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ON THE CAHN-HILLIARD-BRINKMAN SYSTEM WITH SINGULAR
POTENTIAL AND NONCONSTANT VISCOSITY

MONICA CONTI, ANDREA GIORGINI

Abstract. The Cahn–Hilliard–Brinkman system has been recently proposed as a dif-
fuse interface model for the phase separation of incompressible binary fluids in porous
media. It consists of a Brinkman–Darcy equation governing the fluid velocity, nonlin-
early coupled with a convective Cahn–Hilliard equation for the relative difference of the
fluid concentrations. We prove existence and uniqueness of finite energy solutions in
two space dimensions for a class of physically relevant and singular free energy density,
in the case of concentration-dependent viscosity. Then, we discuss their regularization
properties in finite time and we establish the strict separation property from the pure
states.

Keywords: Diffuse interface models, Cahn–Hilliard equation, Darcy’s law, singular po-
tential, strict separation property.

MSC 2010: 35B65, 35Q35, 76D27, 76S05.

1. Introduction

The Cahn–Hilliard–Brinkman (CHB) system is a diffuse interface model describing the
phase separation of binary immiscible and incompressible fluids in porous media (see
[25, 28]). The model couples a modified Darcy’s equation introduced by Brinkman in
[8], which governes the volume-averaged fluid velocity u, with a convective Cahn–Hilliard
equation for the phase-field ϕ. This is the relative difference of the fluid concentrations,
and takes value between −1 and 1, the extremals ϕ = ±1 representing the pure phases.
Assuming that the binary fluid has constant mass density and occupies a bounded domain
Ω ⊂ Rd, d = 2, 3, the system reads as follows

−∇ · (νD(u)) + ηu +∇p = γµ∇ϕ,
∇ · u = 0,

ϕt +∇ · (ϕu) = ∇ · (m∇µ),

µ = −ε∆ϕ+ 1
ε
Ψ′(ϕ),

in Ω× (0, T ),

completed with a nonslip boundary condition for u and homogeneous Neumann boundary
conditions for the chemical potential µ and for ϕ. The latter ones entail that there is no
mass flux and the interface separating the two fluids is orthogonal to the boundary. In the
model, 2D(u) = ∇u+ (∇u)tr is the symmetric gradient and p denotes the fluid pressure.
Besides, ν ≥ 0 is the (effective) viscosity, η ≥ 0 the permeability, γ > 0 a surface tension
parameter, m ≥ 0 stands for the mobility and ε > 0 is related to the thickness of the
interface separating the two fluids. The chemical potential µ is the variational derivative
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of the Ginzburg–Landau free energy

E(ϕ) =

∫
Ω

(ε
2
|∇ϕ|2 +

1

ε
Ψ(ϕ)

)
dx,

where, in order to describe the phase segregation of an immiscible material (see [4, 9]),
the potential Ψ has a double-well form in [−1, 1]. The two global minima are the equi-
librium configurations, while the non-convex interval, called spinodal region, generates
anti-diffusion and prevents a complete mixing of the fluids. The physically relevant ho-
mogeneous free energy Ψ firstly introduced by Cahn and Hilliard in [9] is

(1.1) Ψ(s) =
Θ

2

(
(1 + s) ln(1 + s) + (1− s) ln(1− s)

)
− Θ0

2
s2.

In this context, Θ is the absolute temperature of the mixture and Θ0 is the so-called
critical temperature. Since the phase separation takes place when the mixture undergoes
a rapid cooling below the critical temperature, the parameters satisfy the physical relation

0 < Θ < Θ0,

which induces the double-well form of the potential in (1.1). Besides, the equilibrium
configurations are ϕA = −ϕB = β, where β is the positive root of

ln
(1 + β

1− β

)
=

2Θ0

Θ
β.

In the classical literature the singular potential Ψ has been often approximated by a
quartic order polynomial defined on R as

(1.2) Ψ0(s) =
κ

4
(s2 − β2)2,

where κ > 0 is related to Θ and Θ0. This approximation is broadly justified in the regime
Θ close to Θ0. Nonetheless, the analysis replacing Ψ with Ψ0 has a major drawback being
impossible to ensure that the phase-field ϕ takes value in the physical reasonable interval
between −1 and 1.

As anticipated, the CHB system belongs to a class of diffuse interface models which are
employed to describe the behavior of multi-phase fluids, see [16] for a recent review. In the
same direction, the Cahn–Hilliard–Navier–Stokes (CHNS) system has been investigated
in several papers (see, e.g., [1, 6, 12, 20, 22]) as well as the Cahn–Hilliard–Hele–Shaw
(CHHS) system (see [13, 17, 21, 30, 31] and the references therein). The latter is based
on the classical Darcy’s law, while the Brinkman equation involved in the derivation of
CHB constitutes a relaxation via the term ∇· (νD(u)). Accordingly, letting the viscosity
approach zero, we recover the CHHS system. So far, the CHB model has been always
studied with a regular potential of the form Ψ0. In particular, subject to the aforemen-
tioned boundary conditions, the well-posedness and the longtime behavior are discussed
in [5], setting ν, η and m as positive constants. The finite dimensionality of the attractor
has been proved in [19]. Similar results have been obtained in [32] taking into account a
dynamic boundary condition for ϕ. Finally, the case of nonconstant ν, η and m has been
analyzed only from the numerical viewpoint in [10].

In this work we extend the mathematical study of the CHB system considering the
physically relevant singular free energy Ψ. The second purpose is to understand the
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role of the effective viscosity ν depending on ϕ in the Brinkman’s law. Indeed, recent
investigations suggest that such a dependence on the phase-field may have important
effects on the morphology of the phase separation (see, e.g. [15, 26]). The proposed
form of the local viscosity in a binary mixture is a linear combination of the individual
components

(1.3) ν(s) = νA
1 + s

2
+ νB

1− s
2

,

where νA and νB are the positive viscosities of the two fluids. Note that ν(s) is strictly
positive and satisfies

ν(s) ≥ min{νA, νB}.
Hence, we assume hereafter that η and m are constant, addressing the reader to Section 8
for further comments. Taking for simplicity η = m = 1 as well as the physical parameters
γ = ε = 1, the adimensional CHB system under investigation is

(1.4)


−∇ · (ν(ϕ)D(u)) + u +∇p = µ∇ϕ,
∇ · u = 0,

ϕt +∇ · (ϕu) = ∆µ,

µ = −∆ϕ+ Ψ′(ϕ),

in Ω× (0, T ),

subject to the boundary conditions

u|∂Ω = 0, ∂nϕ = ∂nµ = 0, on ∂Ω× (0, T ),(1.5)

being n the exterior normal on ∂Ω, and endowed with the initial condition

ϕ(0) = ϕ0, in Ω.(1.6)

We present here a complete mathematical analysis of well-posedness and regularity for
the system (1.4)–(1.6) focusing on the space dimension d = 2. Indeed, the existence result
deals with finite energy solutions satisfying the equality

E(ϕ(t)) +

∫ t

s

(
‖∇µ(τ)‖2 + ‖

√
ν(ϕ(τ))Du(τ)‖2 + ‖u(τ)‖2

)
dτ = E(ϕ(s))

for all 0 ≤ s < t < ∞. On the other hand, due to the presence of ν(ϕ), the regularity
of the velocity field u obtained by the energy method is not enough to guarantee the
uniqueness. To overcome this obstacle, we successfully gain higher regularity properties
for u by studying the Stokes problem with variable viscosity. In particular, in dimension
two we find ∫ t+1

t

(
‖u(τ)‖4

W 1,2(Ω) + ‖u(τ)‖2
W 1,3(Ω)

)
dτ ≤ C, ∀ t ≥ 0,

which is the key tool to obtain a continuous dependence estimate and the instantaneous
regularization of ϕ. Next, our task is proving the so-called strict separation property,
namely, if the initial datum is not a pure state (i.e. ϕ0 6= ±1), then ϕ remains uniformly
away from the pure states over time. More precisely, we show that

(1.7) ∀σ > 0, ∃ δ > 0 : ‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ σ.

Besides its deep physical meaning, such a property has an important consequence from
the mathematical point of view. Indeed, on any time interval [σ,∞), the singularities of
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Ψ and its derivatives play no longer any role and the original system can be treated as
a model with regular potential having smooth classical solutions. The property (1.7) has
been proven in dimension two for the Cahn–Hilliard equation in [23] and then recently
generalized for the Cahn–Hilliard–Oono equation in [14]. Indeed, our proof of the separa-
tion property relies on the technique introduced in [14] with the aim of showing, through
several regularization steps in finite time, the uniform estimate

‖Ψ′(ϕ(t))‖L∞(Ω) ≤ C, ∀ t ≥ σ.

In its generality, the instantaneous separation property (1.7) is still an open issue in
dimension three even for the solely Cahn–Hilliard equation.

