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Abstract This article presents the designs, simulations

and real-time experimental results of two energy-based

control strategies to stabilize an Unmanned Aerial Ve-

hicles (UAV) using a quaternion representation of the

attitude. The mathematical model is based on Euler-

Lagrange formulation using a logarithmic mapping in

the quaternion space. The proposed solutions introduce

a new approach: a quaternion-energy-based control, which

use an energy-based expression defined as a Lyapunov

function. The control laws are described with unit quater-

nions and their axis-angle representation. The proposed

algorithms allow the stabilization of the quadrotor in

all its states. The strategies ensure the stability of the

closed loop system. Simulation results and experimen-

tal validations are developed to verify the effectiveness

of the proposed controllers.

Keywords Energy-Based Control · Quaternion ·
Quadrotor · Real-time validation · Lyapunov analysis

1 Introduction

Unmanned Aerial Vehicles have experienced a signif-

icant development in the last years. Various mathe-

matical models and many control strategies based on
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classic or modern control theory have been developed

for these vehicles. Often, in the major part of the lit-

erature on quadrotors, Euler angles are used for the

attitude parametrization, which is a very natural way

of describing orientation. However, this representation

presents inherent singularities and many non-linearities

by the use of trigonometric functions, which cause ex-

tensive representations of the control algorithms and

complications in the design of control strategies. For

these reasons, the use of a quaternions instead of Euler

angles to model the rotational dynamics and to develop

control laws for quadrotors is becoming very popular

amongst some researchers.

Few works have investigated the quadrotor attitude

control problem using a hyper complex number of rank

4 known as quaternions. For example, in [1] an ap-

proach that utilizes an attitude parametrization based

on quaternions is proposed. The strategy consists of two

stages. First an input-output linearization from the al-

titude position to the thrust is performed, followed by

a second input-output linearization from the transla-

tional position to the control torques. This separation

leads to a so called quasi-static feedback linearization

that omits additional controller state. Also, in [2] a hier-

archical controller design based on non-linear H∞ the-

ory and backstepping technique is developed for a non-

linear and coupled dynamic attitude system using con-

ventional quaternion based method. The derived con-

troller combines the attractive features of H∞ optimal

controller and the advantages of the backstepping tech-

nique leading to a control law which avoids winding

phenomena.

Similarly, in [3] various control techniques for a quadro-

tor using a quaternion representation of the attitude
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were designed. All attitude controllers use a quater-

nion error to compute control signals that are computed

from an actual quaternion and a desired quaternion ob-

tained from a position controller. Attitude and position

control laws are obtained using a PD, LQR and back-

stepping control technique. In [4] the attitude stabi-

lization problem for a quadrotor is considered. Using

a new Lyapunov function, an exponentially stabilizing

controller based upon the compensation of the Coriolis

and gyroscopic torques and the use of a PD feedback

structure is derived, where the proportional action is in

terms of the vector-quaternion and the two derivative

actions are in terms of the airframe angular velocity

and the vector-quaternion velocity.

Moreover, in [5] a quaternion-based sliding mode

surface is proposed for a model-free of the full dynamic

model of a quadrotor. The control algorithm has three

important features: the controller assures exponential

stability of the full position/attitude dynamics of the

system with smooth control efforts, the closed-loop sys-

tem is robust in presence of external forces and induced

moments generated during the flight maneuvers and

the controlled quadrotor offers capabilities for aggres-

sive maneuvers. Simulations showed the capabilities of

the closed-loop performance under several conditions.

Also, [6] proposes a non-linear Proportional squared

(P 2) control algorithm fully implemented in the quater-

nion space, for solving the attitude problem of a quadro-

tor, the designed control strategy performs very well

with a small overshoot and a good reference tracking.

However only numerical simulations were presented to

prove the efficiency of the suggested scheme.

Meanwhile, [7] introduces the design and experi-

mental flight tests of a quaternion state feedback con-

trol scheme to globally stabilize a quadrotor. First an

attitude control strategy was proposed to stabilize the

vehicle’s heading, then a position control law is de-

signed to stabilize the vehicle in all its states. In [8]

a comparison between Euler and quaternion approach

has been driven, highlighting the efficiency of the sec-

ond method from a computational point of view. The

advantage in considering the quaternion reference is

twofold because it avoids critical positions and, it of-

fers a model with the linearity of the coefficients of the

transformation matrix, it is also numerically more effi-

cient and stable compared to traditional rotation for-

mulation. Also, in [9] the maximum rate attitude con-

trol problem under the input saturation is presented.

