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Abstract

We set up the geometric background necessary to extend rigid cohomology
from the case of algebraic varieties to the case of general locally noetherian
formal schemes. In particular, we generalize Berthelot’s strong fibration
theorem to adic spaces: we show that if we are given a morphism of locally
noetherian formal schemes which is partially proper and formally smooth
around a formal subscheme, and we pull back along a morphism from an
analytic space which is locally of noetherian type, then we obtain locally a
fibration on strict neighborhoods.

Contents

Introduction 2

1 Adic formal schemes 7

2 Adic spaces 14

3 Adic spaces and formal schemes 30

4 Formal embeddings 40

5 Overconvergent spaces 44

6 Tubes 47

7 Strict neighborhoods 59

1



8 The strong fibration theorem 67

References 70

Introduction

State of the art

Pierre Berthelot developed rigid cohomology in the early 80’s in [3] and [2] (see also
[17]) as a p-adic cohomology theory for algebraic varieties X defined over a field k.
It takes its values over a complete non archimedean field K of characteristic zero
whose residue field is k. The main idea consists in showing that the geometry of
X is reflected in the geometry of some subspace of a rigid analytic variety over K.
More precisely, one embeds X into some formal scheme P and builds the tube sXr
of X in P as a subspace of the generic fibre of P . When P is proper and smooth
around X, then the de Rham cohomology of a small neighborhood V of this tube is
essentially independent of the choices. This is a consequence of the strong fibration
theorem of Berthelot: if a morphism Q Ñ P is proper and smooth around X, then
it induces locally a fibration in the neighborhoods of the tubes.

There exists an alternative description of rigid cohomology that consists in putting
together all the embeddings of X in P and all the neighborhoods V of sXr. As
explained in [18], this gives rise to the overconvergent site whose cohomology is
exactly rigid cohomology.

When the base field is not perfect, Christopher Lazda and Ambrus Pàl showed in [16]
that the theory can be refined. More precisely, in order to study algebraic varieties
over kpptqq, where k is a perfect field, they replace the Amice ring E , which is the
natural field of coefficients in Berthelot’s theory, with the bounded Robba ring E:.
They also replace Tate’s rigid analytic geometry with Huber theory of adic spaces:
this is necessary because the bounded robba ring lives on an adic space whose only
closed point is a valuation of height 2.

In order to obtain constructible coefficients for rigid cohomology, Berthelot also
developed in [4] a theory of arithmetic D-modules. First of all, on any smooth formal
scheme P , he builds a ring D

:
P of overconvergent differential operators on P . Then,

when X is a subvariety of P , he considers a category of coherent F ´ D
:
PQ-modules

with support on X. In the thesis of David Pigeon ([19]), and thereafter in the work
of Daniel Caro and David Vauclair ([5]), the theory is extended to formal schemes
that are only differentially p-smooth. More recently, Richard Crew showed in [7]
that Berthelot’s theory also extends to the case of formally smooth formal schemes
that are not necessarily of finite type, but only “universally” noetherian (formally
of finite type for example). Surprisingly, these two extensions of Berthelot’s original
theory are rather orthogonal: anticipating on forthcoming notations, we can say
that when Berthelot considers A :“ Specpkrtsq, then Caro and Vauclair will look at
Ab :“ Specpkrrtssq (which is not universally noetherian) and Crew will be interested
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in A´ :“ Spfpkrrtssq (which is not a p-adic formal scheme).

The main result

In this article, we set up the geometric background necessary to extend rigid
cohomology from the case of an algebraic variety over a field to any morphism
of locally noetherian formal schemes. More precisely, we extend Berthelot’s strong
fibration theorem to this setting. In order to state the theorem, it is convenient to
extend the method and the vocabulary of [18]. The idea is to use formal schemes as
a bridge between schemes and analytic spaces. We assume that all formal schemes
are locally noetherian and all adic spaces are locally of noetherian type.

An overconvergent adic space is a pair made of a formal embedding X ãÑ P and
a morphism of adic spaces P ad Ð V . We will write pX ãÑ P Ð V q for short. A
formal morphism of overconvergent adic spaces is a pair of commutative diagrams

Y � � //

f

��

Q

v

��
X � � // P

, Qad

vad

��

Woo

u

��
P ad Voo

The formal morphism is said to be right cartesian if W is a neighborhood of the
inverse image of V along vad. It is called formally smooth (resp. partially proper)
around Y if there exists an open subset U (resp. a closed subset Z) of Q that
contains Y and such that the restriction of v to U (resp. to Z) is formally smooth
(resp. partially proper).

Next, we introduce the notion of tube sXrV of X in V : this is derived from the
closed embedding case where we take the inverse image of the adic space associated
to the completion of P along X. We call a formal morphism a strict neighbourhood
if f is an isomorphism, v is locally noetherian, u is an open immersion and the
map induced on the tubes is surjective. The overconvergent adic site is obtained
by turning strict neighborhoods into isomorphisms and using the topology coming
from V . We will simply denote pX, V q the above overconvergent adic space viewed
as an object of the overconvergent adic site (and forget about P in the notations).

The strong fibration theorem states that if we are given a right cartesian morphism
which is formally smooth and partially proper around Y and such that f is an
isomorphism, then it induces locally an isomorphism pY, W q » pX,Pn

V q in the
overconvergent site.

Content

In the first section, we briefly review the theory of adic formal schemes. The main
purpose is to set up the vocabulary and the notations and give elementary but
fundamental examples. It will also be useful as a guideline for the theory of adic
spaces that will be discussed just after. We also introduce the important notion of
being partially proper for a morphism of formal schemes.
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Section two is devoted to adic spaces. We mostly recall the main definitions and
give some examples as in the previous section. We also introduce the notion of adic
space associated to a usual scheme.

In section three, we recall how one may associate an adic space to a formal scheme
and show that most classical properties of adic morphisms of formal schemes are
reflected in the corresponding morphism of adic spaces. We also check that the
same holds for formal smoothness. More interesting, we also introduce the notion of
analytic property and show that if a morphism of formal schemes is partially proper
then the corresponding morphism of adic spaces is analytically partially proper.

Section four is shorter: we essentially discuss the notion of formal embedding and
prove the formal fibration theorem.

The purpose of section five is to extend the notion of overconvergent space (that
was initially developed using Berkovich analytic spaces) to the adic world. This
is essential for the development of a site-theoretic approach of rigid cohomology.
Nevertheless, it should be noticed that one might also have followed Berthelot’s
original approach and completely avoided the notion of overconvergent space.

Section five is devoted to the notion of tube in the adic world which is sensibly
different form the classical one which we call the naive tube. Anyway, we show that
in the analytic situation, the tube of closed (resp. open) subset is equal to the closure
(resp. interior) of the naive tube and we also introduce the notion of tube of finite
radius.

In section seven, we define the overconvergent site as the localization of the
category of overconvergent adic spaces (and formal morphisms) with respect to strict
neighborhoods. We show that, even if the topology comes from the analytic side,
the category is, in some sense, also local on the (formal) scheme side.

In the last section, we use all the material obtained so far in order to prove the
strong fibration theorem.

Many thanks

Several parts of this paper were influenced by the conversations that I had with
many mathematicians and I want to thank in particular Ahmed Abbes, Richard
Crew, Kazuhiro Fujiwara, Michel Gros, Fumiharu Kato, Christopher Lazda, Vincent
Mineo-Kleiner, Matthieu Romagny and Alberto Vezzani.

Notations/conventions

1. A monoid G is a set endowed with an action on itself which is associative with
unit. Unless otherwise specified, all monoids and groups are assumed to be
commutative, but we may insist for emphasis and call them abelian when the
law is additive. A ring A is an abelian group endowed with a linear action on
itself which is associative with unit. Unless otherwise specified, all rings and
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fields are assumed to be commutative, but again, we may insist for emphasis.