Plan of the paper. In Section 2 we introduce the notation and the general assumptions
on the viscosity and on the potential. In Section 3 we discuss the existence result. Section
4 is devoted to prove additional regularity properties of the finite energy solutions, which
are crucial in Section 5 in order to guarantee the uniqueness and a continuous dependence
estimate. In Section 6 we show that the system regularizes in finite time, entailing that
any finite energy solution is indeed strong on (0,∞). The main result on the strict
separation property is stated and proved in Section 7. In the final Section 8 we collect
some comments and possible future investigations.

2. The Mathematical Setting

Let Ω be a connected bounded domain in R2 with smooth boundary. For any positive
integer r, let W r,p(Ω) be the Sobolev space of functions in Lp(Ω) with distributional
derivative of order less or equal to r in Lp(Ω) and denote by ‖ · ‖W r,p(Ω) its norm. In
particular, Hr(Ω) = W r,2(Ω) is a Hilbert space with respect to the inner product 〈u, v〉r =∑
|κ|≤r

∫
Ω
Dκu(x)Dκv(x) dx and the induced norm ‖u‖r =

√
〈u, u〉r.

As customary, we let H = L2(Ω) and we denote its inner product by 〈·, ·〉 and the norm
‖ · ‖. We also set V = H1(Ω) equipped with the norm

‖u‖2
V = ‖∇u‖2 + ‖u‖2,

and we indicate by V ′ the dual space of V , by ‖ · ‖V ′ its norm and simply by 〈·, ·〉 the
duality product 〈·, ·〉V ′,V . Let us recall that by the Poincaré-Wirtinger inequality

(2.1) ‖u‖V ≤ C

(
‖∇u‖+

∣∣∣∣∫
Ω

u dx

∣∣∣∣) , ∀u ∈ V.

Besides, in dimension d = 2, we have the Ladyzhenskaya inequality

(2.2) ‖u‖L4(Ω) ≤ C‖u‖1/2
V ‖u‖

1/2.

Denoting by f the average of f over Ω, i.e.

f :=
1

|Ω|
〈f, 1〉, ∀ f ∈ V ′,

we introduce the space of zero-mean functions and its dual space

V0 = {v ∈ V : v = 0} , V ′0 =
{
f ∈ V ′ : f = 0

}
.
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We then consider the operator A ∈ L(V, V ′) defined by

〈Au, v〉 =

∫
Ω

∇u · ∇v dx, ∀u, v ∈ V.

Since the restriction of A in V0 is an isomorphism from V0 onto V ′0 , we define the inverse
map N : V ′0 → V0. It is well known that for all f ∈ V ′0 , N f is the unique u ∈ V0 such that∫

Ω

∇u · ∇v dx = 〈f, v〉 , ∀ v ∈ V.

On account of the above definitions, the following properties hold

〈Au,N f〉 = 〈f, u〉 , ∀u ∈ V, ∀ f ∈ V ′0 ,

〈f,N g〉 = 〈g,N f〉 =

∫
Ω

∇(N f) · ∇(N g)dx, ∀ f, g ∈ V ′0 .

Moreover, it is straightforward to prove that

‖f‖∗ := ‖∇N f‖ = 〈f,N f〉1/2

is an equivalent norm in V ′0 , and

1

2

d

dt
‖u(t)‖2

∗ = 〈ut(t),Nu(t)〉 , for a.e. t ∈ (0, T ), ∀u ∈ H1(0, T ;V ′0).

Note that

‖f‖2
−1 := ‖f − f‖2

∗ + |f |2

is an equivalent norm in V ′.
Next, to handle the velocity field u, we introduce the solenoidal Hilbert space

H =
{
u ∈ [L2(Ω)]2 : div u = 0, u · n |∂Ω= 0

}
.

In the sequel, we denote by 〈·, ·〉 and ‖·‖ also the norm and the inner product, respectively,
in H . Then, we define the Hilbert space

V =
{
u ∈ [H1(Ω)]2 : div u = 0,u |∂Ω= 0

}
with inner product and norm

〈u,v〉V = 〈∇u,∇v〉, ‖u‖V = ‖∇u‖.

Let us recall that the Korn inequality gives

‖∇u‖2 ≤ 2‖D(u)‖2 ≤ 2‖∇u‖2, ∀u ∈ V .

In turn, ‖D(u)‖ is an equivalent norm in V . For easier notation, we simply denote by
‖u‖W r,p(Ω) the norm of the vector field in [W r,p(Ω)]2.

Finally, we state and prove a generalized Young inequality.

Lemma 2.1. Let L > 0 be given. Then, there exists N = N(L) > 0 such that

(2.3) xyeLy ≤ eNx−1 +
1

2
y2eLy, ∀x, y ≥ 0.
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Proof. Let us first show that, for every a, b ≥ 0,

(2.4) ab ≤ b ln b+ ea−1.

Indeed, the function f(b) = b ln b+ ea−1 − ab satisfies f(0) = ea−1 > 0 and limb→∞ f(b) =
∞. Besides f ′(b) = ln b+ 1− a, hence b = ea−1 is the absolute minimum of f :

f(b) ≥ f(b) = ea−1 ln ea−1 + ea−1 − aea−1 = 0

for every b ≥ 0, proving (2.4). Letting a = Nx and b = y
N

eLy in (2.4) for any given
N > 1, L > 0, we easily find

xyeLy ≤ eNx−1 +
y

N
eLy
(

ln
y

N
+ ln eLy

)
≤ eNx−1 +

L+ 1

N
y2eLy,

and the thesis follows with N > 2(L+ 1). �

Throughout the paper, C > 0 will stand for a generic constant which may be estimated
by the parameters of the system and whose value may change even within the same line
of a given equation.

3. Existence of Finite Energy Solutions

Let us state the main assumptions of this work. We require that the viscosity ν = ν(s) is
a bounded function satisfying ν ∈ C2(R) and

(3.1) ν(s) ≥ 2ν1 > 0, ∀ s ∈ R.

Next, we assume that Ψ is a quadratic perturbation of a singular (strictly) convex function
in [−1, 1], namely

Ψ(s) = F (s)− Θ0

2
s2,

where F ∈ C([−1, 1]) ∩ C2(−1, 1) fulfils

lim
s→−1

F ′(s) = −∞, lim
s→1

F ′(s) = +∞,

and there exists Θ > 0 such that

(3.2) F ′′(s) ≥ Θ ∀ s ∈ (−1, 1).

Here, we study the physical case of the double well (singular) potential, namely we assume

α := Θ0 −Θ > 0.

We also extend F (s) = +∞ for any s /∈ [−1, 1]. Note that the above assumptions imply
that there exists s0 ∈ (−1, 1) such that F ′(s0) = 0. Without loss of generality, we assume
that s0 = 0 and that F (s0) = 0 as well. In particular, this entails that F (s) ≥ 0 for all
s ∈ [−1, 1].
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Remark 3.1. The assumptions are satisfied and motivated, in particular, by the loga-
rithmic potential mentioned in the Introduction

F (s) =
Θ

2

(
(1 + s) log(1 + s) + (1− s) log(1− s)

)
.

In addition, the model viscosity (1.3) complies with (3.1) on the interval [−1, 1].

In the sequel, we will always assume that all the hypothesis stated above are in place.

Definition 3.2. Let ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and T > 0 be given. A pair (ϕ,u) is a
finite energy solution to the CHB system (1.4)–(1.6) on [0, T ] if

ϕ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L4(0, T ;H2(Ω)),

ϕ ∈ L∞(Ω× (0, T )) with |ϕ(x, t)| < 1 a.e. (x, t) ∈ Ω× (0, T ),

u ∈ L2(0, T ;V ),

and

〈ν(ϕ(t))Du(t), Dv〉+ 〈u(t),v〉 = 〈µ(t)∇ϕ(t),v〉, ∀v ∈ V , a.e. t ∈ [0, T ],(3.3)

〈ϕt(t), w〉+ 〈∇ · (ϕ(t)u(t)), w〉+ 〈∇µ(t),∇w〉 = 0, ∀w ∈ V, a.e. t ∈ [0, T ],(3.4)

with µ ∈ L2(0, T ;V ) given by

(3.5) µ = −∆ϕ+ Ψ′(ϕ).

Moreover, ∂nϕ = 0 a.e. on ∂Ω× (0, T ) and ϕ|t=0 = ϕ0 a.e. in Ω.

Remark 3.3. It is straightforward to observe that any solution satisfies the mass conser-
vation property, namely,

ϕ(t) = ϕ0, ∀ t ≥ 0.

Moreover, its energy

E(ϕ(t)) =
1

2
‖∇ϕ(t)‖2 +

∫
Ω

Ψ(ϕ(t)) dx

is finite for almost every t ≥ 0.