Moreover, a Backstepping based Inverse Optimal Atti-

tude Controller (BIOAC) is derived which has the prop-

erty of a maximum convergence rate within the mean-

ing of a control Lyapunov function under input torque

limitation. In the controller, a backstepping technique is

used for handling the complexity introduced by the unit

quaternion representation of the attitude of a quadro-

tor with four parameters.

Besides, there exist a small number of publications,

where an energy-based control is designed for an UAV.

For example in [10] the physical singularities due to

under-actuation are solved by using an energy-based

control. Energy-based control is used to overcome the

lack of controllability of the quadrotor at physical sin-

gular configurations, for instance, when commanding

the quadrotor to gain altitude while pitched at 90◦.

Also, in [11] a cascaded non-linear state feedback con-

trol law for a quadrotor is presented, which achieves

asymptotic tracking of a predefined position and head-

ing reference trajectory. By a suitable shaping of the

potential energy and the injection of a sophisticated

damping, this approach enables us to design an outer-

loop position controller, which satisfies constraints on

the maximal and minimal thrust force.

Also, [12] presents a passivity-based approach to

stabilize the quadrotor vehicle. However, the authors re-

duce the problem to the planar maneuvers case to avoid

solving complicated Partial Differential Equations (PDEs).

Similarly, in [13], a nonlinear control technique based

on passivity to solve the path tracking problem for the

quadrotor is presented, but only one control loop was

considered in this work. The authors showed that the

PBC formulation leads to a set of partial differential

equations constraints due to the under-actuation de-

gree of the system.

Moreover, [14] introduces a strategy based on a com-

bination of an energy-based and optimal control ap-

proaches to stabilize a quadrotor. The system is lin-

earized for solving the well-known Algebraic Riccati

Equation (ARE). Simulations have shown that the per-

formance of the proposed control design is satisfactory

also in presence of a wind gust perturbation. In [15] a

formal method to design a digital inertial control sys-

tem for quadrotor aircraft is introduced. In particular,

it formalizes how to use approximate passive models in

order to justify the initial design of energy-based PD

controllers.

Therefore in this paper, we propose two control laws

to stabilize a quadrotor using energy-based approaches

with unit quaternions. The mathematical model based

on Euler-Lagrange formulation is written using a quater-

nion logarithmic mapping. The dynamical model is such



Quadrotor Energy-Based Control Laws: A Unit-Quaternion Approach 3

that an under-actuated system as a quadrotor can be

represented as a fully actuated virtual system. The ob-

tained algorithms are based on an energy function and

a desired quaternion trajectory. This allows to control

the full dynamics of the vehicle. The presented strate-

gies have no singularity problems and were validated

in real-time. Furthermore, external disturbances were

added to the experiments, showing an effective com-

pensation while flying.

The paper is structured as follows: a brief back-

ground of the main concepts and mathematical expres-

sions used in unit quaternions are presented in sec-

tion II. The quadrotor dynamic model in terms of unit

quaternions with the logarithmic mapping is described

in section III. The energy-based control strategies are

developed in section IV. Numerical simulations to vali-

date the performance of the proposed control strategies

are introduced in the section V. Real-time experiments

are described in section VI to demonstrate the perfor-

mance of our proposals in a real system. Finally, con-

clusions and future work are discussed in section VII.

2 Quaternion Background

Quaternions are numbers that can be represented as a

sum of a scalar component along an imaginary vector.

Let q be a quaternion given by

q = q0 + q̄, q0 ∈ R, q̄ ∈ R3

where q̄ denotes the complex vectorial part of q, and q0
represents the scalar part of q.

Quaternions have several operations such as the prod-

uct, which is defined by

q ⊗ r = (q0 r0 − q · r) + (r0 q + q0 r + q × r) (1)

where r is also a quaternion. The quaternion conju-

gate can be expressed as q∗ = q0 − q, the norm by

||q|| =
√
q ⊗ q∗ =

√
q20 + q21 + q22 + q23 , when ||q|| = 1,

then q is called a unit quaternion. The inverse opera-

tor is denoted by q−1 = ||q||−1q∗. If q is unitary, the

inverse and the norm are equivalent.

