuisances resulting from the presentation context and are deemed irrelevant to identify
the class of an observation. They consist of small local deformations and global deformations such as a rotations,
homotheties and translations. Such nuisances result from the size of the pen used, different handwriting skills, digits
being partially censored by the observation window, etc.

5.2.1. Deformable template model
An observation Yn is a 16 × 16 matrix, regarded as a |Ω| = 256 dimensional vector, whose coordinates correspond to

the photometry of a fixed set of pixels, (u1, . . . , u|Ω|), such that for all s ∈ {1, . . . , |Ω|}, us ∈ (−1, 1) × (−1, 1). The raw

11

database consists of noise-free observations, such that for all s ∈ {1, . . . , |Ω|}, Yn,s ∈ (0, 1). To make the problem more
challenging, an additive Gaussian noiseWs = σϵ, where σ = 0.2 and ϵ ∼ N (0, 1), is added to each pixel Yn,s (see Fig. 6(a)).

A template f is a function defined on U = R2. The dictionary of functions {φℓ}
m
ℓ=1 is set as Gaussian kernels with

m = 256. The landmark points {rℓ}mℓ=1 are regularly spaced in the square (−1, 1)× (−1, 1) and the kernel φℓ is defined as
u → φℓ(u) = exp(ν−2(u − rℓ)2)with ν = 0.2.

Contrary to the growth velocity curve case, where growth profiles feature different scales, since the images are scaled in
(0, 1), the scale dispersion in themeasurement space is limited. As a consequence, using a scaling factorλn is not relevant. To
each imageYn is associated a class In ∈ {1, . . . , C} and a deformation parameterβn, such that a template can be geometrically
deformed under the action of a function u → D(u, βn). We consider two complementary types of deformation:

• A rigid deformation u → T (u, υn)whereυn parameterizes rotations, homotheties and translations. Indeed, the templates
need to be allowed to rotate and to be translated in space, in order tomatch the observations and in particular thosewhich
are partially censored by the observation window. Homotheties allow to zoom in or to zoom out the templates. In this
case, υn is a 6-dimensional real vector, υn = (ϕn, ϱn, cn, tn), where cn is the center of the rotation of angle ϕn and of the
homotheties having ϱn as ratio and tn is the translation vector. T (· , υn)writes for all u ∈ U:

T (u, υn) = Rϕn(ϱnu + tn − cn)+ cn,

where Rϕn is the rotation matrix with angle ϕn. A Gaussian prior is set on υn, with zero mean for the components
(ϕn, cn, tn) and a mean one for ϱn. The covariance matrix is diagonal with variances set to 0.1.

• A smooth small deformation field is used to register locally a template with the observation. It is parameterized by a
dV -dimensional vector δn = (δn,1, . . . , δn,dV) and writes for all u ∈ U as

V (u, δn) =

dV
k=1

δn,kψk(u),

where for all k ∈ {1, . . . , dV }, δn,k ∈ R2 allows small displacements in the two directions. The smoothness of the
deformation is enforced by the choice of functions {ψk}

dV
k=1 which belongs to a dictionary of Gaussian kernels defined

on R2 and centered on the landmark points {qk}
dV
k=1 with identical variance σ 2

L , such that for all k ∈ {1, . . . , dV },
ψk(u) = exp


σ−2
V ∥u − qk∥2


. In this implementation, we used dV = 36 landmark points at the vertices of a regular grid

on the square (−0.5, 0.5)×(−0.5, 0.5) and abandwidthσ 2
V = 0.16. As a consequence the local deformationparameter δn

is a 72-dimensional vector. Similarly toυn, conditionally on In = j, a Gaussian distributionwith zeromean and covariance
matrix Γ̄j is assumed for the parameter δn. In this implementation, for all j ∈ {1, . . . , C}, Γ̄j writes Γ̄j = γ 2

j M whereM is
a 2Kg × 2Kg fixed matrix with ones on the diagonal, 0.2 on the lower and upper diagonals and 0 everywhere else.