Remark 3.4. Note that equation (3.3) is equivalent to

〈ν(ϕ)Du, Dv〉+ 〈u,v〉 = 〈∇ϕ⊗∇ϕ,∇v〉, ∀v ∈ V ,

in light of the equality

µ∇ϕ = ∇
(1

2
|∇ϕ|2 + Ψ(ϕ)

)
− div(∇ϕ⊗∇ϕ).

Remark 3.5. As customary, the pressure term is dropped in the weak formulation of the
Brinkman’s law. Indeed, the pressure can be recovered (up to a constant) thanks to the
classical de Rham’s theorem (see, for instance, [7]). In particular, since

S = ∇ · (ν(ϕ)Du)− u− µ∇ϕ
is orthogonal (in the dual sense) to any element of V , then there exists a function p ∈
L2(0, T ;H) satisfying ∇p = S.

We state our existence result.
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Theorem 3.6. Let ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and |ϕ0| < 1. Then, there exists a global
finite energy solution (ϕ,u) to the CHB problem such that

ϕ ∈ C([0,∞), V ),

and the energy identity

E(ϕ(t)) +

∫ t

s

(
‖∇µ(τ)‖2 + ‖

√
ν(ϕ(τ))Du(τ)‖2 + ‖u(τ)‖2

)
dτ = E(ϕ(s))

is satisfied for all 0 ≤ s < t <∞. Furthermore, we have the dissipative estimates

(3.6) E(ϕ(t)) +

∫ t+1

t

(
‖∇µ(τ)‖2 + ‖∇u(τ)‖2

)
dτ ≤ CE(ϕ0)e−ωt + C,

and

(3.7)

∫ t+1

t

(
‖ϕ(τ)‖4

H2(Ω) + |µ(τ)|2
)

dτ ≤ CE(ϕ0)2e−2ωt + C

for every t ≥ 0, where ω and C are positive constants independent of the initial datum.

The rest of the section is devoted to the proof of Theorem 3.6, which is obtained via
an approximation procedure and energy estimates.

3.1. Approximation of the singular potential. Let us recall some results in [11],
concerning the existence of a sequence of regular functions Fλ which approximate the
singular potential F . Precisely, for every λ > 0 there exists

Fλ : R→ R

such that

(i) Fλ is convex and Fλ(s)↗ F (s), for all s ∈ R, as λ→ 0.

(ii) F ′λ is Lipschitz on R with constant 1
λ

and F ′′λ (s) is nonnegative for all s ∈ R.

(iii) |F ′λ(s)| ↗ |F ′(s)| for s ∈ (−1, 1) and F ′λ converges uniformly to F ′ on any interval
[a, b] ⊂ (−1, 1).

(iv) Fλ(0) = F ′λ(0) = 0, for all λ > 0.

Furthermore, we have the following uniform property with respect to λ.

Lemma 3.7. For any 0 < λ ≤ 1, there exists C > 0 such that

Fλ(s) ≥
1

4λ
s2 − C, ∀ s ∈ R, ∀λ ∈ (0, λ].
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3.2. The approximating problems. For any λ ∈ (0, 1) fixed, we introduce the qua-
dratic perturbation of Fλ by

Ψλ(s) = Fλ(s)−
Θ0

2
s2.

The corresponding regular CHBλ problem reads as
−∇ · (ν(ϕ)Du) + u +∇p = µ∇ϕ,
∇ · u = 0,

ϕt +∇ · (ϕu) = ∆µ,

µ = −∆ϕ+ Ψ′λ(ϕ),

endowed with (1.5)-(1.6). Analogously to the singular case, given any ϕ0 ∈ V , a pair
(ϕ,u) is a solution of CHBλ on [0, T ] if

ϕ ∈ H1(0, T ;V ′) ∩ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)),

u ∈ L2(0, T ;V ),

and

〈ν(ϕ(t))Du(t), Dv〉+ 〈u(t),v〉 = 〈µ(t)∇ϕ(t),v〉, ∀v ∈ V , a.e. t ∈ [0, T ],(3.8)

〈ϕt(t), w〉+ 〈∇ · (ϕ(t)u(t)), w〉+ 〈∇µ(t),∇w〉 = 0, ∀w ∈ V, a.e. t ∈ [0, T ],(3.9)

with

µ = −∆ϕ+ Ψ′λ(ϕ) ∈ L2(0, T ;V ).

The Cahn–Hilliard–Brinkman system in presence of a regular potential with polynomial
growth, satisfying suitable dissipation assumptions, has been studied in [5]. Indeed, we
have

Theorem 3.8. Let ϕ0 ∈ V . Then, the CHBλ problem has a solution (ϕ,u) such that

ϕ ∈ C([0, T ], V ) ∩ L2(0, T ;H3(Ω)).

The proof of Theorem 3.8 is carried out by a standard Galerkin method, based on
the Lipschitz regularity of Fλ and on energy estimates, much more immediate than the
uniform ones detailed below.

3.3. Energy estimates. Let λ ∈ (0, 1) be fixed. We denote the energy of a solution to
CHBλ by

Eλ(ϕ) =
1

2
‖∇ϕ‖2 +

∫
Ω

Ψλ(ϕ) dx.

In what follows, the generic positive constant C is independent of λ and of the initial
datum.

Lemma 3.9. There exist λ > 0 and ω > 0 such that, for any ϕ0 ∈ V and any 0 < λ ≤ λ,
we have the dissipative estimates

(3.10) Eλ(ϕ(t)) + ‖ϕ(t)‖2
V ≤ CEλ(ϕ0)e−ωt + C(Fλ(ϕ0) + 1),
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and

(3.11)

∫ t+1

t

(
‖∇µ(τ)‖2 + ‖∇u(τ)‖2

)
dτ ≤ CEλ(ϕ0)e−ωt + C(Fλ(ϕ0) + 1),

for every t ≥ 0.

Proof. We take v = u in (3.8) and w = µ in (3.9). Summing up the resulting equalities,
we have

(3.12)
d

dt
Eλ(ϕ) + ‖∇µ‖2 + 〈ν(ϕ)Du, Du〉+ ‖u‖2 = 0.

To reconstruct the energy in (3.12), we test µ by ϕ− ϕ, getting

(3.13) 〈F ′λ(ϕ), ϕ− ϕ〉+ ‖∇ϕ‖2 = Θ0〈ϕ, ϕ− ϕ〉+ 〈µ− µ, ϕ− ϕ〉.
By the convexity of Fλ, we know that∫

Ω

Fλ(ϕ) dx ≤
∫

Ω

F ′λ(ϕ)(ϕ− ϕ) dx+

∫
Ω

Fλ(ϕ) dx,

while

Θ0〈ϕ, ϕ− ϕ〉+ 〈µ− µ, ϕ− ϕ〉 ≤ 1

2
‖∇ϕ‖2 + C‖∇µ‖2 + CΘ2

0‖ϕ‖2.

Then, we arrive at∫
Ω

Fλ(ϕ) dx+
1

2
‖∇ϕ‖2 ≤ C‖∇µ‖2 + CFλ(ϕ) + CΘ2

0‖ϕ‖2.

Now, exploiting Lemma 3.7 with a small λ = λ(Θ0), we find

1

2
Eλ(ϕ) ≤ C‖∇µ‖2 + CFλ(ϕ) + C.

Multiplying the above inequality by 2ω, where ω = 1/4C, and, summing up with (3.12),
we obtain

(3.14)
d

dt
Eλ(ϕ) + ωEλ(ϕ) +

1

2
‖∇µ‖2 + ν1‖∇u‖2 ≤ CFλ(ϕ) + C.

Here, we have also used (3.1) and the Korn inequality. An application of the Gronwall
lemma, together with the mass conservation, yields

Eλ(ϕ(t)) ≤ Eλ(ϕ0)e−ωt + C(Fλ(ϕ0) + 1),

for some ω,C > 0 that are independent of λ. In addition, owing to Lemma 3.7, for a
possibly smaller λ, there exists C such that

Eλ(ϕ) ≥ 1

2
‖ϕ‖2

V − C,

for every λ ∈ (0, λ]. Therefore, we infer that

‖ϕ(t)‖2
V ≤ CEλ(ϕ0)e−ωt + C(Fλ(ϕ0) + 1), ∀ t ≥ 0.

A final integration of (3.14) on [t, t+ 1] completes the proof. �

We prove two consequences of the dissipative nature of the system, referring hereafter
to λ and ω as the parameters defined in Lemma 3.9. Accordingly, λ ∈ (0, λ].
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Lemma 3.10. We have∫ t+1

t

‖ϕt(τ)‖2
V ′ dτ ≤ C

(
Eλ(ϕ0)e−ωt + Fλ(ϕ0) + 1

)2

, ∀ t ≥ 0.