2. If X is a G-set, E Ă G and F Ă X, we will write

EF :“ tgx : g P E, x P F u.

By induction, if E Ă G, we will have

En “ tg1 ¨ ¨ ¨ gn : gi P Eu.

If M is an A-module, E Ă A and F Ă M , we will denote by

E ¨ F :“
!ÿ

fixi : fi P E, xi P F
)

the additive subgroup generated by EF . And if E Ă A, we will denote by

E¨n :“
!ÿ

fi1
¨ ¨ ¨ fin

: fij
P E

)

the additive subgroup generated by En. We shall make an exception and
sometimes use the standard notation In instead of I ¨n when I is an ideal. We
will also denote by Ipnq the ideal generated by tfn, f P Iu.

3. A (topologically) ringed space is a topological space X endowed with a sheaf of
(topological) rings OX . A morphism is made of a continuous map f : Y Ñ X

and a (continuous) morphism of (topological) rings OX Ñ f˚OY . There
exists an obvious forgetful functor from topologically ringed spaces to ringed
spaces that commutes with all limits and colimits. Conversely, any ringed
space may be seen as a topologically ringed space by using the fully faithful
adjoint to the forgetful functor (discrete topology and sheaffifying). Note that
a (topologically) ringed space is a sheaf on the big site of (topologically) ringed
spaces: the site is subcanonical.

4. A (topologically) locally ringed space is a (topologically) ringed space X

whose stalks are all local rings. A morphism of (topologically) locally ringed
spaces is a morphism of (topologically) ringed spaces that induces a local
homomorphism on the stalks. The above forgetful functor and its adjoint are
compatible with these new conditions. And again, the sites are subcanonical.
If x P X, we will denote the residue field of the local ring OX,x by κpxq. If f

is a section of OX in a neighborhood of x, we will denote by fpxq the image
of f in κpxq.

5. A (topologically) valued ringed space is a (topologically) locally ringed space X

whose stalks OX,x are endowed with a valuation (up to equivalence) vx whose
kernel is exactly mX,x. This is actually equivalent to choosing a valuation ring
Vpxq of κpxq. By definition, the height of x is the height of vx and x is called
trivial when vx is trivial (height = 0). A morphism of (topologically) valued
ringed spaces is a morphism of (topologically) locally ringed spaces such that
the induced morphism on the stalks is compatible (up to equivalence) with the
valuations. This is equivalent to require that it induces a morphism between
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the valuation rings. There exists an obvious functor that forgets the valuation.
It possesses a fully faithful adjoint which is simply obtained by endowing OX,x

with the valuation induced by the trivial valuation on κpxq. In particular, any
(topologically) locally ringed space may be seen as a (topologically) valued
ringed space.

6. A doubly (topologically) (locally) ringed space is a triple pX, OX , O`
Xq were

both pX, OXq and pX, O`
Xq are (topologically) (locally) ringed spaces and

O`
X Ă OX . Morphisms are defined in the obvious way. We will still

denote by X the (topologically) (locally) ringed space pX, OXq and then write
X` :“ pX, O`

Xq. This provides and adjoint and a coadjoint to the obvious
functor pX, OXq ÞÑ pX, OX , OXq.

7. If X is a (topologically) valued ringed space, then we shall denote by O`
X

the subsheaf locally defined by the conditions vxpfq ě 0. This defines a
functor from (topologically) valued ringed spaces to doubly (topologically)
locally ringed spaces which happens to be fully faithful.

8. Let X be a topological space and x, y P X. We write y ù x, and we say that
x is a specialization of y or that y is a generization of x, if any neighborhood
of x is also a neighborhood of y. Alternatively, it means that x P tyu (the
topological closure). This defines a partial order on the points of X.

9. A topological space is said to be coherent if it is quasi-compact, quasi-separated
and admits a basis of quasi-compact open subsets. It is said to be sober if
any irreducible subset has a unique generic point. It is called spectral if it is
coherent and sober.

10. A subset of a topological space X is (globally) constructible (resp. ind-
constructible, resp. pro-constructible) if it is a (resp. a union of, resp. an
intersection of) boolean combination(s) of retrocompact open subspaces. If
X is coherent, a locally constructible (resp. locally ind-constructible, resp.
locally pro-constructible) subset is automatically (globally) constructible (resp.
ind-constructible, resp. pro-constructible). The constructible topology on a
topological space X is the coarsest topology for which the locally constructible
subsets are open.

11. If X is a locally spectral space, then a subset is open (resp. closed, resp.
open and closed) in the constructible topology if and only if it is locally ind-
constructible (resp. locally pro-constructible, resp. locally constructible). A
subset of a locally spectral space is closed (resp. open) if and only if it is locally
pro-constructible (resp. locally ind-constructible) and stable under specializa-
tion (resp. generization). Any quasi-compact quasi-separated continuous map
of locally spectral spaces is always continuous and closed for the constructible
topology.
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1 Adic formal schemes

In this section, we briefly review the basics of adic formal schemes, give some
examples and generalize some notions to the case of non-adic morphisms. We send
the reader to chapter 2 of [1] and chapter 1 of [8] for a recent presentation of the
subject (see also chapter 10 of [10]). Note that the terminology may vary from one
reference to another and we tend to prefer a vocabulary which is compatible with
the usual conventions for adic spaces.

At some point, we will impose noetherian conditions but we can make some general
definitions first.

Definition 1.1. A topological ring A is called adic if there exists a finitely generated
ideal I whose powers I ¨n form a fundamental system of neighborhoods of 0. Such an
ideal is called an ideal of definition. A homomorphism A Ñ B of adic rings is called
adic when IB is an ideal of definition of B.

Following Huber, we do not assume the topology to be complete or Hausdorff in
general and will denote by Â :“ limÐÝ A{In`1 the (Hausdorff) completion of A. On
the other hand, we require I to be finitely generated (which is not standard). It

follows that pA will be a complete adic ring with ideal of definition I pA and that
A{I “ pA{I pA (and we may in practice replace A with pA).

If we are ready to always assume completeness, one may consider the more general
notion of admissible ring. Note also that we can always see a usual ring as a complete
adic ring because the discrete topology is adic (and complete) with respect to the
zero (or any nilpotent) ideal.

A morphism of adic rings A Ñ B is simply a continuous homomorphism of rings
and it will always send an ideal of definition into some ideal of definition. We will
always make it clear when we assume that the morphism is actually adic (which is
a much stronger condition).

Definition 1.2. If A is a topological ring, then the formal spectrum of A is the set
P :“ SpfpAq of open prime ideals of A.

If A is a topological ring, f P A and p P P “ SpfpAq, then we will denote by fppq
the image of f in κppq :“ FracpA{pq. The set P is endowed with the topology such
that the subsets

Dpfq “ tp P P : fppq ‰ 0u
form a basis of open subsets. This is a spectral space.

When A is an adic ring, there exists a unique sheaf of topological rings OP such that

ΓpDpfq, OP q “ {Ar1{f s (1)

(this is the completion for the I-adic topology if I denotes an ideal of definition of
A). This turns P into a topologically locally ringed space.
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If A is an adic ring, then there exists a canonical isomorphism of topologically
locally ringed spaces Spfp pAq » SpfpAq and this is why we may usually only consider
complete adic rings. If one is ready to work only with complete rings, one can define
more generally the topologically ringed space associated to an admissible ring A.

Note that we always have ΓpP, OP q “ A but theorem A and B do not hold without
further hypothesis on A. For example, we have:

Proposition 1.3. If A is a noetherian adic ring and if P “ SpfpAq, then the
functors

M ÞÑ OP bL
pA M and F ÞÑ RΓpP, Fq

induce an equivalence between finite pA-modules and coherent OV -modules.

