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Abstract. The study of complex biological processes requires to forgo
simplified models for extensive ones. Yet, these models’ size and complex-
ity place them beyond understanding. Their analysis requires new meth-
ods for identifying general patterns. The Transforming Growth Factor
TGF-β is a multifunctional cytokine that regulates mammalian cell de-
velopment, differentiation, and homeostasis. Depending on the context, it
can play the antagonistic roles of growth inhibitor or of tumor promoter.
Its context-dependent pleiotropic nature is associated with complex sig-
naling pathways. The most comprehensive model of TGF-β-dependent
signaling is composed of 15,934 chains of reactions (trajectories) link-
ing TGF-β to at least one of its 159 target genes. Identifying functional
patterns in such a network requires new automated methods.
This article presents a framework for identifying groups of similar trajec-
tories composed of the same molecules using an exhaustive and without
prior assumptions approach. First, the trajectories were clustered using
the Relevant Set Correlation model, a shared nearest-neighbors cluster-
ing method. Five groups of trajectories were identified. Second, for each
cluster the over-represented molecules were determined by scoring the
frequency of each molecule implicated in trajectories. Third, Gene set
enrichment analysis on the clusters of trajectories revealed some specific
TGF-β-dependent biological processes, with different clusters associated
to the antagonists roles of TGF-β. This confirms that our approach yields
biologically-relevant results. We developed a web interface that facilitates
graph visualization and analysis.
Our clustering-based method is suitable for identifying families of
functionally-similar trajectories in the TGF-β signaling network. It can
be generalized to explore any large-scale biological pathways.

Keywords: TGF-β, Signaling pathways, Discrete dynamic model, Soft
clustering, RSC model



1 Introduction

Living cells use molecular signaling networks to adapt their phenotype to the
microenvironment modifications. In order to decipher the dynamic of signal-
ing pathways, mathematical models have been developed using different strate-
gies [10,4]. Differential equation-based models are limited to small networks due
to the explosion in the number of variables in complex networks and the lack
of known quantitative values for the parameters [1]. Qualitative modeling ap-
proaches based on events discretization have been successfully applied to large
networks. In qualitative models, signaling networks are represented as a graph
where each node (genes or proteins) is represented by a finite-state variable
and edges describe interactions between biomolecules as rules [17]. Such models
proved to be suitable for describing the qualitative nature of biological informa-
tion whithin large and complex signaling pathways [19].

Signaling by the polypeptide Transforming Growth Factor TGF-β is one of
the most intriguing signaling networks that govern complex multifunctional pro-
files. TGF-β was first described as a potent growth inhibitor for a wide variety of
cells. It affects apoptosis and differentiation thereby controlling tissue homeosta-
sis [7]. At the opposite, upregulation and activation of TGF-β has been linked
to various diseases, including fibrosis and cancer through promotion of cell pro-
liferation and invasion [24]. The pleiotropic effects of TGF-β are associated to
the diversity of signaling pathways that depend on the biological context [13].
TGF-β binding to the receptor complex induces the phosphorylation of intracel-
lular substrates, R-Smad proteins which hetero-dimerize with Smad4. The Smad
complexes move into the nucleus where they regulate the transcription of TGF-β-
target genes. Alternatively, non-Smad pathways are activated by ligand-occupied
receptor to modulate downstream cellular responses [14]. These non-Smad path-
ways include mitogen-activated protein kinase (MAPK) such as p38 and Jun
N-terminal kinase (JNK) pathways, Rho-like GTPase signaling pathways, and
phosphatidylinositol-3-kinase/protein kinase B (PKB/AKT) pathways. Combi-
nations of Smad and non-Smad pathways contribute to the high heterogeneity
of cell responses to TGF-β. Additionally, many molecules from these pathways
are involved in other signaling pathways activated by other microenvironment
inputs, which leads to complex crosstalks [12].