Hence, the parameter βn is a 78-dimensional vector which writes βn = (υn, δn) and belongs to the space B = [0, 2π] ×

R+
× R2

× R2
× R72. Finally, the deformation model writes in this setting for all u ∈ U and a parameter βn ∈ B as:

D(u, βn) = Rϕn(ϱnu + tn − cn)+ cn +

dV
k=1

δn,kψk(u). (30)

It is illustrated with Fig. 5.

5.2.2. Parameter estimation
We consider two learning setups:

1. Partially-supervised: the templates are learnt for each digit separatelywith C1 = 4 classes throughN1 = 1000 iterations
of the MCoEM. Thus, 10 independent models are learnt and the resulting templates are reported in Fig. 6(b). We refer
to this approach as partially-supervised since MCoEM deals with images of the same digit (labeled) but assigns each
observation to one of the four classes describing this type of digit in an unsupervised fashion.

2. Fully-unsupervised: the templates are learnt from the dataset containing all the 10 digits (unlabeled), with C2 = 20
classes and N2 = 5000. Thus, only one model is learnt and the resulting templates are illustrated with Fig. 6(c).

The templates obtained in the two settings are similar, even though in Fig. 6(c), the algorithmmakes use of a class for digits
that can hardly be classified in one of the existing mixture component (template in the bottom right corner). In addition, in
the fully-unsupervised scheme, the number of classes describing a digit is ruled by the learning algorithm and may not be
optimal: for instance a digit two could be described with more than two clusters, whereas three classes for a digit nine are a
bit excessive. For a qualitative comparison, the template shapes in Fig. 6(c) can be compared to those estimated in Nguyen
et al. (2016) (Figure 3) modeled with a mixture of spatial spline regression (MSSR) and fitted with a batch EM algorithm on
a similar dataset.

Following the guidelines provided in Cappé and Moulines (2009), the sufficient statistics (and consequently the param-
eters) should be updated for the first time once several observations have been gathered. Indeed, the sufficient statistics
estimator needs to satisfy a number of constraints. In particular {s̃n,j,1}Cj=1 should be nonzero scalars and {s̃n,j,3}Cj=1 should

12

Fig. 5. Distortion of a template fα under the action of global and local deformations.

(a) Samples of handwritten
digits.

(b) Partially supervised scheme. (c) Fully
unsupervised
scheme.

Fig. 6. Templates estimated in the two different schemes: (b) partially-supervised, after N1 = 1000 MCoEM iterations with C1 = 4 components for each
model and (c) fully-unsupervised, after N2 = 5000 MCoEM iterations with C2 = 20 components. In both setups, MCoEMwas applied to handwritten digit
images similar to those displayed in (a).

be invertible matrices. In practice, these assumptions hold, when the first update happens after n = 50 MCoEM iterations,
the second after n = 75 and as soon as a new observation is available from n = 100 onwards. Initialization of the tem-
plate parameters can potentially lead to degeneracy if one or more classes are initialized with pathologic parameters. This
issue was not encountered in the partially-supervised setup probably because the class sampling is easier, the data being all
observations of the same digit. The initial template parameters were thus set randomly. In the fully-unsupervised scheme
however, the template parameters were set as the clusters centroid returned by a k-means clustering algorithm (using
the Matlab built-in routine) applied to 50 images of the dataset drawn at random. More precisely, for all j ∈ {1, . . . , C},
α̂0,j = (ΦT

Odβ
ΦOdβ

)−1ΦT
Odβ

cj, whereΦβ is defined in Eq. (3) and cj is k-means cluster j centroid.

Fig. 7 shows the parameters estimate {θ̂n}
1000
n=1 throughout the MCoEM algorithm for the digit two learnt separately with

C = 4 classes (partially-supervised). The functions {fαn,j}1≤j≤C tend progressively to usual reference shapes and each new
observation available enhances the templates estimate (Fig. 7(a)).