Proof. This is shown in [10] for example.

The same result holds if we require the topology of A to be discrete (in which case
it reduces to the analogous result on usual spectra).

Definition 1.4. An adic formal scheme is a topologically locally ringed space P

which is locally isomorphic to SpfpAq where A is an adic ring. It is said to be affine
if it is actually isomorphic to some SpfpAq.

An adic formal scheme is a locally spectral space. Note that one can define the more
general notion of formal scheme by using admissible rings.

If X is a scheme, then it is a locally ringed space and the topologically locally ringed
space associated to X is an adic formal scheme. This gives rise to a fully faithful
functor. Note that we recover X by simply forgetting the topology on the sheaf of
rings. In practice, we will identify X with the corresponding adic formal scheme.
Note that, with this identification, if A is an adic ring with ideal of definition I, we
have

SpfpAq “ limÝÑ SpecpA{Inq.

The functor
A ÞÑ SpfpAq

is fully faithful on complete adic rings. Better, there exists an adjunction

HompX, SpfpAqq » HompA, ΓpX, OXqq

(continuous homomorphisms on the right hand side). As a consequence, the category
of adic formal schemes has finite limits and we always have

SpfpAq ˆSpfpRq SpfpBq “ SpfpA bR Bq.

Example If S is any adic formal scheme, then we may consider:
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1. the relative affine space

An
S “ A ˆ ¨ ¨ ¨ ˆ Alooooomooooon

n times

ˆS

in which A :“ SpecpZrT sq (seen as a formal scheme). This is the same thing
as the usual formal affine space which is usually denoted with an extra hat.
If A is an adic ring with ideal of definition I, S “ SpecpAq and ArT1, . . . , Tns
has the I-adic topology, we have

An
S “ Spf pArT1, . . . , Tnsq .

and we may sometimes write pAn
A. Note that we could as well use the I-adic

completion pAtT1, . . . , Tnu of ArT1, . . . , Tns. This gives the same adic formal
scheme.

2. the relative projective space
Pn

S :“ Pn ˆ S

(which is also usually denoted with an extra hat) in which

Pn “ ProjpZrT0, . . . , Tnsq.

We will also write pPn
A when S “ SpfpAq. We may drop the exponent n when

n “ 1 and simply denote by P the projective line.

3. the relative open affine space

An,´
S :“ A´ ˆ ¨ ¨ ¨ ˆ A´looooooomooooooon

n times

ˆS

in which A´ :“ SpfpZrT sq where ZrT s has the T -adic topology. If A is an
adic ring with ideal of definition I, S “ SpfpAq and ArT1, . . . , Tns has the
IrT1, . . . , Tns ` pT1, . . . , Tnq-adic topology, then

An,´
S “ Spf pArT1, . . . , Tnsq “ Spf

´
pArrT1, . . . , Tnss

¯

and we will also write pAn,´
A .

4. the relative bounded affine space

An,b
S “ Spf pArrT1, . . . , Tnssq ,

(also denoted by pAn,b
A ) in which S “ SpfpAq and ArrT1, . . . , Tnss has the I-adic

topology. Be careful that BpbAArrT1, . . . , Tnss ‰ BrrT1, . . . , Tnss if completion
is meant with respect to the topology of B (unless B is finite over A or n “ 0).
It follows that the bounded affine space is really a global object.

There exists a sequence of “inclusions”

An,´
S ãÑ An,b

S ãÑ An
S ãÑ Pn

S.

We may also notice that A represents the sheaf of rings P ÞÑ ΓpP, OP q and that A´

represents the ideal of topologically nilpotent elements.
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A morphism of adic formal schemes Q Ñ P is simply a morphism of topologically
locally ringed spaces. It is said to be adic if it comes locally from an adic map
A Ñ B. In the affine case, it will then come globally from an adic morphism of adic
rings. A morphism of adic formal schemes Q Ñ P is affine if it comes locally on P

from a continuous map A Ñ B. When P is an affine adic formal scheme, then Q

will also be affine. Note that an affine map is not necessarily adic.

A morphism of adic formal schemes Q Ñ P is a closed immersion (resp. finite) if it
comes locally on P from an adic surjective (resp. finite) map A Ñ B. Again, in the
affine case, it will come globally from an adic surjective (resp. finite) map. A locally
closed immersion is the composition of a closed immersion with an open immersion
(in that order). This gives in particular rise to the notions of (locally) closed formal
subscheme.

A morphism Q Ñ P of adic formal schemes is said to be locally of finite type if Q

is locally isomorphic to a closed formal subscheme of a An
P . This is always an adic

morphism. If moreover, it is quasi-compact, then it is said to be of finite type. A
morphism of affine formal schemes is of finite type if and only if it is globally a closed
subscheme of some affine space. There also exists a stronger notion of morphism
(locally) finitely presented by requiring that the subscheme of An

P is defined by a
finitely generated ideal but this will not matter to us when we work in the noetherian
world.

A morphism Q Ñ P of adic formal schemes is locally quasi-finite if it is locally of
finite type with discrete fibres (locally on P and Q, this is the composition of an
open immersion and a finite map). It is said to be quasi-finite if moreover it is
quasi-compact.

If u : Q Ñ P is any morphism of adic formal schemes, then the diagonal map
∆ : Q Ñ Q ˆP Q is a locally closed immersion. The morphism u is said to be quasi-
separated (resp. separated) if ∆ is quasi-compact (resp. closed). The morphism u is
said to be proper if it is separated of finite type and universally closed.

A morphism u : Q Ñ P is said to be formally unramified (resp. formally smooth,
resp. formally étale) if any commutative diagram

Q // P

SpecpR{aq � � //

OO

SpecpRq

OOffN
N
N
N
N
N
N

with a nilpotent may be completed by the diagonal arrow in at most (resp. at
least, resp. exactly) one way. When P “ SpfpAq and Q “ SpfpBq with A and B

complete, it means that the morphism of rings A Ñ B is formally unramified (resp.
smooth, resp. étale). Be careful that being formally smooth is not a local property
in general. The morphism u is called unramified (resp smooth, resp. étale) if it is
formally unramified (resp. smooth, resp. étale) and locally finitely presented (which
is equivalent to locally of finite type in the noetherian situation below). There
exists an intermediate notion: a morphism u : Q Ñ P of adic formal schemes is
differentially smooth if there exists, locally on Q, a formally étale morphism Q Ñ An

P .
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If Q ãÑ P is an immersion defined (on some open subset of P ) by an ideal IQ,
we may consider the first infinitesimal neighborhood Qp1q of Q in P defined by I ¨2

Q

(which is always an adic formal scheme) and the corresponding short exact sequence

0 Ñ ŇQ{P Ñ OQp1q
Ñ OQ Ñ 0

where ŇQ{P is by definition the conormal sheaf. In the case of the diagonal
immersion Q ãÑ Q ˆP Q associated to a morphism Q Ñ P , we obtain the sheaf
of differential forms Ω1

Q{P . When P “ SpfpAq and Q “ SpfpBq are affine, we have

ΓpQ, Ω1
Q{P q “ pΩ1

B{A.

Definition 1.5. An adic formal scheme P is said to be locally noetherian if it is
locally isomorphic to SpfpAq where A is a noetherian adic ring. It is said to be
noetherian if, moreover, it is quasi-compact.

When P is locally noetherian, there exists a unique reduced closed subscheme
Pred Ă P having the same underlying space as P (in other words, there exists
a biggest ideal of definition). This provides an adjoint to the embedding of the
category of locally noetherian schemes into the category of locally noetherian formal
schemes.