Proof. We first observe that

〈∇ · (ϕu), w〉 ≤ ‖u‖L3(Ω)‖ϕ‖L6(Ω)‖∇w‖ ≤ C‖∇u‖‖ϕ‖V ‖∇w‖, w ∈ V.

Then, exploiting (3.10), we have∫ t+1

t

‖∇ · (ϕ(τ)u(τ))‖2
V ′ dτ ≤ C

(
Eλ(ϕ0)e−ωt + Fλ(ϕ0) + 1

)∫ t+1

t

‖∇u(τ)‖2 dτ.

Therefore, by comparison∫ t+1

t

‖ϕt(τ)‖2
V ′ dτ ≤ C

(
Eλ(ϕ0)e−ωt + Fλ(ϕ0) + 1

)∫ t+1

t

(
‖∇u(τ)‖2 + ‖∇µ(τ)‖2

)
dτ,

implying the desired conclusion. �

Lemma 3.11. Let ϕ0 ∈ V with ϕ0 = κ ∈ (−1, 1). We have∫ t+1

t

(
‖∆ϕ(τ)‖4 + ‖F ′(ϕ(τ))‖2

L1(Ω) + |µ(τ)|2
)

dτ ≤ C
(
Eλ(ϕ0)e−ωt + Fλ(ϕ0) + 1

)2

,

for every t ≥ 0.

Proof. Testing µ by −∆ϕ and integrating by parts, we get

〈∇µ,∇ϕ〉 = ‖∆ϕ‖2 + 〈Ψ′λ(ϕ),−∆ϕ〉.
An additional integration by parts, together with (3.2), yields

〈Ψ′λ(ϕ),−∆ϕ〉 = 〈Ψ′′λ(ϕ)∇ϕ,∇ϕ〉 ≥ −Θ0‖∇ϕ‖2.

Hence, we find

‖∆ϕ‖2 ≤ C‖∇ϕ‖2 + ‖∇µ‖‖∇ϕ‖.
Besides, since

µ = 〈Ψ′λ(ϕ), 1〉,
we have

|µ| ≤ C|ϕ|+
∫

Ω

|F ′λ(ϕ)| dx.

In order to control the right-hand side, we recall that there exists K > 0, independent of
λ ∈ (0, λ], such that ∫

Ω

|F ′λ(ϕ)| dx ≤ K

∣∣∣∣∫
Ω

F ′λ(ϕ)(ϕ− ϕ) dx

∣∣∣∣+K,

where K diverges to +∞ as |κ| = |ϕ| → 1 (see [11] for the proof). Moreover, by virtue of
(3.13), we know that

〈F ′λ(ϕ), ϕ− ϕ〉 ≤ Θ0〈ϕ, ϕ− ϕ〉+ 〈µ− µ, ϕ− ϕ〉
≤ C‖∇ϕ‖2 + C‖∇µ‖‖∇ϕ‖.
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Combining the above controls, we arrive at

‖F ′λ(ϕ)‖L1(Ω) + |µ| ≤ C‖∇ϕ‖2 + C‖∇µ‖‖∇ϕ‖+ C.

Finally, we deduce that

‖∆ϕ‖4 + ‖F ′λ(ϕ)‖2
L1(Ω) + |µ|2 ≤ C(‖∇ϕ‖2 + ‖∇µ‖‖∇ϕ‖+ 1)2.

In light of (3.10)-(3.11), the claim follows integrating on [t, t+ 1]. �

Remark 3.12. Note that ϕ ∈ L2(0, T ;H3(Ω)) is obtained by testing the equation of µ
by −∆2ϕ (see [5]) and exploiting the Lipschitz regularity of F ′λ. In turn, ϕ ∈ C([0, T ], V )
immediately follows. Nonetheless, this argument does not work in presence of the singular
potential.

3.4. Existence of an energy solution to the CHB system. We fix

ϕ0 ∈ V with Ψ(ϕ0) ∈ L1(Ω) and ϕ0 = κ ∈ (−1, 1).

In light of Theorem 3.9, let (ϕλ,uλ), λ ∈ (0, λ], be a family of solutions to CHBλ departing
from ϕ0. Due to property (i), we observe that

Fλ(s) ≤ F (s) ≤ C, ∀ s ∈ [−1, 1].

This, in turn, gives Eλ(ϕ0) ≤ E(ϕ0). Thus, from Lemmas 3.9, 3.10 and 3.11, we infer the
uniform estimates

‖ϕλ(t)‖2
V ≤ C,

and ∫ t+1

t

(
‖ϕλ(τ)‖4

H2(Ω) + ‖ϕλ,t(τ)‖2
V ′ + ‖µλ(τ)‖2

V + ‖∇uλ(τ)‖2
)

dτ ≤ C,

for every t ≥ 0, where the right-hand sides do no longer depend on λ.
Now, in the limit λ→ 0, we have the following convergences (up to subsequences)

ϕλ → ϕ weakly star in L∞(0, T ;V ),

ϕλ → ϕ weakly in L4(0, T ;H2(Ω)),

ϕλ,t → ϕt weakly in L2(0, T ;V ′),

µλ → µ weakly in L2(0, T ;V ),

uλ → u weakly in L2(0, T ;V ).

By the classical Aubin-Lions Theorem, we also deduce that

ϕλ → ϕ strongly in L2(0, T ;V ) ∩ C([0, T ], H),

and

ϕλ(x, t)→ ϕ(x, t) a.e. (x, t) in Ω× (0, T ).

We claim that the limit pair (ϕ,u) is a finite energy solution according to Definition 3.2.
Indeed, the required regularity of (ϕ,u) immediately follows by the above convergences.
Next, we show that ϕ fulfils

|ϕ(x, t)| < 1 a.e. (x, t) in Ω× (0, T ).
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To this aim, note that ∫ T

0

‖F ′λ(ϕλ(t))‖L1(Ω) dt ≤ C,

for some C > 0 depending on T and on the initial datum. Following a standard argument,
for any fixed η ∈ (0, 1/2) we introduce the set

Eλ
η = {(x, t) ∈ Ω× [0, T ] : |ϕλ(x, t)| > 1− η} .

It is easy to see that

|Eλ
η | ≤

C

min{F ′λ(1− η), |F ′λ(−1 + η)|}
.

Hence, passing to the limit as λ→ 0 and then letting η → 0, we conclude

| {(x, t) ∈ Ω× (0, T ) : |ϕ(x, t)| ≥ 1} | = 0.

Regarding the nonlinear potential, using the pointwise convergence of ϕλ and the uniform
convergence of F ′λ to F ′ on any compact set in (−1, 1), we infer that

F ′λ(ϕλ)→ F ′(ϕ) a.e. (x, t) ∈ Ω× (0, T ).

Moreover, using the definition of µλ, we get

F ′λ(ϕλ) is uniformly bounded w.r.t. λ in L2(0, T ;H).

Then, a well-known result implies that F ′λ(ϕλ) → F ′(ϕ) weakly in L2(0, T ;H), which
allows us to identify

µ = −∆ϕ+ Ψ′(ϕ) ∈ L2(0, T ;V ).

Finally, in a standard way, we pass to the limit in the weak formulation of CHBλ proving
the validity of (3.3)-(3.4).

3.5. Energy equality and dissipativity. Let us define the functional J : H → H
given by

J (ϕ) =
1

2
‖∇ϕ‖2 +

∫
Ω

F (ϕ) dx.

It is clear that J is proper, convex and lower-semicontinuous. Hence, appealing to [27,
Lemma 4.1], we infer that t 7→ J (ϕ) is absolutely continuous on [0, T ] and

d

dt
J (ϕ) = 〈ϕt, µ−Θ0ϕ〉, a.e. t ∈ [0, T ].

In particular, as a byproduct of the boundedness of F and ϕ ∈ C([0, T ], H), it follows
from the Lebesgue Theorem that∫

Ω

F (ϕ(·)) dx ∈ C([0, T ]),

which in turn gives ϕ ∈ C([0, T ], V ). Now, taking w = µ in (3.4) and exploiting the
standard chain rule, we get

(3.15)
d

dt
E(ϕ) + ‖∇µ‖2 + (u∇ϕ, µ) = 0, a.e. t ∈ [0, T ].
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At this time, taking v = u in (3.3) and summing up to (3.15), we find

d

dt
E(ϕ) + ‖∇µ‖2 + ‖

√
ν(ϕ)Du‖2 + ‖u‖2 = 0, a.e. t ∈ [0, T ],

proving the energy equality claimed in Theorem 3.6. We are left to establish the dissipative
estimate (3.6). As a matter of fact passing to the limit as λ→ 0 in (3.10)-(3.11), we deduce
that

E(ϕ(t)) +

∫ t+1

t

(
‖∇µ(τ)‖2 + ‖∇u(τ)‖2

)
dτ ≤ CE(ϕ0)e−ωt + C,

for almost every t ≥ 0. The continuity ϕ ∈ C([0, T ], V ) allows us to conclude that the
inequality holds true for all t ≥ 0. Finally, the control (3.7) follows by Lemma 3.11. This
finishes the proof of Theorem 3.6.