A unit quaternion can be used to represent the rota-

tion of a rigid body (see Figure 1) using the axis-angle

representation and the logarithmic mapping

θ = 2 ln q, θ̇ = ω, (2)

Fig. 1 Axis-angle representation of a rigid body rotation

with

ln q =

 ln ||q||+ q

||q||
arccos

q0
||q||

, ||q|| 6= 0

ln ||q||, ||q|| = 0
(3)

Any vector in a 3D space can be rotated from one

reference frame (say the inertial frame) to another (for

example a body frame) using the expression

v′ = q∗ ⊗ v ⊗ q (4)

where v ∈ R3 and v′ ∈ R3 are in the inertial and body

frames respectively.

The derivate of a quaternion which represents the

attitude of a rigid body can be expressed in terms of

its orientation and its angular velocity as

q̇ =
1

2
q ⊗ ω (5)

3 Quaternion Mathematical Model

The quadrotor is an under-actuated system with six

degrees of freedom and only four control inputs. Figure

2 shows the vehicle scheme.

Fig. 2 Quadrotor scheme.

Let us consider an earth fixed frame I = {ex, ey, ez}
and body fixed frame β = {ebx, eby, ebz}, as seen in Figure

2. ξ =
[
p θ̄
]T ∈ R6 denotes all the states variables of
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the vehicle, where p =
[
x y z

]T
represents the position

vector with respect to the earth fixed frame, θ̄ = 2 ln(q)

expresses the rotation quaternion in its axis-angle no-

tation. The vector F̄th =
[
0 0 Fth

]T
denotes the thrust

vector, g =
[
0 0 −g

]T
defines the gravity vector, the

vector τ =
[
τux τuy τuz

]T
expresses the torques applied

to the body’s center of mass, represented on the quadro-

tor in the body fixed frame.

3.1 Euler-Lagrange Formulation

The vehicle motion equations can be obtained by the

Euler-Lagrange formulation:

d

dt

(
∂L

∂ξ̇

)
− ∂L

∂ξ
= U, (6)

where L denotes the Lagrangian of the system and is

defined as the difference between the kinetic and poten-

tial energy,

L(ξ, ξ̇) = K(ξ̇)− V (ξ), (7)

U = [FT
u τTu ]T defines the input vector, which con-

tains Fu that denotes the input force with respect to

the earth fixed frame and τu that represents the input

torques expressed in the body fixed frame.

From (7), K(ξ̇) expresses the total kinetic energy,

which is obtained as follows

K(ξ̇) =
1

2
mṗT ṗ+

1

2
˙̄θTJ ˙̄θ (8)

and V (ξ) is the total potential energy of the vehicle

V (ξ) = mgz (9)

where m represents the quadrotor’s mass, J denotes the

inertia matrix, g is the gravity, and z describes the ver-

tical position of the vehicle.

Introducing (8) and (9) into (7) we can obtain the

Lagrangian equation as follows

L =
1

2
mṗT ṗ+

1

2
˙̄θTJ ˙̄θ −mgz, (10)

Then, substituting (10) into (6) the motion equa-

tions can be expressed as[
Fu

τu

]
=

[
mp̈−mḡ

J ¨̄θ

]
(11)

where ¨̄θ = τ − ω × J ω.

Remember that the quadrotor is an under-actuated

system, then the force Fu which is expressed in the

earth fixed frame, is the force F̄th rotated, see (4), there-

fore

Fu = q ⊗ F̄th

m
⊗ q∗ (12)

Since the angular acceleration is given by the exter-

nal torques and the internal rotational dynamics, it can

be expressed as

¨̄θ = τ − ω × J ω ⇒ τu = J (τ − ω × J ω) . (13)

Besides, the dynamic model (11) can be expressed

in matrix form as

Mξ̈ +G = BU, (14)

where M ∈ R6×6 represents the inertia matrix which

is symmetric and positive definite, G ∈ R6×1 defines

the gravitational vector and finally, B ∈ R6×6 is the

identity matrix. These matrices are expressed as follows

M =

[
mI3×3 03×3
03×3 IpI3×3

]
(15)

G =
[
0 0 mg 0 0 0

]T
(16)

where Ip denotes the mass moments of the inertia of

the vehicle.