Numerical approaches using differential models have been developed to de-
scribe the behavior of TGF-β canonical pathway involving Smad proteins [27].
Because of the numerous components and the lack of quantitative data, the non
canonical pathways have never been included in these TGF-β models. To solve
this problem, Andrieux et al. recently developed a qualitative discrete formalism
compatible with large-scale discrete models [2]. The Cadbiom language is a state-
transition formalism based on a simplified version of guarded transition [16]. It
allows a fine-grained description of the system’s dynamic behavior by introduc-
ing temporal parameters to manage competition and cooperation between parts
of the models (http://cadbiom.genouest.org). Based on the Cadbiom formalism,
Andrieux et al. integrated the 137 signaling pathways from the Pathway Inter-
action Database (PID) [20] and derived an exhaustive TGF-β signaling network
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that includes canonical and non-Smad pathways [2]. Using this model they iden-
tified 15,934 signaling trajectories regulating 145 TGF-β target genes and found
specific signatures for activating TGF-β-dependent genes.

Characterizing these 15,934 signaling trajectories remains a challenging task.
They are mainly composed of signaling molecules whose modularity and com-
bination are the base of cell response plasticity and adaptability [9,15,21]. We
developed a methodological approach to identify families of trajectories with
functional biological signature based on their signaling molecules content. The
major difficulty were the inner complexity of the networks, and the fact that
some molecules may be involved in multiple families, as suggested by TGF-β’s
context-dependent roles. To address these challenges, we used an unsupervised
soft-clustering method to compare signaling trajectories according to their molec-
ular composition. The clusters correspond to families of trajectories, and can
share common molecules. Our analysis does not rely on a priori knowledge on
the number of clusters nor on the membership of a molecule to a cluster. Based
on this approach, we identified five groups of signaling trajectories. Importantly
we further show that these five groups are associated with specific biological
functions thereby demonstrating the relevance of soft clustering to decipher cell
signaling networks.

2 Materials and Methods

Cellular signaling pathways are chains of biochemical reactions. Typically, they
encompass the interaction of signaling molecules such as growth factors with re-
ceptors at the cell surface, the transmission of signal through signaling cascades
involving many molecules such as kinases and finally the molecular networks in-
volved in regulation of target gene transcription within the nucleus. In order to
decipher the complexity of signaling TGF-β-dependent networks and for char-
acterizing these trajectories, we focus on the proteins involved in the reactions
(reactants, products and catalyzers). Note that a gene can encode for a protein
implicated elsewhere in the pathway, so proteins and genes form non-disjoint
sets.

The trajectories are first submitted to a pre-processing step to generate a non
redundant set of signaling trajectories. The second step groups similar trajecto-
ries using soft clustering. The third step characterizes the specificity of groups
of trajectories by determining the over-represented proteins and their biological
function using semantic annotations.

2.1 Available data & Pre-processing

The original data-set contained the 15,934 signaling trajectories involved in the
regulation of 145 TGF-β-dependent genes as previously described in [2]. A sig-
naling trajectory is defined as a set of molecules required for activation of TGF-β-
dependent genes (fig. 1A). Each original trajectory Tk was composed of TGF-β,
signaling molecules and a single target gene (fig. 1B). There were 321 signaling



molecules (identified by their uniprot ID) involved in at least one of the 15,934
signaling trajectories. To compare the trajectories based on their molecule com-
position, we first discarded TGF-β which was belonging to all the trajectories.
Next we observed that several trajectories were composed of the same signal-
ing molecules but differed only by the target genes. We decided to discard the
target genes from the trajectories, and to represent separately the associations
between trajectories and target genes (fig. 1C). The motivation was (i) to avoid
the artificial duplication of trajectories, and (ii) to have a model that represents
explicitly the fact that a single chain of reactions can influence several genes.
In the remainder of the article, the pre-processed trajectories are noted tk and
their set is noted S.
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Fig. 1: Example of the generation of trajectories from PID maps and their pre-
processing. (A) The signaling network made of 4 maps and is composed of pro-
teins, TGF-β and genes. (B) Trajectories are defined by a set of proteins con-
taining TGF-β, signaling proteins (pi) and target genes (gi). (C) Pre-processed
trajectories are restricted to signaling proteins. After pre-processing, the trajec-
tories T1 and T3 are represented by the trajectory t1; T2 and T4 are represented
by t2; T5 is represented by t3; T6 is represented by t4; T7 is respresented by t5.