4. Further Regularity of the Finite Energy Solutions

We establish some further regularity properties of the energy solutions (ϕ,u) given by
Theorem 3.6. In the sequel, the generic constant C > 0 may depend on E(ϕ0) and ϕ0.

Lemma 4.1. For any p ≥ 2, there exists C = C(p) such that∫ t+1

t

(
‖ϕ(τ)‖2

W 2,p(Ω) + ‖F ′(ϕ(τ))‖2
Lp(Ω)

)
dτ ≤ C, ∀ t ≥ 0.

Proof. We argue as in [1, Lemma 2] (see also [14, Corollary 4.3]). For k ∈ N, let

hk(s) =


−1 + 1

k
, s ∈ (−1,−1 + 1

k
),

s, s ∈ [−1 + 1
k
, 1− 1

k
],

1− 1
k
, s ∈ (1− 1

k
, 1),

and let us consider ϕk(x) = hk(ϕ(x)). Note that

∇ϕk = ∇ϕ · χ[−1+ 1
k
,1− 1

k
].

Given p ≥ 2, we test the elliptic equation

(4.1) −∆ϕ+ F ′(ϕ) = µ∗, µ∗ := µ+ Θ0ϕ,

by |F ′(ϕk)|p−2F ′(ϕk). Since F ′′ is well-defined and positive, we learn that

〈−∆ϕ, |F ′(ϕk)|p−2F ′(ϕk)〉 = (p− 1)〈|F ′(ϕk)|p−2F ′′(ϕk)∇ϕ · χ[−1+ 1
k
,1− 1

k
],∇ϕ〉 ≥ 0,

which in turn gives

〈F ′(ϕ), |F ′(ϕk)|p−2F ′(ϕk)〉 ≤ 〈µ∗, |F ′(ϕk)|p−2F ′(ϕk)〉.
Recalling that F ′ is increasing and F ′(s)s ≥ 0, we are lead to

‖F ′(ϕk)‖pLp(Ω) ≤ 〈F
′(ϕ), |F ′(ϕk)|p−2F ′(ϕk)〉.

By the Hölder inequality

〈µ∗, |F ′(ϕk)|p−2F ′(ϕk)〉 ≤ ‖F ′(ϕk)‖p−1
Lp(Ω)‖µ

∗‖Lp(Ω).

In light of the embedding V ⊂ Lp(Ω), we thus obtain

‖F ′(ϕk)‖Lp(Ω) ≤ ‖µ∗‖Lp(Ω) ≤ C
(
1 + ‖µ‖V

)
.
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Having in mind (3.6) and (3.7), an integration in time on [t, t+ 1] yields∫ t+1

t

‖F ′(ϕk(τ))‖2
Lp(Ω) dτ ≤ C.

Finally, passing to the limit as k → ∞, we get the above estimate replacing ϕk with ϕ.
The desired control for ϕ in W 2,p(Ω) follows by the regularity theory for elliptic equations
applied to (4.1). �

Lemma 4.2. We have ∫ t+1

t

‖∇u(τ)‖4 dτ ≤ C, ∀ t ≥ 0.

Proof. We take v = u in (3.3) (cfr. Remark 3.4)

〈ν(ϕ)Du, Du〉+ ‖u‖2 = 〈∇ϕ⊗∇ϕ,∇u〉.
Hence, exploiting (3.1) and the Korn inequality, we have

ν1‖∇u‖2 + ‖u‖2 ≤ 〈∇ϕ⊗∇ϕ,∇u〉.
By (2.2), we deduce

〈∇ϕ⊗∇ϕ,∇u〉 ≤ ‖∇u‖‖∇ϕ‖2
L4(Ω) ≤ C‖∇u‖‖ϕ‖V ‖ϕ‖H2(Ω) ≤

ν1

2
‖∇u‖2 + C‖ϕ‖2

H2(Ω),

so we end up with the control

‖∇u‖ ≤ C‖ϕ‖H2(Ω).

The thesis follows by (3.7). �

Remark 4.3. It is worth noticing that the above regularity for u holds true also for the
Galerkin approximations. Unfortunately, this is not enough to ensure uniqueness of the
energy solution, and we need to gain some extra regularity properties for u. To this aim,
let us observe that (3.3) is also equivalent to

〈ν(ϕ(t))Du(t), Dv〉+ 〈u(t),v〉 = −〈ϕ(t)∇µ(t),v〉, ∀v ∈ V , a.e. t ∈ [0, T ]

where
ϕ∇µ ∈ L2(0, T ;H),

according to the boundedness of ϕ stated in the Definition 3.2. Hence, having in mind
the classical regularity result for the Stokes problem, one might expect that u(t) ∈ H2(Ω)
for almost every t. Indeed, this is the case when ν is constant. On the contrary, when ν
is variable we are not able to reach such a regularity.

We prove the following weaker, but still crucial result.

Lemma 4.4. We have

(4.2)

∫ t+1

t

‖u(τ)‖8/5

W 2,4/3(Ω)
dτ ≤ C,

and

(4.3)

∫ t+1

t

‖u(τ)‖2
W 1,3(Ω)dτ ≤ C,

for every t ≥ 0.
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Proof. Let us first observe that the velocity equivalently solves

〈ν(ϕ)Du, Dv〉 = 〈f,v〉, v ∈ V ,

where

f = −ϕ∇µ− u.

Now, in order to prove the first estimate, we argue as in [1, Lemma 4]. Accordingly, we
rewrite the equation above as a standard Stokes problem, namely

〈Du,∇v〉 = 〈g,v〉, v ∈ [C∞0 (Ω)]2 with ∇ · v = 0,

where g satisfies

‖g‖L4/3(Ω) ≤ C(‖f‖+ ‖∇u‖)(1 + ‖∇ϕ‖L4(Ω)).

By (2.2) and the Young inequality, we have

‖g‖8/5

L4/3(Ω)
≤ C(‖f‖8/5 + ‖∇u‖8/5)(1 + ‖ϕ‖4/5

H2(Ω)) ≤ C(1 + ‖f‖2 + ‖∇u‖2 + ‖ϕ‖4
H2(Ω)).

Recalling that ∫ t+1

t

(
‖f(τ)‖2 + ‖∇u(τ)‖2 + ‖ϕ(τ)‖4

H2(Ω)

)
dτ ≤ C,

we conclude ∫ t+1

t

‖g(τ)‖8/5

L4/3(Ω)
dτ ≤ C.

By the well-known regularity theory for the Stokes problem (see e.g. [7]),

‖u‖W 2,4/3(Ω) ≤ C‖g‖L4/3(Ω),

and the proof of (4.2) is done. In order to prove (4.4), we recall the following Gagliardo-
Nirenberg inequality

‖u‖W 1,3(Ω) ≤ ‖u‖2/3

W 2,4/3(Ω)
‖u‖1/3

W 1,2(Ω).

Hence, we deduce

‖u‖2
W 1,3(Ω) ≤ C‖u‖4/3

W 2,4/3(Ω)
‖∇u‖2/3 ≤ ‖u‖8/5

W 2,4/3(Ω)
+ C‖∇u‖4,

and the conclusion follows by collecting (4.2) with Lemma 4.2. �

5. Continuous Dependence and Uniqueness

We are now in the position to prove the uniqueness of the finite energy solution.

Theorem 5.1. Let ϕ01, ϕ02 be such that ϕ0i ∈ V , Ψ(ϕ0i) ∈ L1(Ω) and |ϕ0i| < 1, i = 1, 2.
Then, any couple of energy solutions (ϕ1,u1) and (ϕ2,u2) of the CHB problem on [0, T ]
with initial data ϕ01 and ϕ02, respectively, satisfies

‖ϕ1(t)− ϕ2(t)‖V ′ ≤ C‖ϕ1(0)− ϕ2(0)‖V ′ + C|ϕ1(0)− ϕ2(0)|1/2,

for any t ∈ [0, T ]. In particular, the energy solution to CHB is unique.
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Proof. Let us consider (ϕ1,u1) and (ϕ2,u2) two finite energy solutions to the CHB system
with total mass ϕ1(0) and ϕ2(0). Their difference ϕ = ϕ1 − ϕ2, u = u1 − u2 solves

〈ν(ϕ1)Du, Dv〉+ 〈u,v〉+ 〈ν(ϕ1)− ν(ϕ2)Du2, Dv〉(5.1)

= 〈∇ϕ⊗∇ϕ1,∇v〉+ 〈∇ϕ⊗∇ϕ2,∇v〉, ∀v ∈ V ,

and

(5.2) 〈ϕt, w〉+ 〈∇ · (ϕu1), w〉+ 〈∇ · (ϕ2u), w〉+ 〈∇µ,∇w〉 = 0, ∀w ∈ V,
where

µ = −∆ϕ+ Ψ′(ϕ1)−Ψ′(ϕ2).