Note from (12) that the force in the inertial frame

depends on the orientation given by q, which varies

according to the input torque τ as seen in (13).

4 Quaternion-Energy-Based Control Laws

In this section, the synthesis of quaternion-energy-based

controllers for the vehicle are developed.

First, the total energy of the vehicle is obtained and

can be described by

H(ξ, ξ̇) =
1

2
ξ̇TMξ̇ + V (ξ) (17)

In term of the error function, the total energy is

described as

H̄(ξ̄, ˙̄ξ) =
1

2
˙̄ξ
T
M ˙̄ξ + V (ξ̄) (18)

with ξ̄ = ξ − ξd, ˙̄ξ = ξ̇ − ξ̇d, where ξd represents the

desired state vector.
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Now, introducing (9), it yields

H̄
(
ξ̄, ˙̄ξ
)

=
1

2
˙̄ξ
T
M ˙̄ξ +mgz̄

Differentiating the above along the trajectories of

the system

˙̄H = ˙̄ξ
T
M ¨̄ξ +mg ˙̄z

From (16), it follows that

˙̄H = ˙̄ξ
T
M ¨̄ξ + ˙̄ξ

T
G (19)

Substituting (14) into the above, it follows

˙̄H = ˙̄ξ
T
BU (20)

Two energy-based control schemes are considered in

the following subsections.

4.1 Case 1

Now, consider the following positive function as a Lya-

punov candidate function

V
(
ξ̄, ˙̄ξ
)

=
1

2
KEH̄

2 +
1

2
˙̄ξ
T
Km

˙̄ξ +
1

2
ξ̄TKpξ̄ (21)

where Kp = KT
p > 0, Km = KT

m > 0 and KE define

strictly positive definite constants. Differentiating (21)

with respect to time

V̇
(
ξ̄, ˙̄ξ
)

= KEH̄
˙̄H + ˙̄ξ

T
Km

¨̄ξ + ˙̄ξ
T
Kpξ̄

Introducing (20), we obtain

V̇
(
ξ̄, ˙̄ξ
)

= KEH̄
˙̄ξ
T
BU + ˙̄ξ

T
Km

¨̄ξ + ˙̄ξ
T
Kpξ̄

Notice from (14) that ¨̄ξ = M−1(BU −G), then

V̇ = KEH̄
˙̄ξ
T
BU + ˙̄ξ

T
Km

(
M−1(BU −G)

)
+ ˙̄ξ

T
Kpξ̄

Factoring terms, it follows that

V̇ = ˙̄ξ
T (
KEH̄BU +Km

(
M−1BU −M−1G

)
+Kpξ̄

)
= ˙̄ξ

T ([
KEH̄B +KmM

−1B
]
U −KmM

−1G+Kpξ̄
)

Therefore, the first control law is defined such that:[
KEH̄B +KmM

−1B
]
U −KmM

−1G+Kpξ̄ = −Kv
˙̄ξ

(22)

where Kv = KT
v > 0.

This leads to

V̇
(
ξ̄, ˙̄ξ
)

= − ˙̄ξ
T
Kv

˙̄ξ

From (22) we can obtain

U = [E]
−1
[
−Kpξ̄ −Kv

˙̄ξ +KmM
−1G

]
where E = KEH̄B +KmM

−1B.

B is an identity matrix, this ensures that E always

has inverse and that U does not have singularities.

The final control law can be rewritten, as follows

[
Fu

τu

]
= [E]

−1

[
−Kpt(p− pd)−Kvt(ṗ− ṗd)−Kmtḡ

−2Kpr ln(qe)−Kvr( ˙̄θ − ˙̄θd)

]
(23)

where Kpt > 0, Kpr > 0, Kvt > 0, Kvr > 0 and

Kmt > 0 contain design parameters, pd denotes the

equilibrium configuration, θ̄d = 2 ln qd. Take into ac-

count that qe = q⊗q∗d defines the quaternion error be-

tween the actual orientation q and the desired reference

q∗d. If the control law is such that ln (qe) → [0 0 0]T ,

then qe → 1 + [0 0 0]T , which implies that the orien-

tation of the vehicle converges to the desired reference

q → q∗d.