2.2 Clustering Method

We used the Relevant Set Correlation (RSC) model to identify clusters of tra-
jectories [6]. This model uses as input a function Q(t) that returns for every
trajectory t ∈ S a list of all the other trajectories in S sorted by their decreasing
correlation with t.



Q(t) function for ranking the trajectories by decreasing correlation to
t A trajectory ti ∈ S is represented by a binary vector vi whose dimension is
equal to the number of all proteins. The coordinate value of "1" indicates that
the trajectory contains the protein, and the coordinate value of "0" indicates
that the trajectory does not (see table 1).

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1 1 0 1 1 1 1 0 0 0

t2 0 1 1 1 1 1 0 0 0

t3 1 0 1 1 0 0 1 0 0

t4 0 1 1 1 0 0 1 0 0

t5 0 0 0 0 0 0 0 1 1

Table 1: Example of binary matrix representing the protein composition of trajectories.
If a protein pj is present in a trajectory ti then the cell (i, j) is "1" else "0".

Based on the binary vectors, we apply the Pearson correlation formula and
construct a similarity matrix (see table 2) :

r(ti, tj) =
∑n

k=1(ti,k − ti)(tj,k − tj)√∑n
k=1(ti,k − ti)2 ∑n

k=1(tj,k − tj)2
(1)

where (ti,1, ti,2, ..., ti,n) and (tj,1, tj,2, ..., tj,n) are the vectors of trajectories ti
and tj with ti and tj their respective average.

t1 t2 t3 t4 t5

t1 1.000 0.550 0.350 -0.100 -0.598

t2 0.550 1.000 -0.100 0.350 -0.598

t3 0.350 -0.100 1.000 0.550 -0.478

t4 -0.100 0.350 0.550 1.000 -0.478

t5 -0.598 -0.598 -0.478 -0.478 1.000

Table 2: Example of correlation matrix of trajectories ti obtained from the trajectories’
composition of table 1. If two trajectories ti, tj have exactly the same proteins
the value of the cell (i, j) is 1.0. If the trajectories do not share any proteins
the value is 0.0.

For each trajectory tk ∈ S, the Pearson correlation gives a partial ordering
< ti >

|S|
i=1 of trajectories where i < j implies that r(tk, ti) ≥ r(tk, tj) (see



table 3). If two trajectories have the same correlation score, they are sorted
alphabetically. We define the Q(t) function as follows:

Q(tk) =< ti >
|S|
i=1 ∀(i, j) ∈ [1, |S|]2, i < j ⇒ r(tk, ti) ≥ r(tk, tj) (2)

Q

1 2 3 4 5

t1 t1 t2 t3 t4 t5

t2 t2 t1 t4 t3 t5

t3 t3 t4 t1 t2 t5

t4 t4 t3 t2 t1 t5

t5 t5 t3 t4 t1 t2

Table 3: Example of partial ordering of all trajectories for every trajectory ti. All
trajectories are sorted for each trajectory tk in function of their Pearson
correlation score.

Heuristic algorithm for clustering the trajectories The GreedyRSC
method is an heuristic algorithm to apply the RSC model [6]. It performs a
soft clustering, where the clusters may overlap and do not necessarily cover the
entire data set. In addition to the Q(t) function, it requires four parameters:

– x1 : Minimum size of cluster
– x2 : Maximum size of cluster
– x3 : Maximum interset significance score between two clusters.
– x4 : Minimum significance score.

Houle [6] defines the significance score by the function Z1(A) and the inter-
set significance score by the function Z1(A,B) where A and B are two clusters.