We note that ϕ(t) = ϕ1(0)− ϕ2(0) for all t ≥ 0.

Taking w = N (ϕ− ϕ) in (5.2), we get

1

2

d

dt
‖ϕ− ϕ‖2

∗ + 〈µ, ϕ− ϕ〉 = I1 + I2,

having set

I1 = 〈ϕu1,∇N (ϕ− ϕ)〉, I2 = 〈ϕ2u,∇N (ϕ− ϕ)〉.
By the assumptions on Ψ, we deduce

〈µ, ϕ− ϕ〉 = ‖∇ϕ‖2 + 〈Ψ′(ϕ1)−Ψ′(ϕ2), ϕ1 − ϕ2〉+ 〈Ψ′(ϕ1)−Ψ′(ϕ2), ϕ〉
≥ ‖∇ϕ‖2 − α‖ϕ‖2 − |〈Ψ′(ϕ1)−Ψ′(ϕ2), ϕ〉|
≥ ‖ϕ‖2

V − (α + 1)‖ϕ‖2 − (‖Ψ′(ϕ1)‖L1(Ω) + ‖Ψ′(ϕ2)‖L1(Ω))|ϕ|.

Besides, recalling that |ϕ| ≤ 2

(α + 1)‖ϕ‖2 ≤ C‖ϕ− ϕ‖2 + C‖ϕ‖2

≤ C‖∇ϕ‖‖ϕ− ϕ‖∗ + C|ϕ|2

≤ 1

2
‖ϕ‖2

V + C‖ϕ‖2
−1.

Owing to the mass conservation, and setting

Υ(t) = C(‖Ψ′(ϕ1(t))‖L1(Ω) + ‖Ψ′(ϕ2(t))‖L1(Ω)),

we thus obtain

(5.3)
d

dt
‖ϕ‖2

−1 +
1

2
‖ϕ‖2

V ≤ C‖ϕ‖2
−1 + Υ|ϕ|+ I1 + I2.

We proceed by estimating I1 and I2. First,

|I1| ≤ ‖u1‖L3(Ω)‖ϕ‖L6(Ω)‖ϕ− ϕ‖∗ ≤
1

4
‖ϕ‖2

V + C‖u1‖2
L3(Ω)‖ϕ− ϕ‖2

∗.

Next, since by definition of solution ‖ϕ2‖L∞(Ω) ≤ 1,

|I2| ≤ ‖u‖‖ϕ2‖L∞(Ω)‖ϕ− ϕ‖∗ ≤ ‖u‖‖ϕ− ϕ‖∗.
Now, in order to find a control for ‖u‖, we take v = u in (5.1) yielding

(5.4) 〈ν(ϕ1)Du, Du〉+ ‖u‖2 + J = 〈∇ϕ(t)⊗∇ϕ1,∇u〉+ 〈∇ϕ(t)⊗∇ϕ2(t),∇u〉,
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where

J = 〈ν(ϕ1)− ν(ϕ2)Du2, Du〉.
We have

〈∇ϕ(t)⊗∇ϕ1,∇u〉 ≤ ‖∇ϕ‖‖∇ϕ1‖L∞(Ω)‖∇u‖ ≤
ν1

4
‖∇u‖2 + C‖ϕ1‖2

W 2,6(Ω)‖∇ϕ‖2.

Dealing analogously with the last term, on account of (3.1) and of the Korn inequality,
we arrive at

(5.5)
ν1

2
‖∇u‖2 + ‖u‖2 + J ≤ C(‖ϕ1‖2

W 2,6(Ω) + ‖ϕ2‖2
W 2,6(Ω))‖ϕ‖2

V .

Regarding J , by ν ∈ C1(R), we find the control

|J | ≤ C‖ϕ‖L6(Ω)‖∇u2‖L3(Ω)‖∇u‖

≤ ν1

2
‖∇u‖2 + C‖ϕ‖2

V ‖∇u2‖2
L3(Ω).

Thus, we learn by (5.5) that

‖u‖ ≤ C
(
‖ϕ1‖W 2,6(Ω) + ‖ϕ2‖W 2,6(Ω) + ‖u2‖W 1,3(Ω)

)
‖ϕ‖V ,

and, exploiting this in I2, we find

|I2| ≤
1

4
‖ϕ‖2

V + C
(
‖ϕ1‖2

W 2,6(Ω) + ‖ϕ2‖2
W 2,6(Ω) + ‖u2‖2

W 1,3(Ω)

)
‖ϕ− ϕ‖2

∗.

Collecting the above estimates for I1 and I2 in (5.3), we obtain the final differential
inequality

d

dt
‖ϕ‖2

−1 ≤ Γ‖ϕ‖2
−1 + Υ|ϕ|,

having set

Γ(t) = C
(
1 + ‖ϕ1(t)‖2

W 2,6(Ω) + ‖ϕ2(t)‖2
W 2,6(Ω) + ‖u2(t)‖2

W 1,3(Ω) + ‖∇u1(t)‖2
)
,

which is summable in light of Lemma 4.1 and Lemma 4.4. An application of the Gronwall
lemma gives

‖ϕ(t)‖2
−1 ≤ ‖ϕ(0)‖2

−1eC + |ϕ(0)|‖Υ‖L1(0,T )e
C , ∀ t ∈ [0, T ],

where C = ‖Γ‖L1(0,T ). In particular, if ϕ1(0) = ϕ2(0), then ϕ1 ≡ ϕ2 and by (5.4), u1 ≡ u2

as well, thus uniqueness follows. �

6. Regularization in Finite Time

Let R > 0 and κ ∈ (−1, 1) be given. In the sequel, we consider bundles of trajectories
(ϕ,u) departing from ϕ0 such that

E(ϕ0) ≤ R and ϕ0 = κ.

The aim is proving higher order regularity estimates for the trajectories which depend on
R and κ but are independent of the specific choice of the initial datum. Accordingly, the
generic constant C > 0 depends on R and κ.
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Theorem 6.1. For every σ > 0, there exists C = C(σ) such that

‖µ‖L∞(σ,∞;V ) + ‖u‖L∞(σ,∞;V ) ≤ C,

and

(6.1)

∫ t+1

t

(
‖u(τ)‖2

H2(Ω) + ‖ϕt(τ)‖2
V

)
dτ ≤ C, ∀ t ≥ σ.

Moreover, for every p ≥ 2, there exists C = C(σ, p) such that

(6.2) ‖ϕ‖L∞(σ,∞;W 2,p(Ω)) + ‖F ′(ϕ)‖L∞(σ,∞;Lp(Ω)) ≤ C.

Remark 6.2. At this point, by the classical Aubin-Simon embedding we learn that

ϕ ∈ C([σ,∞),W 1,p(Ω)),

for every p ≥ 2 and σ > 0. In particular,

ϕ ∈ C(Ω× [σ,∞)).

Proof. Let us first recall that the dissipative inequalities (3.6) and (3.7) yield

(6.3) E(ϕ(t)) +

∫ t+1

t

(
‖ϕ(τ)‖4

H2(Ω) + ‖∇µ(τ)‖2 + ‖∇u(τ)‖4
)

dτ ≤ C, ∀ t ≥ 0.

Besides, arguing by comparison, we deduce

(6.4) ‖ϕt‖V ′ ≤ C(‖∇µ‖+ ‖∇u‖),
and, reasoning as in the proof of Lemma 3.11, we learn that

(6.5) ‖µ‖V ≤ C(1 + ‖∇µ‖).
We take w = µt in (3.4) getting

〈ϕt, µt〉+ 〈∇ · (ϕu), µt〉+ 〈∇µ,∇µt〉 = 0.

Since

〈ϕt, µt〉 = 〈−∆ϕt, ϕt〉+ 〈Ψ′′(ϕ)ϕt, ϕt〉 ≥
1

2
‖∇ϕt‖2 − C‖ϕt‖2

V ′ ,

we have
1

2

d

dt
‖∇µ‖2 +

1

2
‖∇ϕt‖2 + 〈u · ∇ϕ, µt〉 ≤ C‖ϕt‖2

V ′ .

A differentiation in time of (3.3) entails

〈ν(ϕ)Dut, Dv〉+ 〈ν ′(ϕ)ϕtDu, Dv〉+ 〈ut,v〉 = 〈µt∇ϕ,v〉+ 〈µ∇ϕt,v〉, ∀ v ∈ V .

For v = u, this gives

1

2

d

dt

(
〈ν(ϕ)Du, Du〉+ ‖u‖2

)
= 〈µt∇ϕ,u〉+ 〈µ∇ϕt,u〉 −

1

2
〈ν ′(ϕ)ϕtDu, Du〉.