Fu expresses the desired force expressed in the iner-

tial frame which will stabilize the quadrotor in the de-

sired position, and τu represents the torque that makes

the attitude converge to the desired quaternion refer-

ence.

The quaternion trajectory qd is defined as follows

qd = (b·Fu+||Fu||)+b×Fu

||(b·Fu+||Fu||)+b×Fu||
Fth = ||Fu||

, (24)

where b = [0 0 1]T denotes the axis on which the thrust

acts in the body fixed frame.

From (24) qd is used to close the loop such that F̄th

is rotated to coincide with Fu, thus the position is sta-

bilized in the desired reference. The above is justified

by well known time-scale separation between rotational

and translational dynamics. Thus, the control law (23)

in quaternion space guarantees the stabilization of all

the system states.
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4.2 Case 2

In this case an energy-based optimal control law using

unit-quaternions is proposed.

Considering the state vector as x(t) =
[
ξ̄ ˙̄ξ
]T

=[
p θ̄ ṗ ˙̄θ

]T
. Then, system (11) can be rewritten as fol-

lows:
ẋ1
ẋ2
ẋ3
ẋ4

 =


x2
x4
−g
0

+


0

0

m−1Fu

J−1τu

 (25)

Now, the performance cost function which is to be

minimized is defined as follows:

J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt (26)

where the state and input weighting matrices are as-

sumed such that Q = QT , Q > 0 and R = RT , R > 0.

System (25) can be optimally stabilized solving:

dVo
dt

+ xTQx+ uTRu = 0 (27)

Then, consider the the following Lyapunov candi-

date function based on the total energy

Vo =
1

2
KEH̄

2 +
1

2
˙̄ξ
T
Km

˙̄ξ +
1

2
ξ̄TKpξ̄ + ξ̄TKT

˙̄ξ (28)

where KT = KT
T > 0. Differentiating (28) along the

trajectories of the system

V̇o

(
ξ̄, ˙̄ξ
)

= KEH̄
˙̄H+ ˙̄ξ

T
Km

¨̄ξ+ ˙̄ξ
T
Kpξ̄+ξ̄

TKT
¨̄ξ+ ˙̄ξ

T
KT

˙̄ξ

Now, introducing (19) in the above, it follows that

V̇o = KEH̄( ˙̄ξ
T
M ¨̄ξ + ˙̄ξ

T
G) + ˙̄ξ

T
Km

¨̄ξ + ˙̄ξ
T
Kpξ̄ + ξ̄TKT

¨̄ξ

+ ˙̄ξ
T
KT

˙̄ξ

=

(
KEH̄

˙̄ξ
T
M + ˙̄ξ

T
Km + ξ̄TKT

)
¨̄ξ +KEH̄

˙̄ξ
T
G

+ ˙̄ξ
T
Kpξ̄ + ˙̄ξ

T
KT

˙̄ξ (29)

Substituting (14) into (29), it yields

V̇o =

(
KEH̄

˙̄ξ
T
M + ˙̄ξ

T
Km + ξ̄TKT

)
M−1 (U −G)

+KEH̄
˙̄ξ
T
G+ ˙̄ξ

T
Kpξ̄ + ˙̄ξ

T
KT

˙̄ξ (30)

Finally, introducing (30) into (27) and applying dy-

namic programming, it follows that

0 =
∂

∂(U −G)

[
+KEH̄

˙̄ξ
T
G+ ˙̄ξ

T
Kpξ̄ + ˙̄ξ

T
KT

˙̄ξ + xTQx(
KEH̄

˙̄ξ
T
M + ˙̄ξ

T
Km + ξ̄TKT

)
M−1 (U −G)

+(U −G)TR(U −G)
]

(31)

Then,

KEH̄
˙̄ξ
T

+ ( ˙̄ξ
T
Km + ξ̄TKT )M−1 +R(U −G) = 0 (32)

Therefore, the control law can be represented as

U = −R−1[KEH̄
˙̄ξ + ( ˙̄ξ

T
Km + ξ̄TKT )M−1] +G (33)

The final control law can be rewritten, as follows[
Fu

τu

]
= R−1

[
M−1

[
−Kpt(p− pd)−Kvt(ṗ− ṗd)

−2Kpr ln(qe)−Kvr( ˙̄θ − ˙̄θd)

]

−KEH̄

[
(ṗ− ṗd)

( ˙̄θ − ˙̄θd)

]]
+

[
−mḡ

0

]
Remember that θ̄d = 2 ln qd and qe = q ⊗ q∗d.