Recall that the product of two locally noetherian formal schemes is not necessarily
locally noetherian (see example below). In order to get around this difficulty, the
following notion was introduced by Richard Crew in [7]:

Definition 1.6. A morphism of adic formal schemes u : P 1 Ñ P is said to be
(universally) locally noetherian if, whenever Q Ñ P is a morphism of adic formal
schemes with Q locally noetherian, then u´1pQq :“ P 1 ˆP Q is locally noetherian. In
the case u is quasi-compact, the morphism is said to be (universally) noetherian.

From now on and unless otherwise specified, all adic formal schemes will be
assumed to be locally noetherian and simply called formal schemes.

It is shown is [7] that the notion of locally noetherian morphism is stable under
product and composition. Moreover, if u : Q Ñ P is a locally noetherian morphism,
then Ω1

Q{P is a coherent sheaf and we have Ω1
Q{P “ 0 if and only if u is unramified.

This is also the correct condition in order to have a Jacobian criterion:

Theorem 1.7 (Crew). Assume that P Ñ S and Q Ñ S are two locally noetherian
morphisms of formal schemes.

1. If u : Q Ñ P is an S-morphism, then there exists a right exact sequence

u˚Ω1
P {S Ñ Ω1

Q{S Ñ Ω1
Q{P Ñ 0.

Assume moreover that Q is formally smooth over S. Then u is formally smooth
(resp. étale) if and only if u˚Ω1

P {S is locally a direct summand in (resp. is
isomorphic to) Ω1

Q{S.
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2. If i : Q ãÑ P is an S-immersion, then there exists a right exact sequence

ŇQ{P Ñ i˚Ω1
P {S Ñ Ω1

Q{S Ñ 0.

Assume moreover that P is formally smooth over S. Then Q is formally
smooth (resp. étale) over S if and only if ŇQ{S is is locally a direct summand
in (resp. is isomorphic to) i˚Ω1

P {S.

Proof. This is proved in [7].

It is also shown that a locally noetherian morphism u is formally smooth if and only
if it is differentially smooth.

Example We let S be a formal scheme (that we assume to be affine when we
consider a bounded affine space over S).

1. The formal scheme Ab
S ˆS Ab

S is not locally noetherian in general: the ring
ArrT sspbAArrT ss, where completion is meant with respect to the topology of
A, is not noetherian in general (e.g. a big field with the discrete topology).

2. Let S “ SpfpVq where V is a discrete valuation ring with perfect residue field
k of characteristic p ą 0. Then the formal scheme Ab

S is not smooth over S but
it is differentially smooth. This holds more generally in the case S “ SpfpAq
when A has the p-adic topology and the absolute Frobenius of A{pA is finite.

3. The formal scheme A´
S is formally smooth. In particular, it is differentially

smooth. Note however that this is not a smooth formal scheme over S because
it is not even adic over S.

4. Of course, the formal scheme AS is smooth over S.

When we consider a morphism of formal schemes u : Q Ñ P , we may wonder how
some properties of the morphism of schemes ured : Qred Ñ Pred might impact the
morphism u. For example, one knows that u is separated or affine if and only if ured

is separated or affine. Also, u is universally locally noetherian if and only if ured is
(and this can be tested with usual locally noetherian schemes).

Definition 1.8. A morphism of formal schemes u : Q Ñ P is said to be

1. formally (locally) of finite type (resp. formally (locally) quasi-finite) if ured is
(locally) of finite type (resp. (locally) quasi-finite).

2. partially proper (resp. partially finite) if u is formally locally of finite type and
induces a proper (resp. finite) morphism of schemes Zred Ñ Tred whenever Z

and T are irreducible components of Q and P such that upZq Ă T .
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One may also call u a formal thickening when ured is an isomorphism, in which case
all the above properties are satisfied.

When u is an adic morphism, u being formally (locally) of finite type or quasi-finite,
is equivalent to u being (locally) of finite type or quasi-finite, but this is not the case
in general (see examples below). When u is quasi-compact, u being partially proper
or finite is equivalent to ured being proper or finite. If moreover, u is adic, this is
equivalent to u being proper or finite.

It is important to notice that a morphism which is locally formally of finite type is
automatically locally noetherian.

Example 1. If S is any formal scheme, then the structural map A´
S Ñ S is a

formal thickening. This provides an example of a morphism which is partially
finite, and therefore partially proper and formally quasi-finite, and in particular
formally of finite type. However, this morphism is not locally of finite type
(and not locally quasi-finite, not proper, not finite either) because it is not
adic.

2. Classically, the formal model of Gm whose reduction is an infinite union of
projective lines, each meeting another one in exactly one point, is a partially
proper formal scheme. However, it is not quasi-compact.

When we write A˘,N , we mean a product of N copies of A or A´. Of course, they
may be reordered so that

A˘,N “ An ˆ A´,m

with N “ n ` m. In other words, if S “ SpfpAq, we have

A˘,N
S “ SpfpArT1, . . . , Tn, S1, . . . , Smsq

with the IrT1, . . . , Tn, S1, . . . , Sms ` pS1, . . . , Smq-topology. Alternatively, we can
write

A˘,N
S “ SpfpAtT1, . . . , TnurrS1, . . . , Smssq

“ SpfpArrS1, . . . , SnsstT1, . . . , Tnuq.

Lemma 1.9. A morphism of formal schemes u : Q Ñ P is formally locally of
finite type if and only if it factors, locally on P and Q, through a closed immersion
Q ãÑ A˘,N

P .

Proof. The condition is clearly sufficient and, in order to prove that it is necessary,
we may assume that u comes from a continuous morphism of noetherian adic rings
A Ñ B with B complete. If J is the biggest ideal of definition of B, then our
hypothesis tell us that the composite map A Ñ B Ñ B{J is of finite type and
extends therefore to a surjective map A1 :“ ArT1, . . . , Tns ։ B{J . Assume that
J is generated by g1, . . . , gm. Then, since B is complete, there exists a unique
continuous map A2 :“ A1rrS1, . . . , Smss Ñ B that sends Si to gi for all i “ 1, . . . , m.
After completion, this map is surjective because it is adic and surjective onto B{I2B

where I2 is the biggest ideal of definition of A2.
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As a particular case, we see that a formal scheme is formally locally of finite type
over a discrete valuation ring if and only if it is special in the sense of Berkovich.

Definition 1.10. A morphism of formal schemes u : Q Ñ P is said to satisfy the
valuative criterion for properness if, given a field F and a valuation ring R of F ,
then any commutative diagram

Q // P

SpecpF q //

OO

SpecpRq

OOffM
M
M
M
M
M

may be uniquely completed by the dotted arrow.

When Q “ SpfpBq is affine, the lifting property simply means that the image of
B Ñ F is contained in R.

Proposition 1.11. If u is a partially proper morphism of formal schemes, then it
satisfies the valuative criterion for properness.

Proof. This follows directly from the valuative criterion fo properness for usual
schemes because properness is not sensitive to nilpotent immersions (and F and
R have the discrete topology).

One can show that, for a morphism of finite type, the criterion is actually equivalent
to properness.

2 Adic spaces

In this section, we give a brief description of the theory of adic spaces and some
standard examples. We mostly follow the notes of Wedhorn in [23] but the
vocabulary is also influenced by Scholze’s lectures in Berkeley ([21]) and Conrad’s
lectures in Stanford ([6]) (see also [24]). Anyway, almost everything can be found in
the original papers [14] and [12]. We keep the additive notation from Huber’s thesis.

Definition 2.1. If A is any ring and G is a totally ordered additive group, a
valuation

v : A Ñ G Y t`8u
is a map that satisfies

1. vp1q “ 0, vp0q “ `8,

2. @f, g P A, vpfgq “ vpfq ` vpgq,

3. @f, g P A, vpf ` gq ě minpvpfq, vpgqq.
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The height of v is the height of the subgroup Gv generated by the image of v. We
call v trivial if Gv “ t0u and discrete if Gv » Z.