The minimum size x1 of pattern means that all clusters would be composed
of at least x1 trajectories. To respect this constraint, we have to choose the
minimum significance score x4 =

√
x1(|S| − 1) where |S| is the number of tra-

jectories. We can prove the computation of the minimum significance score as
follows:

Let A be a cluster (set of trajectory),

|A| ≥ x1 ≥ 0

SR1(A)
√
|A|(|S| − 1) ≥ SR1(A)

√
x1(|S| − 1)

Z1(A) ≥ SR1(A)
√
x1(|S| − 1)



where SR1(A) is the intra-set correlation measure. A value of 1 indicates total
identity among the trajectories of A, whereas a value approaching 0 indicates
total difference. Because 0 ≤ SR1(A) ≤ 1, we need a minimum significance
score x4 equal to

√
x1(|S| − 1) to ensure that all clusters have a minimum of x1

trajectories.

For studying the RSC clustering robustness, we performed 64 (= 4× 4× 4)
analyses with four different values covering a wide range for the variables x1, x2
and x3:

– x1 = [2, 5, 10, 50]
– x2 = [1500, 2000, 3000, 6000]
– x3 = [0.1, 0.5, 1.0, 2.0]

Because RSC is a non-deterministic clustering method, we performed five
replicates of each of the 64 clustering analyses.

Next hierarchic clustering based on Jaccard index permitted to compare the
different clusters obtained by the 320 clustering. The clusters were classified in
several groups and we extracted the intersection for each group. We named "core
i" the intersection to the "group i", for example i.e. the set of trajectories that
belong to all the clusters of "group i".

2.3 Identification of the over-represented proteins in each core

Trajectories clustering was performed using correlation score based on the pres-
ence and the absence of proteins. The core of each group can be characterized
by a set of over-represented proteins, i.e. the proteins that appear more often in
the trajectories of the core than we would expect if we had selected the same
number of trajectories randomly (fig. 2).

We can compute the protein level of representation for each cluster with a
zScore of protein frequency:

ZA(p) =
NA(p)− FS(p)|A|√
FS(p)|A|(1− FS(p))

(3)

where p is a protein and A is a cluster of trajectories, NA(p) is the number of
trajectories in A involving p, FS(p) is the frequency of p in all trajectories S and
|A| is the size of cluster.

The zScore allows to normalize the frequency of proteins in the cluster of
trajectories compared to all trajectories. For each core, we computed the zScore
of all the proteins. We then identified a list of over-represented proteins with a
high zScore.

Based on the scores of over-representation of proteins in trajectories, we next
searched for the biological significance of the protein signatures that character-
ized the three cores. The Gene Set Enrichment Analysis (GSEA) is a method
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Fig. 2: Example of calculation for determining over-represented proteins between three
cores of trajectories. (A) t1, t2, t3, t4 and t5 are five trajectories containing
proteins p1, p2, p3, p4, p5, p6, p7, p8 and p9. (B) the clustering method identi-
fies three cores c1, c2 and c3. (C) distribution of representation level of proteins
in c1, c2 and c3 cores. For example, p1 and p2 are slightly over-represented in
the cores c1 and c2 but not over-represented in c3, contrary to p9. The core c3
can be characterized by p8 and p9.

which permits to identify significantly enriched classes of genes or proteins in a
large set of genes or proteins, that are associated with specific biological func-
tions. The analyses were performed using the GSEA tool developed by the Broad
Institute [22]. The lists of proteins and their respective score frequency were used
as input and biological processes from Gene Ontology database were selected as
gene sets database. The outputs were the "biological processes" terms signifi-
cantly enriched in the submitted lists of proteins from each core when compared
with the other cores.

3 Results

3.1 TGF-β signaling trajectories are highly connected

In order to identify functional families of signaling trajectories based on the
comparison of their signaling molecules (proteins) content, we performed a pre-
processing step as described in material and method. Discarding TGF-β and the
target genes from the 15,934 trajectories led to 6017 trajectories composed of
321 different proteins.
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Fig. 3: Distribution of (A) the number of molecules for each trajectory and (B) the
number of trajectories involving each molecule. These results showed that most
proteins are shared by many trajectories suggesting high degree of connectivity
of TGF-β-dependent signaling pathways.