5 Numerical Validation

Our laboratory has developed a simulator which is fully

compatible with our drones, and models in a very pre-

cise way the dynamics of the UAV, see Figure 3. Nu-

merical simulations were used to validate both of the

proposed control schemes using this simulation envi-

ronment.

Fig. 3 Simulation environment for a quadrotor vehicle.

Our platform uses an optical tracking system to

measure the position the vehicle with an array of cam-

eras. The references are considered to be in the NED

(North, East, Down) convention, where the x axis is

pointing the front of the drone, the y points its right
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side, and the z axis points down.

The control gains were considered to be diagonal

matrices, and were adjusted empirically to obtain a sta-

ble behavior of the simulation.

Kpt = diag(0.25, 0.25, 2) Kpr = diag(6, 6, 6)

Kvt = diag(0.125, 0.125, 0.5) Kvr = diag(0.5, 0.5, 1)

Km = diag(mI3×3, J) KE = 0.05

The UAV platform was considered geometrically sym-

metric such that the mass and the inertial matrix can

be defined as

J =

0.177 0 0

0 0.177 0

0 0 0.354

 , m = 408 g

5.1 Simulated Scenario

A trajectory was computed such that the vehicle fol-

lows a circular path in the horizontal plane while main-

taining a constant altitude. The reference points were

calculated as

pd =

−r cos(tc) + r

−r sin(tc)

zd

 , (34)

where tc represents a discrete time which starts in zero

when the trajectory begins and increments in steps of

∆tc = 0.006 in each computer cycle, and zd is the de-

sired altitude which is considered to be constant.

For this simulation, a r = 1m circle was considered

for the first two loops, then the radius was abruptly

changed to r = 2m until two more loops are made. In

this case, the heading of the quadrotor is kept constant

at zero during the circling movement.

The position signals and references were used to

compute a desired force (see Figures 4 and 5) to drive

the vehicle towards the trajectory.

The values of these graphs express the fraction of

the total force the quad-rotor’s propellers are able to

exert, with ||Fx||, ||Fy||, ||Fz|| < 1, where 1 means the

motors are rotating at their maximum speed.

Using (24), an attitude trajectory is computed to

make the thrust force coincide with the desired force,

these trajectories are illustrated in Figures 6 and 7.
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Fig. 4 Input forces for case 1.
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Fig. 5 Input forces for case 2.
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Fig. 6 Quad-rotor attitude reference (qd) in case 1.
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Fig. 7 Quad-rotor attitude reference (qd) in case 2.

The rotational inputs are calculated such that q fol-

lows qd. Similarly to the input forces, torques are ex-

pressed in values ||τx||, |τy||, ||τz|| < 1, where 0 means

no torque and ±1 means the maximum moment in ei-

ther direction.
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Fig. 8 Input torques for case 1.

In Figures 10 through 15 the vehicle’s attitude is

illustrated independently for each component of the

quaternion. Note the vehicle’s attitude follows the com-

puted trajectory in a very precise manner, the q3 com-

ponent axis was not plotted because its rotational dy-

namics are decoupled from the translation, so its values

stay in zero.
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Fig. 9 Input torques for case 2.
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Fig. 10 Attitude and reference for q0 in case 1.
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Fig. 11 Attitude and reference for q0 in case 2.
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Fig. 12 Attitude and reference for q1 in case 1.
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Fig. 13 Attitude and reference for q1 in case 2.
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Fig. 14 Attitude and reference for q2 in case 1.
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Fig. 15 Attitude and reference for q2 in case 2.