Two valuations v and v1 on the same ring A are said to be equivalent if they define
the same preorder on A:

@f, g P A, vpfq ď vpgq ô v1pfq ď v1pgq

(or equivalently, if they both factor through a common valuation).

Example 1. Up to equivalence, a trivial valuation corresponds to a unique prime
p Ă A:

vppfq “ 0 ô fppq ‰ 0 and vppfq “ `8 ô fppq “ 0.

Recall from our conventions that fppq denotes the image of f in κppq :“
FracpA{pq so that the condition also reads f R p or f P p.

2. If v is a valuation on a ring A, then the Gauss valuation on ArT s is defined
for F :“ řd

i“0 fiT
i P ArT s by

vpF q “
d

min
i“0

vpfiq P G Y t`8u.

It has the same height as the original valuation (geometrically, it corresponds
to the generic point of the unit disc).

3. With the same notations, one may always define valuations of higher height
by

v´pF q “
ˆ

vpF q, min
vpF q“vpfiq

i

˙
P pG ˆ Zq Y t`8u

or

v`pF q “
ˆ

vpF q, ´ max
vpF q“vpfiq

i

˙
P pG ˆ Zq Y t`8u,

where G ˆ Z has the lexicographical order (geometrically, they corresponds
to the specializations of the generic point inside and outside the unit disc).
When we start from a trivial valuation on an integral domain, then v´ “ val
(standard valuation on polynomials) and v` “ ´ deg (where deg denotes the
degree map on polynomials).

The support of a valuation v on A is the prime ideal

supp pvq :“ tf P A : vpfq “ `8u.

The residue field of v is κpvq :“ κpsupp vq and the image of f P A in κpvq will be
denoted by fpvq “ fpsupp vq.
Some authors prefer the multiplicative notation for valuations. We will do that
only for fields. In general, one can move back and forth between the additive and
multiplicative notation by writing formally

Γ :“ expp´Gq “ texpp´gq, g P Gu and G :“ ´ lnpΓq “ t´ ln γ, γ P Γu.
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Definition 2.2. If K is a field and Γ is a totally ordered (commutative) multiplica-
tive group (of any height), then an (ultrametric) absolute value

| ´ | : K Ñ t0u Y Γ,

is a map that satisfies

1. @a P K, |a| “ 0 ô a “ 0,

2. @a, b P K, |ab| “ |a||b|,

3. @a, b P K, |a ` b| ď maxp|a|, |b|q.

Besides the multiplicative notation and reversing order, this is nothing but a
valuation on K and we will apply systematically the vocabulary of valuations to
ultrametric absolute values. Note that we do not require an absolute value to have
height at most one (this is not standard).

When K is endowed with an ultrametric absolute value (of any height), we call it a
valued field and call

K` :“ ta P K : |a| ď 1u
its valuation ring. Up to equivalence, | ´ | is uniquely determined by K`, the value
group Γ|´| is isomorphic to Kˆ{K`ˆ and the height of | ´ | is the same thing as
the dimension of K`. The ultrametric absolute value induces a topology on K with
basis of open subsets given by the open “discs”

Dpc, γq “ ta P K, |a ´ c| ă γu

(this is the coarsest topology making the absolute value continuous - see below).

Any valuation v on a ring A will induce an ultrametric absolute value of the same
height | ´ | on κpvq (and conversely). The formulas are simply given by

|fpvq| “ expp´vpfqq and vpfq “ ´ lnp|fpvq|q.

Definition 2.3. A topological ring A is called a Huber ring (an f -adic ring in the
sense of Huber) if there exists an open adic subring A0 Ă A. We then call A0 a ring
of definition of A and any ideal of definition I0 of A0 will be also called an ideal of
definition of A. A ring homomorphism A Ñ B between two Huber rings is called
adic if it induces an adic map between some rings of definition.

When A is a Huber ring, then the completion pA of A as an A0-module is also a
Huber ring and it does not depend on the choice of A0. Moreover pA0 is a definition
ring for pA and we have pA “ A bA0

pA0.

By definition, a morphism of Huber rings A Ñ B is a continuous homomorphism
and it will always send a ring (resp. an ideal) of definition into some ring (resp. some
ideal) of definition. We will make it clear when we assume that the morphism is
actually adic (which is again a much stronger condition).
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Definition 2.4. Let A be a Huber ring. Then,

1. A is said to be of of noetherian type if A is finitely generated over some
noetherian ring of definition.

2. A is called a Tate ring if there exists a topologically nilpotent unit π P A.

Note that if A is of noetherian type or if A is a Tate ring, so is pA.

Example 1. An adic ring A is always a Huber ring which is its own definition
ring. It is of noetherian type if and only if A is noetherian. It cannot be a
Tate ring unless A is the zero ring. This applies in particular to usual rings
(endowed with the discrete topology).

2. If A is an adic ring and π is a topologically nilpotent element which is not a
zero-divisor, then Ar1{πs is a Tate ring with definition ring A. Any Tate ring
arises in this way. The Tate ring Ar1{πs is of noetherian type if (but not only
if) A is noetherian.

3. Let pK, |´|q be a valued field (of some height). We endow K with the topology
induced by | ´ |. Then K is a Huber ring if and only if its topology may be
defined by some absolute value of height at most one. When this is the case,
we call pK, | ´ |q a Huber valued field. Actually, either | ´ | is trivial or the
topology may be defined by an absolute value of height exactly one. When
this is the case, pK, | ´ |q is called a Tate valued field and K is called a non
archimedean field. A non archimedean field is of noetherian type if and only
if the topology may be defined by a discrete valuation.

4. Let A be a Huber ring with ring of definition A0 and ideal of definition I0. If
pf1, . . . , frq is an open ideal in A, then the polynomial ring ArT s is a Huber
ring for the topology defined by the subring A0rf1T

k, . . . , frT
ks endowed with

the ideal of definition I0rf1T
k, . . . , frT

ks. Openness condition is necessary for
ArT s to be a topological ring (for this topology). These constructions preserve
the noetherian type and the Tate conditions.

If A is a Huber ring, we will denote by A˝ the subring of power bounded elements
of A (union of all rings of definition) and by A˝˝ the ideal of topologically nilpotent
elements in A˝ (union of all ideals of definition).

Definition 2.5. A Huber pair (an affinoid ring in the sense of Huber) is a pair
pA, A`q where A is a Huber ring and A` is any subset A˝. The integral closure A

`

of the subring generated by A` and A˝˝ is called the ring of integral elements.

As we will see below, there is no harm in replacing A` with A
`

(as Huber
systematically does). There is however more flexibility in not making such an
assumption. We will call the Huber pair pA, A`q complete if A is complete and

A` is the full ring of integral elements (A` “ A
`

).
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A Huber pair pA, A`q is said to be of noetherian type or is called a Tate pair when
A is of noetherian type or a Tate ring, respectively. Note that A` plays no role in
this definition.

Example 1. If A is any Huber ring, then both pA, A˝q and pA, Hq are Huber
pairs. The ring of integral elements is A˝ in the first case and this is the
integral closure of the subring Z ¨ 1A ` A˝˝ Ă A in the second case.

2. If A is an adic ring, and this includes usual rings (with the discrete topology),
then pA, Aq is a Huber pair. If π P A is a non zero topologically nilpotent
element which is not a zero divisor, then pAr1{πs, Aq is a Tate pair with ring
of integral elements equal to A. This cannot happen if A is a usual ring (with
the discrete topology).

3. Let pK, | ´ |q be a non trivially valued field with valuation ring K`. Then
pK, K`q is a Huber pair if and only if K` has a prime ideal of height one (| ´ |
is microbial in Huber’s words), and then, K` is exactly the ring of integral
elements (but K` ‰ K˝ in general). The ring K` is not noetherian unless
the absolute value | ´ | is discrete, but pK, K`q will be of noetherian type
whenever the topology of K may be defined by a discrete valuation.