As illustrated in figure 3, the number of proteins per trajectory varied from 1
to 50, with more than 90 percent of trajectories containing at least 10 proteins.
Analyses of the distribution of each protein in all trajectories showed a great
heterogeneity. More than 70 proteins were present in at least 500 trajectories,
and 6 proteins were present in more than 3000 trajectories (FOS, JUN, ATF2,
MAP2K4, ELK1, JAK2). Conversely 75 proteins appeared in fewer than 10
trajectories. Together these results showed that many proteins are shared by
many trajectories suggesting high degree of connectivity of TGF-β-dependent
signaling pathways.

3.2 Relevant Set Correlation method identifies five families of
trajectory clusters

Using a greedy strategy and a large variety of parameters, we performed 320
clusterings over the 6017 trajectories. Each clustering generated 3, 4 or 5 clus-
ters leading to 1139 different clusters of trajectories. In order to compare their
similarity, we calculated the Jaccard index based on the number of shared tra-
jectories between two given clusters. Using a hierarchical classification of this
similarity between clusters, we identified five groups of clusters (fig. 4).

To characterize the five groups of clusters, we analyzed the number of clusters
associated with each group, the number of trajectories associated with these
clusters (average cluster size) and the redundancy between clusters (union and
intersection). As described in table 4, the groups 1 and 2 were characterized by
clusters generated from 320 and 319 clusterings respectively, suggesting a robust



Fig. 4: Hierarchical classification of the clusters generated by the 320 clusterings using
varying parameters (x1, x2 and x3) according to their similarities (Jaccard
index). The parameter values are indicated by four different colors. Each cluster
results from a clustering characterized by a combination of the three parameters.
The five groups of clusters identified are numbered from 1 to 5 and the intensity
of blue color indicates the Jaccard index between two clusters.

classification of trajectories. The three other groups 3, 4 and 5 contained clusters
generated from 160 clusterings suggesting higher sensitivity to parameters. The
average cluster size expressed as the average number of trajectories contained in
clusters varied from 202 in group 4 to 2170 in group 1. The core of a group is
the intersection of the clusters of a group. It is the set of the trajectories that
belong to all the clusters of the group, so it allows to focus on the most stable
trajectories of the group. The cores of groups 1 and 2 contained 1485 (57%) and
1458(67%) trajectories respectively, while the core size of groups 3, 4 and 5 were
either identical or very similar to the union of clusters. To further characterize
these cores, we determined the number of proteins implicated in the trajectories
and the number of target genes activated by these signaling trajectories. While
the total number of proteins involved in trajectories from each group was almost
similar, the number of target genes was highly variable. The trajectories from
the most important core 1 (1485) were characterized by 114 proteins but only
3 target genes suggesting complex combinations of signaling for these genes. At
the opposite the trajectories from core 4 that contained only 202 trajectories
were characterized by 156 proteins that activate 19 genes.



Group 1 Group 2 Group 3 Group 4 Group 5

Number of clusters 320 319 160 160 160

Average cluster size
(Number of trajectories) 2170.0 1905.58 899.62 202.0 877.12

Union of clusters
(Number of trajectories) 2590 2289 904 202 888

Core size = Intersection of clusters
(Number of trajectories) 1485 1458 894 202 870

Number of proteins for each core 114 188 110 156 151

Number of target genes for each core 3 68 58 19 16

Table 4: Statistics of clusters.

3.3 Cores are characterized by specific over-represented protein
signatures associated with biological processes

In order to characterize the protein signature of each core, we investigated the
level of representation of proteins within all the trajectories from each core. For
that purpose, we calculated the zScore of protein frequency in each clusters. The
list of protein zScores for each core was provided as supplementary tables 1. As
shown in figure 5, the zScore distribution of the 321 proteins from trajectories of
each core was highly heterogeneous. Interestingly, the zScore distribution from
core 1 was inversely correlated with that of core 2 suggesting different biologi-
cal functions associated with trajectories. Together these observations suggested
that each core of trajectories was characterized by specific protein signatures.
During the course of the analysis of the zScore values, we showed that the prob-
ability to randomly find a protein in a group of trajectories with a zScore higher
than 4.0 is less than 0.006%. As a consequence, we decided to select the proteins
with a zScore superior to 4.0 to refine the protein signatures of the five cores of
trajectories.