Hence, setting
Λ = 〈ν(ϕ)Du, Du〉+ ‖u‖2 + ‖∇µ‖2,

we find
1

2

d

dt
Λ +

1

2
‖∇ϕt‖2 ≤ C‖ϕt‖2

V ′ + 〈µ∇ϕt,u〉 −
1

2
〈ν ′(ϕ)ϕtDu, Du〉.
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Now, taking v = −∆u in (3.3), we have

〈ν(ϕ)∆u,∆u〉+ ‖∇u‖2 = −〈µ∇ϕ,∆u〉 − 〈ν ′(ϕ)∇ϕDu,∆u〉.
Recalling (3.1), we deduce

〈ν(ϕ)∆u,∆u〉+ ‖∇u‖2 ≥ ν1‖∆u‖2 + ‖∇u‖2 ≥ ν∗‖u‖2
H2(Ω),

for some constant ν∗ > 0. Summing up with the above differential inequality for Λ, we
are lead to

1

2

d

dt
Λ +

1

2
‖∇ϕt‖2 + ν∗‖u‖2

H2(Ω) ≤ C‖ϕt‖2
V ′ + |〈µ∇ϕt,u〉|

+ C|〈ν ′(ϕ)ϕtDu, Du〉|+ |〈µ∇ϕ,∆u〉|+ |〈ν ′(ϕ)∇ϕDu,∆u〉|.
First, we estimate

|〈µ∇ϕt,u〉| ≤
1

8
‖∇ϕt‖2 + C‖u‖2

L3(Ω)‖µ‖2
V .

Next, by the Ladyzhenskaya inequality (2.2), we control

C|〈ν ′(ϕ)ϕtDu, Du〉| ≤ C‖ϕt‖‖Du‖2
L4(Ω)

≤ C‖ϕt‖1/2
V ′ ‖∇ϕt‖

1/2‖∇u‖‖u‖H2(Ω)

≤ ν∗
4
‖u‖2

H2(Ω) +
1

8
‖∇ϕt‖2 + C‖∇u‖4‖ϕt‖2

V ′ ,

and

|〈ν ′(ϕ)∇ϕDu,∆u〉| ≤ C‖∇ϕ‖L4(Ω)‖Du‖L4(Ω)‖∆u‖

≤ C‖∇ϕ‖1/2‖ϕ‖1/2

H2(Ω)‖∇u‖
1/2‖u‖3/2

H2(Ω)

≤ ν∗
4
‖u‖2

H2(Ω) + C‖ϕ‖2
H2(Ω)‖∇u‖2.

In addition,

|〈µ∇ϕ,∆u〉| ≤ ν∗
4
‖u‖2

H2(Ω) + C‖µ‖2
V ‖ϕ‖2

H2(Ω).

Therefore, we get

1

2

d

dt
Λ +

1

4
‖∇ϕt‖2 +

ν∗
4
‖u‖2

H2(Ω) ≤ C‖ϕt‖2
V ′ + C‖u‖2

L3(Ω)‖µ‖2
V

+ C‖∇u‖4‖ϕt‖2
V ′ + C‖ϕ‖2

H2(Ω)

(
‖∇u‖2 + ‖µ‖2

V ).

Keeping in mind (6.4) and (6.5), in light of the equivalence

1

C
(‖∇µ‖2 + ‖∇u‖2) ≤ Λ ≤ C(‖∇µ‖2 + ‖∇u‖2),

we finally obtain

(6.6)
1

2

d

dt
Λ +

1

8
‖∇ϕt‖2 +

ν∗
4
‖u‖2

H2(Ω) ≤ ΥΛ + Υ,

where
Υ(t) = C

(
1 + ‖ϕ(t)‖2

H2(Ω) + ‖u(t)‖2
L3(Ω) + ‖∇u(t)‖4

)
.
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Owing to (6.3), an application of the uniform Gronwall lemma yields

‖∇µ(t)‖+ ‖∇u(t)‖ ≤ C√
σ
, ∀ t ≥ σ.

The integral inequality (6.1) follows by an integration of (6.6) on any interval [t, t + 1].
Finally, reasoning as in the proof of Lemma 4.1, from µ ∈ L∞(σ,∞;V ) we easily deduce
the desired control (6.2). �

Remark 6.3. The proof of Theorem 6.1 is obtained by formal computations. However,
they can be rigorously justified through the Galerkin scheme mentioned in Section 3.

Remark 6.4. As a consequence of Theorem 6.1, we learn that µ ∈ L2(t, t+ 1;H2(Ω)) for
every t ≥ σ. Then, it is immediate to deduce that

ϕt +∇ · (uϕ) = ∆µ, a.e. (x, t) ∈ Ω× (σ,∞)

and ∂nµ = 0 a.e. in ∂Ω × (σ,∞). Accordingly, the energy solution is indeed a strong
solution on Ω× (σ,∞).

7. Strict Separation Property

We prove the validity of the strict separation property for a class of singular potentials
which includes, in particular, the physical relevant logarithmic free energy. As above, let
us fix R > 0 and κ ∈ (−1, 1), and let (ϕ,u) be the solution to the CHB system departing
from ϕ0 satisfying

E(ϕ0) ≤ R and ϕ0 = κ.

In what follows, the generic constant C > 0 depends on R and κ.

Theorem 7.1. Let σ > 0. Assume that F ′′ is convex and

F ′′(s) ≤ eK|F
′(s)|+K , ∀ s ∈ (−1, 1),

for some K > 0. Then, there exists δ = δ(σ,R, κ) > 0 such that

(7.1) ‖ϕ(t)‖L∞(Ω) ≤ 1− δ, ∀ t ≥ 2σ.

We need two preparatory lemmas. The first is based on a key idea introduced in [23,
Lemma 7.1] (see also [14]).

Lemma 7.2. Let the assumptions of Theorem 7.1 hold. For any p ≥ 2, there exists
C = C(σ, p), such that

‖F ′′(ϕ)‖Lp(t,t+1;Lp(Ω)) ≤ C, ∀ t ≥ σ.

Proof. For k ∈ N, let ϕk be the truncation of ϕ defined in Lemma 4.1. Given L > 0,
arguing as in Lemma 4.1 and [14, Lemma 5.3], we test (4.1) by F ′(ϕk)e

L|F ′(ϕ)| getting∫
Ω

|F ′(ϕk)|2eL|F
′(ϕk)| dx ≤

∫
Ω

|µ∗||F ′(ϕk)|eL|F
′(ϕk)| dx.

We now estimate the right-hand side by the generalized Young inequality (2.3) with the
choice

x = |µ∗|, yeLy = |F ′(ϕk)|eL|F
′(ϕk)|.
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Accordingly, we find N = N(L) such that∫
Ω

|µ∗||F ′(ϕk)|eL|F
′(ϕk)| dx ≤

∫
Ω

1

2
|F ′(ϕk)|2eL|f(ϕk)| dx+

∫
Ω

eN |µ
∗| dx,

and we obtain
1

2

∫
Ω

|F ′(ϕk)|2eL|F
′(ϕk)| dx ≤

∫
Ω

eN |µ
∗| dx.

Due to the Trudinger-Moser inequality in dimension two (see [24])∫
Ω

e|v|dx ≤ eC(‖v‖2V +1), ∀ v ∈ V,

and owing to Theorem 6.1, we have the following controls∫
Ω

eL|F
′(ϕk)| dx ≤ C

(
1 +

∫
Ω

|F ′(ϕk)|2eL|F
′(ϕk)| dx

)
≤ C

(
1 +

∫
Ω

eN |µ
∗| dx

)
≤ C

(
1 + eCN

2‖µ∗‖2V
)
≤ C.

Exploiting the growth condition on F ′′ and applying this inequality with L = pK, we
thus infer ∫

Ω

|F ′′(ϕk)|p dx ≤
∫

Ω

epK|F
′(ϕk)|+pK dx ≤ C,

where C > 0 depends on p also. An integration in time on [t, t + 1] with t ≥ σ, and a
final passage to the limit as k →∞ complete the proof. �

Lemma 7.3. Let the assumptions of Theorem 7.1 hold. There exists C = C(σ) such that

‖ϕt‖L∞(σ,∞;H) ≤ C.

Proof. Given h > 0, let us introduce the incremental ratio

∂ht u =
1

h
[u(t+ h)− u(t)].

Owing to Remark 6.4, the solution solves(
∂ht ϕ

)
t
+ ∂ht u · ∇ϕ(t+ h) + u · ∇∂ht ϕ = ∆∂ht µ.