13

0 100 200 300 400 500 600 700 800 900 1000
0.05

0.06

0.07

0.08

0.09

0.1

0.11

(a) Evolution of the templates {fα̂j }1≤j≤C . (b) Evolution of the noise variance estimate σ̂ 2
n .

Fig. 7. Templates extraction and inference.

5.2.3. Sampling the missing data
The hidden data βn = (υn, δn) and In are simulatedwith tn = 200 iterations if n ≤ 100 and tn = 500 iterations otherwise

of the sampling scheme proposed in Section 4. This choice of mn is motivated by the fact that when the templates are not
well resolved (which occurs in the early estimates of MCoEM), a rough approximation of the conditional expectation is
sufficient. Moreover, a burn-in period of 100 iterations was applied. Finally, given the high dimension of βn, the quasi-
Newton optimization methods to estimate {β⋆j }

C
j=1 in Eq. (24) is time-consuming. Therefore, for all j ∈ {1, . . . , C} the

pseudo-prior κθ,j parameters are set as the sample mean and covariance matrix derived from 100 iterations of a random
walk targeting the posterior distribution πθ (· | Y, I = j) and taking place before the first MCMC iteration.

Fig. 8(a) shows a realization of the k = 450th iteration of the Markov chain K̃CC
n occurring at the n = 600th iteration of

the MCoEM algorithm (the index n is omitted hereafter). In this scenario, we aim at extracting C = 4 templates of the digit
7 in a partially-supervised setting (see Fig. 6(b)). Given I[k − 1] = 3, the auxiliary variables {βj[k]}j≠3 are sampled from
the linking densities {κθ̂n−1,j

}j≠3, while β3[k] is simulated with r = 20 iterations of a Gaussian increment Random Walk
Metropolis–Hastings algorithm, whose variance is adjusted to obtain an overall acceptance rate of 40% (see Andrieu et al.,
2003). Iterating the Metropolis–Hastings kernel r times speeds up the convergence of the chain without changing the sta-
tionary distribution. Despite the rough approximation on the pseudo-priors parameters, Fig. 8(a) shows that the simulated
deformations βj[k] are consistent with the observation Yn for each model j ∈ {1, . . . , C}. As a consequence, the Markov
chain {I[k], β1[k], . . . , βC [k]}k>0 mixes well; see Fig. 8(b) which displays the class index samples {I[k]}k>0 throughout the
tn = 500MCMC iterations. An animation of the MCMC sampling scheme in the fully-unsupervised framework can be found
online at http://mathsci.ucd.ie/~fmaire/MCoEM/carlinChib.html.

5.2.4. Remark on the number of components in the mixture
Specifying a relevant number of clusters C in situations where the prior knowledge on the data is limited is an arduous

task. Processing the data online makes the challenge even bigger since it is not possible to provide an initial meaningful
guess on C at the start of the algorithm as data are simply unavailable. Updating C on the fly requires a specific care as some
clusters might not be updated in a series of observations and still be relevant to describe future data, as opposed to batch
algorithms approaches that discard those clusters that are not frequently updated (see for exampleWu and Hitchcock, 2016
where a dynamic rule to update C is suggested). Nevertheless, in the context of the deformable template model, inference
carried out by the MCoEM turns out to be rather robust to the choice of C , provided that the specified deformation model
is relevant. In particular, our experiments show that when C is increased, the estimated geometric deformation amplitude
diminishes. Hence, adding more clusters is equivalent to allow more diversity in the photometry (more templates) while
reducing the geometrical variability within each class. In this perspective, C yields a tradeoff on how the variability of the
dataset is modeled: low photometric/large geometric variations if C is moderate and conversely. Whether it is accounted as
a photometric or a geometric variation, the variability of the data is reasonablywell captured by themodel: we have checked

14

0 100 200 300 400 500
iterations (k)

1

2

3

4

cl
as

s
sa

m
pl

in
g

Fig. 8. Sampling missing data (I[k], β1[k], . . . , β4[k]) ∼ π̃θn (· | Yn) with n = 600, using the Carlin and Chib approach introduced in Section 4. The top
panel (a) illustrates the sampling of deformations parameters taking place at the k = 450th iteration of the Markov chain. The bottom panel (b) illustrates
the class index sampled by the Markov chain.

that the log-likelihood at convergence is relatively steady with C . Obviously, the computational cost generated when C is
large is prohibitive and, on this example, C needs not be large to perform an accurate inference.