Based on the scores of proteins over-representation in trajectories, we next
searched for the biological significance of the protein signatures that charac-
terized the five cores. Gene Set Enrichment Analysis (GSEA) is a method for
identifying significantly the elements of a set that appear more often in the set
that one would expect if the set had been randomly assembled. It is typically
used for determining which specific biological functions are specific of a set of
genes or proteins. The analyses were performed using the GSEA tool developed
by the Broad Institute [22]. The lists of proteins and their respective score fre-
quency were used as input for GSEA analysis and the outputs are the lists of
enriched biological processes (see supplementary tables 1). As shown in figure 6,
each core was characterized by specific set of biological functions since 57%, 90%,
80%, 81% and 88% of GO-terms were specific of core 1, core 2, core 3, core 4,
and core 5, respectively. In order to identify the representative terms, we used
Revigo [23] that reduces the list of GO terms on the basis of semantic simi-
larity measures. Consequently trajectories from core 1 and core 2 were mainly
1 http://www.irisa.fr/dyliss/public/tgfbVisualization/supplementaryData

http://www.irisa.fr/dyliss/public/tgfbVisualization/supplementaryData
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ries from cores of the five cluster groups. The zScore distribution of the 321
proteins from trajectories of each core is highly heterogeneous. These observa-
tion suggested that each core of trajectories was characterized by specific protein
signatures

associated with antigen receptor-mediated signaling and serine-threonine kinase
activity, respectively (fig. 6). The functional annotation of cores 3 and 4 were
more heterogeneous while core 5 clustered signaling trajectories that are clearly
involved in immune response. An important conclusion from these results is that
even if signaling trajectories share many proteins, our analysis revealed groups
of trajectories that correspond to different functional families.
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Together our data demonstrate that our approach for clustering signaling
trajectories based on their protein content is powerful to discriminate TGF-β-
influenced networks. To illustrate the complexity of TGF-β-dependent signaling
pathways, we compiled the trajectories from each core and the resulting networks
were illustrated in figure 7.

3.4 Web visualization of TGF-β-influenced networks

To facilitate the exploration of the signaling trajectories clustered in each core,
we developed a web interface:
http://www.irisa.fr/dyliss/public/tgfbVisualization

The interface is based on the Cytoscape JavaScript library
(http://js.cytoscape.org). Nodes are proteins and their size is corre-
lated to the number of trajectories involving this protein. Node color indicates
the occurrence of the protein in the trajectories from a core. The occurrence
is based on the zScore of protein frequency (blue for zScore<0 and red for
zScore>0) and selection of the level of occurrence permits to filter information.
The black circle nodes illustrate biological reactions (association, dissociation,
phosphorylation,degradation, migration etc) as described in [2]. The black edges
link proteins to the input or the output of a reaction, green edges link the
protein that regulates positively the reaction and red edges link the protein that
regulate negatively the reaction (fig. 7). Exploration of the graphs is facilitated
by manually repositioning nodes and edge. The graph can be exported in JSON
format.

Fig. 7: Screenshot of the Web visualization of core 1. A node is a bio-molecule, the
node size corresponds to the number of trajectories involving this bio-molecule
and the node color correspond to the representation of the bio-molecule in the
core (blue the bio-molecule is under-represented and red it is over-represented).

http://www.irisa.fr/dyliss/public/tgfbVisualization/
http://js.cytoscape.org


4 Discussion

Cell signaling networks are essential to life. They allow cells to sense and inter-
pret microenvironment changes to provide adapted phenotypes such as differ-
entiation, proliferation and apoptosis. As a result, disturbance or alteration of
signaling networks have been associated with many diseases such as fibrosis and
cancer. In particular, TGF-β plays major roles both in physiological and patho-
logical processes through canonical and non canonical signaling pathways that
cross-react with other pathways [13]. Understanding how signaling molecules
combine to provide signaling trajectories is a prerequisite for future therapeu-
tic strategies, however analyses of large signaling networks remain a challenging
task.