4. In the case A “ Zr1{ps (with the discrete topology), there exists essentially
two Huber pairs, with rings of integral elements Zr1{ps and Z. They will both
play a role in the theory.

5. Assume that pA, A`q is a Huber pair, that ArT s has the topology induced by
A0rf1T, . . . , frT s for some f1, . . . , fr generating an open ideal in A and ring of
definition A0. Then, we will usually choose ArT s` “ A` Y tf1T, . . . , frT u.

If G is a totally ordered additive group, then GYt`8u is endowed with the topology
whose open subsets U are defined by the conditions

`8 R U or DM P G, sM, `8rĂ U.

In particular, the topology of a valued field K is the coarsest topology making
the absolute value continuous. As a consequence, we see that a valuation v on
a topological ring A is continuous if and only if the quotient map A Ñ κpvq is
continuous.

Definition 2.6. The adic spectrum of a Huber pair pA, A`q is the set V :“
SpapA, A`q of equivalence classes of continuous valuations on A that are non-
negative on A`.

We always have

A
` “ tf P A, @v P V, vpfq ě 0u and V “ SpapA, A

`q

This is why we may usually replace A` with A
`

and assume that A` is the full ring
of integral elements.
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If A is a Huber ring, then there exists a smallest and a biggest adic spectrum
associated to A which are given by

SpapAq :“ SpapA, A˝q and ContpAq :“ SpapA, Hq

This notation will also be used when A has the discrete topology in which case
SpapAq denotes the set of all non-negative valuations on A, but we would then
rather write SpvpAq instead of ContpAq for the set of all valuations.

The adic spectrum V :“ SpapA, A`q is endowed with the topology for which a basis
of open subsets is given by the rational subsets

Rpf1{f0, . . . , fr{f0q “ tv : @i “ 1, . . . , n, vpfiq ě vpf0q ‰ `8u

in which pf0, . . . , frq is an open ideal. Note that the condition pf0, . . . , frq open is
not necessary in order to obtain an open subset of V (although it would not be
called rational anymore). As a consequence, the topology of V only depends on the
ring A (and not the topology of A or the choice of A`).

Example 1. If K is any field (endowed with the discrete topology) and k is any
subring of K, then SpapK, kq is the Riemann-Zariski space of K over k. As a
standard example, note that SpapCpXq,Cq » PC (more about this later).

2. For n P Z, set

0pnq “
"

0 if n ‰ 0
`8 if n “ 0

;

then, if p is prime, denote by vp the usual p-adic valuation, and set

ppnq “
"

0 if p ∤ n

`8 if p | n
.

Then, we have

SpvpZq “ t0, vp for p prime, p for p primeu.

Any proper closed subset is a finite union of subsets of the form tpu or tvp, pu.

An important theorem of Huber states that V is a spectral space (coherent and
sober). Let us say a few words about specialization/generization on adic spectra.

Lemma 2.7. Let pA, A`q be a Huber pair and v, w P V “ SpapA, A`q. Then
w ù v if and only the valuations induce a morphism of ordered groups Gv Ñ Gw

such that
@f, g P A, vpgq ď vpfq “ `8 ñ wpgq ď wpfq. (2)

Proof. Recall that, by definition, w ù v if and only if any neighborhood of v is
also a neighborhood of w. It means that

@f, g P A, vpfq ě vpgq ‰ `8 ñ wpfq ě wpgq ‰ `8. (3)
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Thus, we see that if vpfq “ vpgq ‰ `8, then necessarily wpfq “ wpgq ‰ `8 and
there exists therefore a well defined map

Gv X vpAq Ñ Gw X wpAq, vpfq ÞÑ wpfq.

The condition also shows that this map preserves the order. Moreover, since we
always have vpfgq “ vpfq ` vpgq and wpfgq “ wpfq ` wpgq, it extends uniquely to
a group homomorphism which is automatically order preserving because the group
laws are compatible with the orders. Conversely, if the valuations induce a morphism
of ordered groups, then condition (3) is automatically satisfied whenever vpfq ‰ `8
and only condition (2) had to be checked.

Note that the support map is compatible with specialization: we have

w ù v ñ supp w ù supp v

(which means that supp w Ă supp v). There are two special kinds of specializations:

Definition 2.8. Let V “ SpapA, A`q be an adic spectrum and v, w P V . Then,

1. v is a horizontal (or primary) specialization of w if the valuations induce an
injective morphism of ordered groups Gv ãÑ Gw and

@f, g P A, vpgq ă vpfq “ `8 ñ wpgq ă wpfq.

2. v is a vertical (or secondary) specialization of w if the valuations induce a
surjective morphism of ordered groups Gv ։ Gw and

@f P A, vpfq “ `8 ñ wpfq “ `8.

Note that a specialization w ù v is vertical if and only if supp w “ supp v (it lives
in a fiber of the support map). On the other hand, given an inclusion supp w ãÑ p

where p is some prime ideal in A, there will exist at most one horizontal specialization
w ù v with supp v “ p. A basic theorem of the theory states that any specialization
is the composition of a vertical one and a horizontal one (in that order).

Example 1. In SpvpZq we have the following vertical and horizontal specializa-
tions (for any prime p)

0ù

vp ù p.

2. If A is a Tate ring, all specializations are vertical and any valuation v has a
unique (vertical) generization w of height 1.

For further use, we need to show some properties of specialization:

20



Lemma 2.9. Let V “ SpapA, A`q be an adic spectrum, v, w P V and f P A. Assume
that w ù v in V . Then, we have

1. wpfq “ `8 ñ vpfq “ `8, and conversely if the specialization is vertical,

2. wpfnq Ñ `8 ñ vpfnq Ñ `8,

3. wpfq ą 0 ñ vpfq ą 0 and conversely if the specialization is horizontal.

Proof. The first assertion follows from the existence of the map Gv Ñ Gw and the
very definition of a vertical specialization. For the second one, let us assume that
the set tvpfnqunPN is not bounded. It means that there exists γv P Gv such that
for all n P N we have vpfnq ď γv. Then, if we denote by γw P Gw the image of γv,
we will have for all n P N, wpfnq ď γw which means that the set twpfnqunPN is not
bounded either. The last implication follows from the fact that the map Gv Ñ Gw

always preserves the order and that it even strictly preserves the order when it is
injective.

We may also notice that we always have vpfq ą 0 ô vpfnq Ñ `8 when v has height
as most one but this is not true anymore in higher height.

We say that the Huber pair pA, A`q or that V :“ SpapA, A`q is sheaffy if there
exists a (necessarily unique) structural sheaf OV for which

ΓpRpf1{f0, . . . , fr{f0q, OV q “ {Ar1{f0s, (4)

where Ar1{f0s is the Huber ring whose ring of definition ring is A0rf1{f0, . . . , fr{f0s
(and completion is meant relatively to this structure) for some ring of definition A0

of A. When this is the case, V :“ SpapA, A`q is a topologically valued ringed space.

If V “ SpapA, A`q is an adic spectrum, then the inclusion of valued fields

FracpA{supp vq ãÑ OV,v{mV,v

(which is not an equality in general) induces an isomorphism on the completions
and there should therefore be no problem in practice if we write κpvq for both fields.
Following Berkovich, we will denote by Hpvq their common completion.

Example 1. If V “ SpapCpXq,Cq, then we have an isomorphism of locally
ringed spaces V ` » PC.

2. There exists isomorphisms

SpvpZqztpu » SpvpZr1{psq and SpvpZqztvp, pu » SpapZr1{psq.