5.2.5. Comparison with SAEM-MCMC
For conciseness, we will write from now on SAEM instead of SAEM-MCMC for the algorithm formalized by Kuhn and

Lavielle (2004) and applied to perform template estimation in Allassonnière and Kuhn (2010). Templates estimated by

15

Fig. 9. Templates extracted by MCoEM (b) and SAEM (c) from the same dataset, consisting of n = 300 handwritten digit images from each type of digit, in
a partially-supervised way and during a 10-hour running time experiment. Eachmodel comprises C = 2 classes. (a) represents the initial templates drawn
at random α̂0,j ∼ N (0m,M−1)whereM is a square matrix of size m with elementsMp,q = exp(−∥rp − rq∥2/ν2).

MCoEM are compared with those obtained by applying SAEM to the same images, in both setups (partially and fully-
unsupervised). In the partially-supervised setup, both algorithms processed the same n = 300 images for each class of
digit, during a 10-hour runtime. In the fully-unsupervised approach, MCoEM and SAEM processed the same n = 500 images
(50 images of each digit), during a 40-hour runtime experiment. SAEM is a batch stochastic EM algorithm that processes all
the data at each iteration. In the mixture of deformable models context, this means that SAEM has to register each single
observation with the set of templates estimated at each iteration, whereby generating a significant computational burden.
As a consequence, in a 10-hour running time experiment, SAEM could only perform 23 iterations while MCoEM completed
nearly 2000 iterations. Figs. 9 and 10 report the sets of templates extracted by both methods in the two setups.

In the partially-supervised setup, the two sets of estimated templates show similar features (Fig. 9), highlighting that
in spite of processing the data on the fly, MCoEM yields a similar stability than SAEM. From a qualitative perspective,
performing nearly ten times as many iterations than SAEM is beneficial for MCoEM whose templates look much
smoother and yield a better resolution. An animation of the template estimation in this setup can be found online at
http://mathsci.ucd.ie/~fmaire/MCoEM/templates.html.

The templates estimated by MCoEM and SAEM in the fully-unsupervised setup, implemented with C = 15 components,
are reported in Fig. 10. The first ten templates are consistent for both algorithms while the last five templates differ
significantly. On the one hand, MCoEM only makes use of 13 from the 15 available classes. The two remaining classes
corresponds to the 12th and 15th templates in the middle column of Fig. 10. Fig. 11 plots the weight evolution for each
class as MCoEM moves forward and shows that those two classes have quickly become unused by the algorithm. The first
ten classes weight is slightly lower than 1/10 which is in line with the dataset. On the other hand, SAEM maintains the 15

16

Fig. 10. Templates extracted by MCoEM (b) and SAEM (c) from the same dataset, consisting of n = 500 handwritten digit images from each type of digit,
in a fully-supervised way and during a 40-hour running time experiment. The model comprises C = 15 mixture components. (a) represents the initial
templates based on k-means clustering applied on 50 random images. See http://mathsci.ucd.ie/~fmaire/MCoEM/templates.html for an animation.

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

w
ei

gh
t e

st
im

at
e

ω
j f

or
 th

e
15

 c
la

ss
es

200 400 600 800 1000 1200 1400 1600 1800
iterations (n)

Fig. 11. Evolution of the weight for each of the C = 15 classes of the fully-unsupervised mixture of template model inferred by MCoEM. Circled data
points correspond to the two classes whose weight vanishes.

classes alive all throughout the algorithm. In this example, SAEM appears more robust than MCoEM for inferring a mixture
model. However, we believe that the stability of MCoEM can be improved by increasing the number of iterations before the
first parameter update (only 50 in our simulation), hence avoiding this degeneracy problem. Indeed, from Fig. 11 it is clear
that those two classes have been left empty after the first 50 iterations, paving the way to the pathological effect observed
at the next updates.