Testing the above equation by ∂ht ϕ, we have

(7.2)
1

2

d

dt
‖∂ht ϕ‖2 = 〈∆∂ht µ, ∂ht ϕ〉+ I1 + I2,

having set

I1 = −〈∂ht u · ∇ϕ(t+ h), ∂ht ϕ〉, I2 = −〈u · ∇∂ht ϕ, ∂ht ϕ〉.
Integrating by parts and making use of the boundary conditions, we get

〈∆∂ht µ, ∂ht ϕ〉 = 〈∂ht µ,∆∂ht ϕ〉

= −‖∆∂ht ϕ‖2 + Θ0‖∇∂ht ϕ‖2 + 〈1
h

[F ′(ϕ(t+ h))− F ′(ϕ(t))],∆∂ht ϕ〉.
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Exploiting the convexity of F ′′, we estimate

1

h

∣∣∣F ′(ϕ(t+ h))− F ′(ϕ(t))
∣∣∣ ≤ ∫ 1

0

F ′′(τϕ(t+ h) + (1− τ)ϕ(t)) |∂ht ϕ| dτ

≤
∫ 1

0

(
τF ′′(ϕ(t+ h)) + (1− τ)F ′′(ϕ(t))

)
|∂ht ϕ| dτ ≤

(
F ′′(ϕ(t+ h)) + F ′′(ϕ(t))

)
|∂ht ϕ|,

and we deduce∣∣∣〈1
h

[F ′(ϕ(t+ h))− F ′(ϕ(t))],∆∂ht ϕ〉
∣∣∣

≤ 1

2
‖∆∂ht ϕ‖2 + C

(
‖F ′′(ϕ(t+ h))‖2

L3(Ω) + ‖F ′′(ϕ(t))‖2
L3(Ω)

)
‖∂ht ϕ‖2

L6(Ω).

By interpolation

‖∂ht ϕ‖2
L6(Ω) ≤ C‖∇∂ht ϕ‖2 ≤ C‖∂ht ϕ‖‖∆∂ht ϕ‖,

and we easily derive from (7.2) the differential inequality

(7.3)
1

2

d

dt
‖∂ht ϕ‖2 +

1

4
‖∆∂ht ϕ‖2 ≤ Υ‖∂ht ϕ‖2 + I1 + I2,

where

Υ(t) = C(1 + ‖F ′′(ϕ(t+ h))‖4
L3(Ω) + ‖F ′′(ϕ(t))‖4

L3(Ω)).

Let us now consider the equation for ∂ht u as in Remark 3.4. Testing by ∂ht u, we find

〈ν(ϕ(t+ h))D∂ht u, D∂
h
t u〉+ ‖∂ht u‖2 = J1 + J2,(7.4)

having set

J1 = −〈1
h

[ν(ϕ(t+ h))− ν(ϕ(t))]Du, D∂ht u〉,

and

J2 = 〈∇∂ht ϕ⊗∇ϕ(t+ h),∇∂ht u〉+ 〈∇ϕ(t)⊗∇∂ht ϕ,∇∂ht u〉.
Note that by (3.1) and the Korn inequality

〈ν(ϕ(t+ h))D∂ht u, D∂
h
t u〉 ≥ ν1‖∇∂ht u‖2,

hence, summing up (7.3) and (7.4), we obtain

1

2

d

dt
‖∂ht ϕ‖2 +

1

4
‖∆∂ht ϕ‖2 + ν1‖∇∂ht u‖2 ≤ Υ‖∂ht ϕ‖2 + I1 + I2 + J1 + J2.

We estimate the right-hand side term by term as follows. By Theorem 6.1, we have

|I1| ≤ ‖∂ht u‖L6(Ω)‖∇ϕ(t+ h)‖L3(Ω)‖∂ht ϕ‖ ≤
ν1

4
‖∇∂ht u‖2 + C‖∂ht ϕ‖2,

and

|I2| ≤ ‖u‖L6(Ω)‖∇∂ht ϕ‖L3(Ω)‖∂ht ϕ‖ ≤
1

24
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.
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Besides, recalling that ν ∈ C1(R), and making use of (2.2), we find the control

|J1| ≤ C‖∂ht ϕ‖L4(Ω)‖∇u‖L4(Ω)‖∇∂ht u‖

≤ ν1

4
‖∇∂ht u‖2 + C‖∇u‖‖u‖H2(Ω)‖∂ht ϕ‖‖∆∂ht ϕ‖

≤ ν1

4
‖∇∂ht u‖2 +

1

24
‖∆∂ht ϕ‖2 + C‖u‖2

H2(Ω)‖∂ht ϕ‖2.

Finally, the embedding W 1,3(Ω) ⊂ L∞(Ω) together with (6.2) yields

|J2| ≤ ‖∇∂ht ϕ‖
(
‖∇ϕ(t)‖L∞(Ω) + ‖∇ϕ(t+ h)‖L∞(Ω)

)
‖∇∂ht u‖

≤ ν1

4
‖∇∂ht u‖2 +

1

24
‖∆∂ht ϕ‖2 + C‖∂ht ϕ‖2.

Collecting all the above estimates, we end up with

1

2

d

dt
‖∂ht ϕ‖2 +

1

8
‖∆∂ht ϕ‖2 +

ν1

4
‖∇∂ht u‖2 ≤ C(1 + ‖u‖2

H2(Ω) + Υ)‖∂ht ϕ‖2.

Note that ∫ t+1

t

(
‖∂ht ϕ(τ)‖2 + ‖u(τ)‖2

H2(Ω) + Υ(τ)
)

dτ ≤ C, ∀ t ≥ σ,

in light of Theorem 6.1 and Lemma 7.2. An application of the uniform Gronwall lemma
and a final passage to the limit as h→ 0 complete the proof. �

Proof of Theorem 7.1. Thanks to Lemma 7.3, arguing by comparison and owing to the
regularity of u and ϕ, we infer that

µ ∈ L∞(2σ,∞;H2(Ω)) ⊂ L∞(2σ,∞;L∞(Ω)).

Therefore, following the proof of Lemma 4.1, we find

‖F ′(ϕ)‖Lp(Ω) ≤ C(1 + ‖µ‖L∞(Ω)), ∀ p ≥ 2,

where the positive constant C is independent of p. This implies

‖F ′(ϕ)‖L∞(Ω×(t,t+1)) ≤ C, ∀ t ≥ 2σ.

Since F ′ diverges at ±1 and ϕ is continuous as established in Remark 6.2, we immediately
deduce the existence of δ > 0 such that

|ϕ(x, t)| ≤ 1− δ, ∀ (x, t) ∈ Ω× [2σ,∞).

The proof is completed. �

8. Further Developments

In this final section we collect some remarks and natural developments of our work.

• The longtime behavior of the CHB system can be characterized by virtue of the regular-
ity properties here established. More specifically, on account of Theorem 3.6 and Theorem
5.1, (1.4)–(1.6) generates a semigroup of operators via the rule

S(t)ϕ0 = ϕ(t), ∀ t ≥ 0,

being (ϕ,u) the unique global energy solution to the CHB problem with initial condition

ϕ0 ∈ Hκ = {ϕ ∈ V : F (ϕ) ∈ L1(Ω), ϕ = κ}, κ ∈ (−1, 1).
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The semigroup turns out to be strongly continuous, see [14] for the proof, and dissipative
due to (3.6). Then, in light of Theorem 6.1, the existence of a unique (compact and con-
nected) global attractor Aκ for S(t) on Hκ follows by the classical semigroup theory (see,
e.g., [29]). Furthermore, once the strict separation is reached, a further investigation of
the asymptotic behavior is possible. In particular, the existence of exponential attractors
Eκ (see [23]) and the convergence of each trajectory to a single stationary state (see [5])
could be proved.

• A relevant generalization of our work would be to consider the complete CHB model
with permeability η and mobility m depending on the concentration in dimension two.
First, the dependence of η on ϕ proposed in literature (see e.g. [13]) is similar to (1.3),
namely

η(s) = ηA
1 + s

2
+ ηB

1− s
2

,

where ηA, ηB are the positive fluid permeabilities. Being able to handle the higher non-
linear term ∇· (ν(ϕ)D(u)), we observe that the presence of η(ϕ)u in the Brinkman’s law
does not affect significantly the proofs of the present paper. On the contrary, concerning
the variable mobility, the non-degenerate form proposed in [3] is

m(s) = 1− σs2,

for some σ ∈ (0, 1). Its mathematical analysis is more delicate and deserves future
investigations.

• A further interesting problem is the study of the CHB system with singular potential and
constant viscosity ν in dimension three. In which case, the (weak) continuous dependence
estimate and the regularization in finite time can be achieved by the same techniques
exploited in this work. Nonetheless, the instantaneous separation property (1.7) seems
to be an hard task, being an open issue even for the solely Cahn–Hilliard equation. On
the other hand, borrowing the method of [2], a weaker version of (1.7) is expected. This
is the existence of a certain time t∗ > 0, depending on the initial datum and eventually
large, such that the solution is bounded away from the pure phases when t is larger than t∗.
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