It is important for us to notice that, when A is of noetherian type, then V is
automatically sheaffy. There are actually many various other conditions that would
insure that V is sheaffy. This is the case for example also if A has the discrete
topology. When A is of noetherian type, one can also prove Hilbert’s theorems A
and B as in the case of formal schemes:
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Theorem 2.10 (Huber). If A is of noetherian type and V “ SpapA, A`q, then the
functors

M ÞÑ OV bL
pA M and F ÞÑ RΓpV, Fq

induce an equivalence between finite pA-modules and coherent OV -modules.

Proof. This is shown in [12].

Again, the same result also holds when A has the discrete topology.

Definition 2.11. An adic space (or Huber space) is a topologically valued ringed
space V , which is locally isomorphic to some (sheaffy) adic spectrum SpapA, A`q. It
is said to be affinoid if it is actually isomorphic to some SpapA, A`q.

Note that V is a locally spectral space. Alternatively, we could define an adic space
as a doubly topologically locally ringed space pV, OV , O`

V q locally isomorphic to an
adic spectrum.

The functor
pA, A`q ÞÑ SpapA, A`q

is fully faithful on complete sheaffy pairs. Better, there exists an adjunction

HompX, SpapA, A`qq » HomppA, A`q, pΓpX, OXq, ΓpX, O
`
Xqq

(compatible pairs of continuous homomorphisms on the right hand side). It is
important to notice however that there is no fibered product in general in the
category of adic spaces and that a (fibered) product of affinoid spaces is not
necessarily affinoid (SpvpZrT sq ˆ SpapQpq for example). Nevertheless, all the
products used in the examples below are representable.

Example If O is any adic space, we may consider:

1. the closed unit polydisc
Dn

O “ D ˆ ¨ ¨ ¨ ˆ Dlooooomooooon
n times

ˆO

in which D :“ SpapZrT sq (with the discrete topology). In the case O “
SpapA, A`q, we have

Dn
O “ Spa

`
ArT1, . . . , Tns, A`rT1, . . . , Tns

˘

(with the topology coming from A).

2. the affine space
An

O “ Aval ˆ ¨ ¨ ¨ ˆ Avalloooooooomoooooooon
n times

ˆO

in which Aval :“ SpvpZrT sq. Note that O being affinoid will not imply that
An

O is affinoid.
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3. the closed polydisc of radii tf
´ 1

k

i,j u

Dn
Op0, tf

´ 1
k

i,j uq “ DOp0, tf
´ 1

k

1,j uq ˆO ¨ ¨ ¨ ˆO DOp0, tf
´ 1

k

n,j uq

where DOp0, tf
´ 1

k

j uq is the disc of radius tf
´ 1

k

j u defined as

DOp0, f
´ 1

k
1 , . . . , f

´ 1
k

r q “
 
v P AO, vpf1T

kq, . . . , vpfrT
kq ě 0

(
.

In this definition, we assume that O lives over some affinoid space SpapA, A`q
and that f1, . . . , fr P A generate an open ideal of A. In the case O “
SpapA, A`q, then a closed polydisc of some radii is always affinoid and

DOp0, f
´ 1

k
1 , . . . , f

´ 1
k

r q “ SpapArT s, A`rf1T
k, . . . , frT

ksq
(with the topology induced by A0rf1T

k, . . . , frT
ks if A0 denotes a ring of

definition of A).

4. the open unit polydisc

Dn,´
O :“ D´ ˆ ¨ ¨ ¨ ˆ D´looooooomooooooon

n times

ˆO

in which D´ :“ SpapZrT sq “ SpapZrrT ssq with the T -adic topology. Again,
the fact that O is affinoid will not imply that the open unit polydisc is affinoid.

The affine space is the union of all closed polydiscs of the same dimension. Actually,
if O “ SpapA, A`q and f1, . . . , fn are topologically nilpotent elements of A that
generate an open ideal in A, then it is easily checked that

AO :“
ď

k

DO

`
0, tf´1

i u|i|“k

˘
.

Here, we use the usual multiindex notation fi :“ f i1

1 ¨ ¨ ¨ f ik
n and |i| :“ i1 ` ¨ ¨ ¨ ` ik if

i “ pi1, . . . , ikq P Nk.

Also, if O is an analytic space (see below), then the open unit polydisc is a union
of closed polydiscs. Actually, if A is a Tate ring with topologically nilpotent unit π

and O “ SpapA, A`q, then we have

D´
O :“

ď

k

DOp0, π
1
k q.

Be careful however that D´
O is usually strictly smaller than the subset tv P

DO, vpT q ą 0u which therefore is not a disc.

A morphism of adic spaces W Ñ V is simply a morphism of topologically valued
ring spaces. It is said to be adic if it comes locally from an adic morphism of Huber
rings A Ñ B (equivalently, it sends any analytic point to an analytic point - see
below).

A closed immersion of adic spaces W ãÑ V is a morphism that comes locally on V

from a surjective adic morphism A ։ B sending A` onto B`. One may then define
the notions of locally closed immersion and (locally) closed subspace.
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Definition 2.12. An adic space V is locally of finite type over O if it is locally
isomorphic to a locally closed subspace of An

O. It is said to be of finite type if,
moreover, it is quasi-compact.

Note that one cannot replace the affine space by the unit polydisc in this definition
but one may replace it with a polydisc of some radii which is then affinoid. It is
also possible to define the notion of morphism locally finitely presented but this
would be of no use to us when we enter the noetherian world. Huber proved that
it is always possible to pull back along a morphism which is locally of finite type
(although fibered products do not exist in general).

We used above the notation Aval. Actually, to any locally ringed space X, one can
associate a (topologically) valued ringed space Xval as follows. One sets

Xval :“ tpx, vq, x P X, v P Spvpκpxqqu

(which is also sometimes written SpvpXq). It is made into a topological space by
choosing as basis of open subsets, the subsets

tpx, vq : x P U, vpfpxqq ě vpgpxqq ‰ 0u Ă Xval,

in which U is an open subset of X and f, g P ΓpU, OXq. There exists an obvious
continuous map

supp : Xval Ñ X, px, vq ÞÑ x,

and Xval is endowed with the sheaf of (topological) rings OXval :“ supp ´1pOXq.
In particular, we have OXval,px,vq “ OX,x for all px, vq P Xval and this local ring is
endowed with the valuation induced by v.

Proposition 2.13. If X is a scheme, then Xval is an adic space and the functor
X ÞÑ Xval is fully faithful. Moreover, for any adic space V , there exists a natural
bijection

HompV, Xq » HompV, Xvalq
(morphisms of locally ringed spaces on one side and morphisms of adic spaces on
the other). Finally, if X “ SpecpAq, then there exists a natural isomorphism
Xval » SpvpAq.

Proof. We start with the last assertion: if A is any ring (endowed with the discrete
topology), then there exists an obvious map

SpvpAq Ñ SpecpAqval, v ÞÑ psupp v, vq

in which v denotes the valuation induced by v on κpsupp vq. This is easily seen to
be an isomorphism of (topologically) valued ringed spaces. Actually, by definition,
we will always have

ΓpRpf1{f0, . . . , fr{f0q, OV q “ Ar1{f0s

(with the discrete topology). It follows that if X is a scheme, then Xval is an adic
space. Now, both other questions are local. More precisely, for the fake adjunction,
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we may assume that X “ SpecpAq and V “ SpapB, B`q with B complete. Then
the result follows from the equality

HompA, Bq “ HomppA, Hq, pB, B`qq

((automatically continuous) ring morphisms on one side and compatible pairs of
(automatically continuous) ring morphisms on the other). Full faithfulness then
results from the fact that ΓpXval, OXvalq “ A when X “ SpecpAq.
Corollary 2.14. The functor X ÞÑ Xval commutes with finite limits of schemes.

Proof. This is simply because finite limits of schemes are also finite limits in the
whole category of locally ringed spaces.