17

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

er
ro

r
ra

te
 ρ

t

10
0

10
1

10
2

10
3

10
4

10
5

time (s)

Fig. 12. Live error rate for MCoEM, SAEM-50 and SAEM-300, applied in the partially-supervised setup. For each algorithm, a ball at time t represents the
error rate at time t . ρt is obtained by comparing the estimated class V̂k,t with the label Vk for the N = 1000 testing data. V̂k,t is returned by the classifier
making use of the knowledge acquired by the algorithm up to time t . Dashed lines are used for readability only and do not convey any error rate outside
the balls.

6. Classification

When considering real-time classification applications, the MCoEMmethodology may prove more adequate than SAEM:
indeed as soon as the first estimate of θ is available, a classifier can be implemented. Of course, the rate of correct
classification is expected to improve upon random guessing as soon as the templates (and the other parameters) take shape.
Both algorithms produce a sequence of parameter estimates. However, since iterations of MCoEM and SAEM have different
computational complexity, we consider θ̂t , the parameter estimate after a runtime of t time units, as a fair way to compare
both methods.

Learning parameters of the mixture of deformable models (5) allow one to classify labeled observations {(Ỹ1, V1),

. . . , (ỸN , VN)} gathered in a testing dataset. There is no overlap between those testing observations and the data {Y1, . . . , Yn}

processed by the algorithms during the learning phase. Let ρt be the live error rate at time t , defined as the empirical
rate of uncorrect classification (based on N = 1000 testing observations) obtained using the parameters estimated by
the algorithms at time t:

ρt =
1
N

N
k=1

1V̂k,t ≠Vk
,

where V̂k,t is the class of digit assigned to Ỹk returned by the classifier using the estimate θt . In this section, we compare
the live error rate on the handwritten digits example such that Vk ∈ {0, . . . , 9} (see Section 5.2) based on estimates from
MCoEM (processing a new observation at each iteration), SAEM-50 and SAEM-300, i.e. SAEM using n = 50 and n = 300
learning observations respectively. Both learning setups partially-supervised and fully-unsupervised are considered.

6.1. Partially-supervised learning

In this approach, each type of digit v ∈ {0, . . . , 9} is described at time t by a set of parameters (θ̂ (v)1,t , . . . , θ̂
(v)
C,t). We used

C = 2 classes per digit in this implementation. The following unnormalized probabilities

for all v ∈ {0, . . . , 9}, πv(Ỹk, θ̂t) =

C
i=1

E
θ̂
(v)
i,t


gθ (Ỹk | Ik,Xk) | Ỹk, Ik = i


, (31)

are calculated and the guess V̂k,t is defined as

V̂k,t(θ̂t) = arg max
v∈{0,...,9}

πv(Ỹk, θ̂t). (32)

The conditional expectation in (32) is intractable and approximated by the sample mean of a Metropolis–Hastings Markov
chain targeting the posterior distribution of Xk, π(· | Yk, Ik = i).

Fig. 12 reports the live error rate for the three algorithms applied in the partially-supervised setup. For each algorithm the
error rate at t = 0 isρ0 = 0.9 since the initial template is uninformative (see Fig. 9(a)) The second left-most ball corresponds
to the error rate using the first estimate produced by each algorithm. For each algorithm, the time per iteration is reported
in Table 1. Note that for numerical stability, MCoEM first parameter update occurred after 15 iterations, the second after
10 iterations and at each iteration from the 20th iteration onwards. SAEM yields a large error rate when learning from only

18

Table 1
CPU time of an iteration of MCoEM and SAEM with n = 50 and n = 300 and C = 2 mixture
components.