In order to illustrate the attitude behavior in a more

comprehensive manner for the reader, a conversion from

quaternion to Euler angles was applied as

φ = atan2
(
2(q0q1 + q2q3), 1− 2(q1q1 + q2q2)

)
θ = asin

(
2(q0q2 − q1q3)

)
ψ = atan2

(
2(q0q3 + q1q2), 1− 2(q2q2 + q3q3)

) , (35)

The roll, pitch, and yaw angles are illustrated in Fig-

ures 16 21.
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Fig. 16 Attitude and reference for φ angles in case 1.
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Fig. 17 Attitude and reference for φ angles in case 2.
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Fig. 18 Attitude and reference for θ angles in case 1.
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Fig. 19 Attitude and reference for θ angles in case 2.
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Fig. 20 Attitude and reference for ψ angles in case 1.
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Fig. 21 Attitude and reference for ψ angles in case 2.

Figures 22 through 27 represent the translational

dynamics. Note that the position for each axis is stabi-

lized according to the trajectory.

Lastly, Figures 28 and 29 illustrates the circles de-

scribed by the quad-rotor in the horizontal plane.
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Fig. 22 Quad-rotor’s position in the x axis in case 1.

Time [s]
0 5 10 15 20 25 30

P
o
si
ti
o
n
in

X
a
x
is

[m
]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x

xd

Fig. 23 Quad-rotor’s position in the x axis in case 2.
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Fig. 24 Quad-rotor’s position in the y axis in case 1.
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Fig. 25 Quad-rotor’s position in the y axis in case 2.
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Fig. 26 Quad-rotor’s position in the z axis in case 1.
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Fig. 27 Quad-rotor’s position in the z axis in case 2.
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Fig. 28 Quadrotor’s horizontal translation in case 1.
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Fig. 29 Quadrotor’s horizontal translation in case 2.

6 Flight Tests

The Parrot AR Drone 2 was then used to perform tests

in real experiments, this UAV has been adapted to work

under our laboratorys framework.

An Inertial Measurement Unit (IMU), and an Opti-

Track motion capture system were used to measure the

rotational and translational position and velocities.

6.1 Circular trajectory

A circular trajectory, similar to the one presented in

the simulation, was introduced to the quad-rotor which

is illustrated in Figures 30 and 31 for each case.

In this case, the experiments consisted in a first r =

1m circle and immediately followed by another one with

r = 1.5m. As in the simulated experiment, the heading

of the quadrotor is kept constant at zero during the

circling movement.
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Fig. 30 Quad-rotor’s horizontal translation in case 1 exper-
iments.
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Fig. 31 Quad-rotor’s horizontal translation in case 2 exper-
iments.

A control force is computed with the position error,

this is represented in Figures 32 and 33.
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Fig. 32 Quad-rotor’s control forces for case 1.

Time [s]
0 5 10 15 20

C
o
n
tr
o
l
In
p
u
t
F
o
rc
es

[N
]

-0.8

-0.6

-0.4

-0.2

0

0.2

Fx

Fy

Fz

Fig. 33 Quad-rotor’s control forces for case 2.

A quaternion attitude trajectory is computed to ori-

ent the thrust force to the direction of the control force

using the designed controller, this is illustrated in Fig-

ures 34 through 39.
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Fig. 34 Attitude and reference for q0 in case 1 experiments.
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Fig. 35 Attitude and reference for q0 in case 2 experiments.
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Fig. 36 Attitude and reference for q1 in case 1 experiments.
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Fig. 37 Attitude and reference for q1 in case 2 experiments.
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Fig. 38 Attitude and reference for q2 in case 1 experiments.
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Fig. 39 Attitude and reference for q2 in case 2 experiments.

The equivalent Euler Angles were obtained using

equation (35), and depicted in Figures 40 to 45.

0 5 10 15 20 25
−15

−10

−5

0

5

10

15

Time [s]
R
o
ll
A
n
g
le
s
[d
e
g
]

 

 

φ
φd

Fig. 40 φ angles in case 1 experiments.
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Fig. 41 φ angles in case 2 experiments.
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Fig. 42 θ angles in case 1 experiments.
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Fig. 43 θ angles in case 2 experiments.
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Fig. 44 ψ angles in case 1 experiments.
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Fig. 45 ψ angles in case 2 experiments.