While qualitative approaches are suited to large-scale networks, the analysis
of numerous signaling trajectories remains difficult. Reduction methods focus on
diminishing the size of large-scale boolean networks [25,18] or dividing methods
in several sub-networks [26]. However, these methods typically consist in per-
forming the reduction before the analysis, whereas for TGF-β we focused on an
exhaustive analysis of the signaling network.

In addition to exhaustivity, the originality of our approach lies in analyz-
ing the signaling trajectories according to their protein composition rather than
the genes they influence. Our approach was motivated by the fact that sig-
naling pathways share a large number of "modular domains" in various combi-
nations [11]. These combinations support the functional diversity of signaling
pathways.

These modular domains provide the underlying structure of the signaling
trajectories. Our goal was to identify groups of similar trajectories. When con-
sidering two trajectories, the more modules they share, the more similar they
are. There are many clustering methods (for example hierarchical, K-means,
distribution-based, density-based) [8]. As we mentioned previously, a modular
domain can be involved in multiple combinations, so their study required soft-
clustering methods which allows clusters to overlap and share some elements.
We selected shared nearest-neighbours (SNN) clustering, which have success-
fully been applied to handle the heterogeneity and large-scale of trajectories [5].
The Relevant Set Correlation method is further appropriate in that there is no
need to define the neighborhood size. Likewise, our approach does not rely on a
priori assumption on the number of clusters.

Relevant Set Correlation proved to be a robust clustering method for our
dataset. All 64 combinations of parameter values generated clusters that sys-
tematically belonged to group 1 and group 2 and one of groups 3, 4 and 5. Half
the simulations produced clusters that belonged to groups 3, 4 or 5. In figure 4,
the analysis of the influence of the parameter values for groups 3, 4 and 5 showed
that x1 and x3 had no influence on the groups, whereas pairs of values of x2
were associated to different groups: the two lowest with group 5, the two highest
with group 4 and a combination of the highest and the lowest with group 3.
Surprisingly, the two intermediate values of x2 (2000 and 3000) were markers of
groups 4 and 5, for which they were associated with their closest extreme value,



whereas the lowest and highest values of x2 were associated to group 3. This
indicates that RSC produced either groups 3 and 5 for the low values of the
range of the clusters’ maximum size (x2), or groups 3 and 4 for the high values.
At this point, further analysis is required for determining either which of the
low or high values are the more adapted to our dataset, or if groups 3, 4 and
5 are all biologically-relevant and we are facing a limitation of RSC. Overall,
our study with the various combinations of parameter values showed that (1)
because it is non-deterministic, performing multiple runs with the same param-
eter values is useful, (2) RSC is a robust clustering method for our dataset, (3)
groups 1 and 2 were independent from the parameter values whereas groups 3, 4
and 5 were not, and (4) low values of clusters’ maximum size produced clusters
in groups 3 and 5, whereas high values produced clusters in groups 3 and 4.
According to this observation, the over-represented proteins in trajectories from
core 1 and 2 clearly discriminate the canonical pathways associated with TGF-β
receptor-dependent cell response during injury and development (core 1) and the
non canonical pathways involving all other kinase-dependent signaling (core 2),
respectively. Together these two cores of clusters illustrated the so-called "Jekyll
and Hyde" aspects of TGF-β in cancer [3].

Although it does not rely on a priori knowledge, our approach may be de-
pendent on annotation bias. Since biological knowledge is by nature incomplete,
some well studied signaling processes may be described in details in databases,
whereas some lesser studied ones would be incompletely described, or with a
coarser granularity (usually both). This would then result in a higher frequency
of the well studied modules and give a misleading impression of being more im-
portant. It should be noted that this is an intrinsic bias of the data we rely on,
and not of our analysis method. This bias should be taken into account by the
experts when analyzing the results.

5 Conclusion

We proposed an exhaustive and without prior assumption soft-clustering-based
method for identifying families of functionally-similar trajectories in signaling
network. Among 15,934 trajectories involved in TGF-β signaling, our approach
identified five groups of trajectories based on their molecular composition. The
functional characterization of these groups revealed that each group is involved in
different roles of TGF-β, which confirmed that our approach yields biologically-
relevant results. The approach can be generalized to explore any large-scale
biological pathways.
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