MCoEM SAEM-50 SAEM-300

CPU time/iteration (s) 20 225 1570

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

er
ro

r
ra

te
 ρ

t

time (s)
2 4 6 8 10 12 14 16

104×

Fig. 13. Live error rate for MCoEM and SAEM-500, applied in the fully-unsupervised setup. Dashed lines are used for readability only and do not convey
any error rate outside the balls.

n = 50 observations. It is significantly reduced when using n = 300 observations but this improvement comes at the price
of a prohibitively large computational cost. The first estimate produced by SAEM-300 is available after t1 = 1570 s. At this
time, MCoEM has already performed nearly 80 iterations and exhibits a significantly lower live error rate: approximately
ρt1 = 0.24 for MCOEM and ρt1 = 0.34 for SAEM-300. MCoEM yields a successful tradeoff between SAEM-50 with limited n
allowing quick estimates but poor error rate and SAEM-300 with larger n allowing lower error rate but a slower estimation.
In addition, since MCoEM makes use of new data at each iteration, its live error rate is expected to keep reducing while
SAEM’s error rate, using a fixed dataset, seems to flatten once convergence of the parameter is reached.

6.2. Fully-unsupervised learning

Since in this learning setup, an object (e.g. a digit nine) may be described by several templates (3 in the simulation of
Fig. 6(c) and 2 in that of Fig. 10(b)), an intermediate layer of classes is required. Based on this observation, an external agent
must specify the mapping M : I → {0, 1, . . . , 9} that links each class designed by MCoEM/SAEM to the object it describes.
Classification is then carried out in the same way as in the semi-supervised setup. More precisely, given the estimate θ̂t , the
following unnormalized probabilities

for all v ∈ {0, . . . , 9}, πv(Ỹk, θ̂t) =


i∈M(v)

Eθ̂i,t


gθ (Ỹk | Ik,Xk) | Ỹk, Ik = i


, (33)

are approximated by an MCMC estimate and the guess V̂k,t is derived as in (32).
Fig. 13 reports the live error rate of MCoEM and SAEM-500 in the fully-unsupervised setup. At time t = 0, the error rate

ρ0 is 0.65 and not 0.9 as in the previous setup. This is because the initial templates are derived from k-means centroids based
on the same n = 50 data (see Section 5.2.2) and are thus no longer non-informative. SAEM is clearly penalized by processing
n = 500 observations and estimating C = 15 classes of parameters: it nearly takes 5 h of computation to get the first SAEM’s
estimate. Interestingly, SAEM’s first estimate is nearly as ‘‘good’’, in the error rate sense, as the MCoEM estimate obtained
after 5 hours. Nevertheless, usingMCoEMoffers a practitioner the possibility to classifymuch quicker new observations (see
Table 2 that compares the computational cost of one iteration of MCoEM and SAEM).

7. Discussion

We have proposed a statistical framework to perform sequential and unsupervised inference of a deformable template
model, with application to curve synchronization and shape extraction. It makes use of theMonte Carlo online EM algorithm
(MCoEM), derived from Cappé and Moulines (2009) and a novel MCMC sampling method, based on the Carlin and Chib
sampler (Carlin andChib, 1995), allowing to simulate the unsamplable joint distribution of the cluster index anddeformation
parameters. The method has been applied successfully to extract reference templates from several datasets featuring high
time/geometric dispersion.

19

Table 2
CPU time of an iteration of MCoEM and SAEM n = 500 and C = 15 mixture components.

MCoEM SAEM-500

CPU time/iteration (s) 170 17,570

Our work was primarily motivated by the computational gain arising when processing one observation at a time. Indeed,
when the missing data is a large vector and many observations are available, stochastic batch EM algorithms such as
SAEM (Delyon et al., 1999) are prohibitively slow for practical use. This has been illustrated with the classification problem
(Section 6.2) in which SAEM’s error rate after nearly 5 h of computation is still at the initial level. In comparison, it took
MCoEM less than 20 min to reach less than half the initial error rate. In this perspective, MCoEM can be regarded as a
linearization of stochastic batch EMalgorithms,which is particularly appealing in a BigData context. Note that SAEMcoupled
with an efficient MCMC kernel such as the Anisotropic Metropolis Adjusted Langevin sampler (AMALA) is likely to speed up
the E-step approximation, as less MCMC transitions is required. This has been successfully demonstrated in Allassonniere
and Kuhn (2015) in a similar context and the adaptation of their methodology to handle a mixture of deformable templates
could, from a computational viewpoint, compete with our online approach.