The torques used to control the quad-rotor’s atti-

tude are illustrated in Figures 46 and 47, while Figures

48 through 53 represent the position of the vehicle fol-

lowing the desired trajectory.
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Fig. 46 Quad-rotor’s experiment control torques for case 1.
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Fig. 47 Quad-rotor’s experiment control torques for case 2.
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Fig. 48 Quad-rotor’s position in the x axis in case 1.
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Fig. 49 Quad-rotor’s position in the x axis in case 2.
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Fig. 50 Quad-rotor’s position in the y axis in case 1.
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Fig. 51 Quad-rotor’s position in the y axis in case 2.
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Fig. 52 Quad-rotor’s position in the z axis in case 1.
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Fig. 53 Quad-rotor’s position in the z axis in case 2.

6.2 Perturbed flights

To further validate our proposal, additional flight tests

were added with significant perturbations. The UAV

was set to follow a r = 1m circular path, then a mem-

ber of our team pushed the quad-rotor by hand, this

push deviates the vehicle from its trajectory. The con-

trol laws manage to compensate the disturbance and

return the drone to its path.

Figures 54 and 55 illustrate the desired trajectory

and the disturbed path taken by the quad-rotor.

The control forces that compensate the perturba-

tions and stabilize the vehicle are depicted in Figures

56 and 57. The quaternion orientation trajectory and

the UAV’s attitude are compared in Figures 58 through
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69. Note the desired attitude reference adjusts when a

disturbance is presented.
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Fig. 54 Quad-rotor’s horizontal translation in case 1.
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Fig. 55 Quad-rotor’s horizontal translation in case 2.
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Fig. 56 Quad-rotor’s control forces for case 1.
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Fig. 57 Quad-rotor’s control forces for case 2.
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Fig. 58 Attitude and reference for q0 in case 1 experiments.
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Fig. 59 Attitude and reference for q0 in case 2 experiments.
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Fig. 60 Attitude and reference for q1 in case 1 experiments.
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Fig. 61 Attitude and reference for q1 in case 2 experiments.
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Fig. 62 Attitude and reference for q2 in case 1 experiments.

Following equation (35), the Euler angles were com-

puted and illustrated in Figures 63 to 68.
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Fig. 63 φ angles in case 1 experiments.
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Fig. 64 φ angles in case 2 experiments.
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Fig. 65 θ angles in case 1 experiments.
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Fig. 66 θ angles in case 2 experiments.
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Fig. 67 ψ angles in case 1 experiments.
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Fig. 68 ψ angles in case 2 experiments.
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Fig. 69 Attitude and reference for q2 in case 2 experiments.
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Fig. 70 Quad-rotor’s position in the x axis in case 1.
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Fig. 71 Quad-rotor’s position in the x axis in case 2.
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Fig. 72 Quad-rotor’s position in the y axis in case 1.
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Fig. 73 Quad-rotor’s position in the y axis in case 2.
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Fig. 74 Quad-rotor’s position in the z axis in case 1.
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Fig. 75 Quad-rotor’s position in the z axis in case 2.

The described experiments were recorded in a video

that can be watched in the following link:

https://youtu.be/z35Ti wLRro

7 CONCLUSIONS

In this article, the design of a dynamical model based

on Euler-Lagrange formalism using a logarithmic map-

ping in the quaternion space was introduced. The ve-

hicle attitude is denoted by the axis-angle representa-

tion of an unit quaternion. The obtained mathematical

model through force F̄th rotated facilitated the control

strategy design.

The presented control methods were used to de-
sign attitude and also position controllers. These are

based on a energy function which has been defined as

a Lyapunov function. The controllers use the quater-

nion representation of the attitude. Also, the attitude

controllers use the quaternion error to compute desired

torques.

The proposed control strategies allow the stabiliza-

tion of the full quadrotor dynamics. The presented method-

ology eliminates undesired effects such as the gimbal-

llock or discontinuities, which are common problems

using traditional approaches.

Simulations have shown that the performance of the

designed algorithms is satisfactory . The presented ex-

periments validate the application of the proposed con-

trol laws in a real quadrotor platform with good per-

formance when tracking a desired trajectory and also

in presence of disturbances.
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Future works include the design of control laws for

a quadrotor transporting a cable-suspended payload.
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Basado en Pasividad para un quadrotor UAV”, IEEE
Congreso Nacional de Control Automático (AMCA),
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