In terms of implementation, the main concern when inferring a mixture model with MCoEM is class degeneracy. To
mitigate this risk, two points have been discussed. First, a particular care should be brought to the way initial parameters
are set and especially the templates.We have suggested to use k-means clustering on a limited set of observations to initiate
the templates. Second, the number of EM iterations between the first parameter updates should be large enough in order
to assign at least one observation to each class. Adaptive implementations have not been considered but could yield an
automated update schedule.

The handwritten digit example studied in this paper shows that MCoEM seems to inherit SAEM’s asymptotic behavior.
Indeed, (i) qualitatively, the template shapes extracted by both algorithms are similar and (ii) quantitatively, the error rates
are comparable. This result calls for further investigation as a theoretical framework is yet to be developed to establish
the convergence of MCoEM. Both SAEM and online EM proofs of convergence relies on stochastic approximation theory
arguments. However those proofs cannot be straightforwardly extended to MCoEM since it combines two approximations:
one on the conditional expectation (which is in SAEM) and the other one on the data generating process (which is in the
online EM). We therefore leave this as a future work. Interesting questions involved whether the convergence rate of n−1/2

achieved in the online EM (Cappé andMoulines, 2009) is degradedwhen replacing the expectation of the sufficient statistics
by an unbiased estimate and how the variance of the unbiased estimator propagates to the asymptotic variance of the
estimator.

Acknowledgments

The authors would like to thank the Editor and two referees for their comments and suggestions which greatly helped
to improve the overall presentation of the manuscript. Florian Maire would like to thank the ONERA-The French Aerospace
Lab and the DGA-The French Procurement Agency.

References

Allassonnière, S., Amit, Y., Trouvé, A., 2007. Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc. Ser. B Stat.
Methodol. 69 (1), 3–29.

Allassonnière, S., Bigot, J., Glaunès, J.A., Maire, F., Richard, F.J.-P., 2013. Statistical models for deformable templates in image and shape analysis. Ann. Math.
Blaise Pascal 20 (1), 1–35.

Allassonnière, S., Kuhn, E., 2010. Stochastic algorithm for parameter estimation for dense deformable template mixture model. ESAIM Probab. Stat. 14,
382–408.

Allassonniere, S., Kuhn, E., 2015. Convergent Stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to
deformable template model estimation. Comput. Statist. Data Anal. 91, 4–19.

Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I., 2003. An introduction to MCMC for machine learning. Mach. Learn. 50 (1–2), 5–43.
Bernhardt, P.W., Zhang, D., Wang, H.J., 2015. A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject

to detection limits. Comput. Statist. Data Anal. 85, 37–53.
Bigot, J., Charlier, B., 2011. On the consistency of fréchet means in deformable models for curve and image analysis. Electron. J. Stat. 5, 1054–1089.
Cappé, O., Moulines, E., 2009. Online Expectation–Maximization algorithm for latent data models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 (3), 593–613.
Carlin, B.P., Chib, S., 1995. Bayesian model choice via Markov chain Monte Carlo. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 473–484.
Castellanos, N.P., Angel, P.L.D., Medina, V., 2004. Nonrigid medical image registration technique as a composition of local warpings. Pattern Recognit. 37

(11), 2141–2154.
Christensen, G., 1999. Consistent linear-elastic transformations for image matching. In: Information Processing in Medical Imaging. pp. 224–237.
Christensen, G., Rabbitt, R., Miller, M., 1996. Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5 (10), 1435–1447.
Delyon, B., Lavielle, M., Moulines, E., 1999. Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27, 94–128.
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39 (1),

1–38. (with discussion).
Dimeglio, C., Gallón, S., Loubes, J.-M., Maza, E., 2014. A robust algorithm for template curve estimation based onmanifold embedding. Comput. Statist. Data

Anal. 70, 373–386.
Frey, B.J., Jojic, N., 2003. Transformation-invariant clustering using the EM alogrithm. IEEE Trans. Pattern Anal. Mach. Intell. 25 (1), 1–17.
Gaffney, S., Smyth, P., 2004. Joint probabilistic curve clustering and alignment. In: Advances in Neural Information Processing Systems 17.
Gelfand, A.E., Smith, A.F.M., 1990. Sampling based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85, 398–409.

20

Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6,
721–741.

Hull, J.J., 1994. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16 (5), 550–554.
Kneip, A., Gasser, T., 1992. Statistical tools to analyze data representing a sample of curves. Ann. Statist. 20 (3), 1266–1305.
Kuhn, E., Lavielle, M., 2004. Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM Probab. Stat. 8, 115–131.
Liu, Z., Almhana, J., Choulakian, V., McGorman, R., 2006. Online EM algorithm for mixture with application to Internet traffic modeling. Comput. Statist.

Data Anal. 50 (4), 1052–1071.
Liu, X., Yang, M., 2009. Simultaneous curve registration and clustering for functional data. Comput. Statist. Data Anal. 53 (4), 1361–1376.
Ma, J., Miller, M.I., Trouvé, A., Younes, L., 2008. Bayesian template estimation in computational anatomy. NeuroImage 42 (1), 252.
McLachlan, G.J., Krishnan, T., 2007. The EM Algorithm and Extensions. Vol. 382. Wiley-Interscience.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equations of state calculations by fast computing machines. J. Chem. Phys.

21, 1087–1092.
Moffa, G., Kuipers, J., 2014. Sequential Monte Carlo EM for multivariate probit models. Comput. Statist. Data Anal. 72, 252–272.
Nguyen, H.D., McLachlan, G.J., Wood, I.A., 2016.Mixtures of spatial spline regressions for clustering and classification. Comput. Statist. Data Anal. 93, 76–85.
Ramsay, J.O., 2006. Functional Data Analysis. Wiley Online Library.
Ramsay, J.O., 2011. Curve registration. In: The Oxford Handbook of Functional Data Analysis. pp. 235–258.
Ramsay, J.O., Li, X., 1998. Curve registration. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 (2), 351–363.
Silverman, B.W., 1985. Some aspects of the spline smoothing approach to non-parametric regression curve fitting. J. R. Stat. Soc. Ser. B Stat. Methodol. 47,

1–52.
Telesca, D., Inoue, L., 2008. Bayesian hierarchical curve registration. J. Amer. Statist. Assoc. 103, 328–339.
Tuddenham, R., Snyder, M.M., 1954. Physical growth of california boys and girls from birth to eighteen years. Publications in child development. University

of California, Berkeley 1 (2), 183.
Wang, K., Gasser, T., 1997. Alignment of curves by dynamic time warping. Ann. Statist. 25, 1251–1276.
Wolfinger, R., 1993. Laplace’s approximation for nonlinear mixed models. Biometrika 80 (4), 791–795.
Wu, Z., Hitchcock, D.B., 2016. A Bayesian method for simultaneous registration and clustering of functional observations. Comput. Statist. Data Anal. 101,

121–136.
Zhong, Z., 2008. Curve registration in functional data analysis. ProQuest.

21

	Online EM for functional data
	Introduction
	A mixture of deformable template models
	A basic deformable model
	A mixture of deformable templates

	Sequential parameter estimation using the Online EM algorithm
	Sampling from the missing data joint posterior distribution
	MCMC on an extended state space
	Choice of the pseudo-prior densities

	Numerical illustration
	Growth velocity curve study
	Deformable template model
	Sampling the missing data
	Template estimation

	Handwritten digits template extraction
	Deformable template model
	Parameter estimation
	Sampling the missing data
	Remark on the number of components in the mixture
	Comparison with SAEM-MCMC

	Classification
	Partially-supervised learning
	Fully-unsupervised learning

	Discussion
	Acknowledgments
	References