In general, Xval is way too big and it is more convenient to rely on a relative version:

Corollary 2.15 (Huber). Let X Ñ S be a morphism of schemes which is locally of
finite type, V any adic space and V Ñ S a morphism of locally ringed spaces. Then,
the functor

W ÞÑ HompW, Xq ˆHompW,Sq HompW, V q
is representable by the adic space

XV :“ X ˆS V » Xval ˆSval V.

Proof. The only thing to check is that the fibered product on the right is repre-
sentable and this follows from the fact that the morphism Xval Ñ Sval is locally of
finite type (because X Ñ S is).

Example If V is an adic space, then we may consider

An
V :“ An,val ˆ V and Pn

V :“ Pn,val ˆ V

as we already did.

Definition 2.16. An adic space V is said to be analytic it is locally isomorphic to
some SpapA, A`q where A is a Tate ring.

Be careful that an affinoid space which is analytic is not necessarily the adic spectrum
of a Tate ring.

More generally, we will call a point v of an adic space V analytic if it has a
neighborhood of the form SpapA, A`q where A is a Tate ring. It is not difficult to
see that a point is non-analytic if and only if it has a trivial (vertical) generization.
We will denote by V an (instead of Huber’s Va) the open subset of analytic points of
V . More generally, if T Ă V , we should simply write T an instead of T X V an for the
set of analytic points of T .

Definition 2.17. Let pK, | ´ |q be a Huber valued field with valuation ring K`.
Then, SpapKdisc, K`q is called a non analytic Huber point. If | ´ | is not trivial,
then SpapK, K`q is called an analytic Huber point.
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The topological space of a Huber point is totally ordered by generization with one
maximal point of height 0 or 1 and one minimal point which is | ´ |.
Let V be an adic space and v P V a non-analytic point (resp. an analytic point).
Then, there exists a canonical morphism

Spapκpvqdisc, κpvq`q ãÑ V presp. Spapκpvq, κpvq`q ãÑ V q

that identifies the Huber point with the set of vertical generizations of v.

When V is an analytic space, then the maximal points for generization in V are
exactly the points of height 1 (the Berkovich points of V ). We shall denote their set
by V1 (or V Berk). There exists a retraction map sep : V Ñ V1 sending any point v to
its maximal generization v1 and V1 is endowed with the quotient topology (and not
the induced topology). Note that the canonical map κpv1q ãÑ κpvq on the residue
fields is dense and induces therefore an isomorphism Hpv1q » Hpvq on the completed
residue fields. Also, since we always have sep´1pvq “ tvu, we see that the maps sep
and sep´1 induce a bijection between the (locally closed, open, closed) subsets of
V1 and the (locally closed, open, closed) subsets of V that are stable under both
specialization and generization. Moreover, V1 is a Fréchet topological space (i.e. T1)
and the map sep is the adjunction map for a fake adjunction

HompV1, T q » HompV, T q

whenever T is a Fréchet topological space. Finally, when V is quasi-compact and
quasi-separated, then the space V1 is compact (Hausdorff) and the map sep is proper.
It may be called the Berkovich quotient of V .

We will always assume that separated, proper or partially proper morphisms of adic
spaces are locally of finite type as in [11]. More precisely, we make the following
definitions:

Definition 2.18. A morphism of adic spaces u : W Ñ V is said to be

1. separated if u is locally of finite type and the diagonal map ∆: W ãÑ W ˆV W

is closed.

2. partially proper if u is separated and universally specializing with respect to
adic pull back.

3. proper if u is partially proper and quasi-compact.

You may visit section 1.3 of [14] for the details (even if some of his finiteness
conditions are slightly weaker than ours). For example, when u is quasi-compact,
(universally) specializing is equivalent to (universally) closed.

Example 1. If V is any adic space, then Pn
V is proper over V .

2. It is not difficult to see that the open disc D´
V is partially proper over V when

V is analytic. Since PV is proper over V , it is sufficient to show that the
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open embedding D´
V ãÑ PV is specializing. And we may also assume that

V “ SpapB, B`q where B is a Tate ring with topologically nilpotent unit π.
But we have

D´
V “

ď

nPN

DV p0, π
1
n q with DV p0, π

1
n q Ă DV p0, π

1
n`1 q.

Definition 2.19. A morphism W Ñ V of adic spaces satisfies the analytic valuative
criterion for properness if, given a non-archimedean field F and valuation rings
R Ă F ` Ĺ F , then any commutative diagram

W // V

SpapF, F `q //

OO

SpapF, Rq

OOggP
P
P
P
P
P
P

may be uniquely completed by the dotted arrow.

When W “ SpapB, B`q is affine, the lifting property means that the image of the

map B` Ñ pF ` is contained in pR.

Proposition 2.20. Let u : W Ñ V be a morphism of analytic spaces which is
locally of finite type and quasi-separated. Then u satisfies the analytic valuative
criterion for properness if and only if u is partially proper.

Proof. This is exactly corollary 1.3.9 of [14]).

There exists also a more subtle valuative criterion when V is not assumed to be
analytic (proposition 3.12.2 of [11]).

One may also define a finite morphism of adic spaces as a morphism u : W Ñ V

that comes locally on V from a finite adic morphism A Ñ B sending A` onto B` (or

equivalently such that A
` Ñ B

`
is integral). And a locally quasi-finite morphism is

a morphism which is locally of finite type with discrete fibres (quasi-finite when it
is quasi-compact).

A morphism u : W Ñ V is said to be formally unramified (resp. formally smooth,
resp. formally étale) if any commutative diagram

W // V

SpapR{aq � � //

OO

SpapRq

OOffM
M
M
M
M
M

with a nilpotent may be completed by the diagonal arrow in at most (resp. at least,
resp. exactly) one way. The morphism u is called unramified (resp smooth, resp.
étale) if it is formally unramified (resp. smooth, resp. étale) and locally finitely
presented.
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If W ãÑ V is an immersion defined (on some open subset of V ) by an ideal IW , then
we may consider the first infinitesimal neighborhood W p1q of W in V defined by I ¨2

W

(which is always an adic space) and the corresponding short exact sequence

0 Ñ ŇW {V Ñ OWp1q
Ñ OW Ñ 0

where ŇW {V is by definition the conormal sheaf. In the case of the diagonal
immersion W ãÑ W ˆV W associated to a morphism W Ñ V , we obtain the sheaf of
differential forms Ω1

W {V . One can show that a morphism of finite type u : W Ñ V

is unramified if and only if Ω1
W {V “ 0.

At some point, the adic spaces will only serve as a bridge between formal schemes
and analytic spaces. The following notion will therefore be quite useful:

Definition 2.21. Let P be a property of morphisms of analytic spaces which is
local on the base, stable under pull back and stable under composition. A morphism
u : W Ñ V of adic spaces is said to be analytically P if for any analytic space V 1

over V , the morphism u´1pV 1q Ñ V 1 is P.

We may choose for P the property of being (locally) of finite type (resp. separated,
resp. (partially) proper, resp. unramified, resp. smooth, resp. étale, resp. an open or
a (locally) closed immersion).

Note that the fact that u´1pV 1q is representable is part of the definition (and not
automatic). We also insist on the fact that representability condition is also implicit
when we require P to be stable under pull back.

Actually, it is sufficient to check the condition when V 1 “ SpapAq and A is a Tate
ring because the condition is local. Note also that, when V is analytic, the definition
is equivalent to u itself satisfying P because the property is stable under pull-back.

Be careful however that the image of V 1 into V is not necessarily contained inside
the analytic locus V an of V , simply because the analytic locus is not functorial (it
is the non-analytic locus which is functorial). In particular, it is not sufficient to
consider the case V 1 “ V an in the above definition.

Example The absolute open unit disc (we use the T -adic topology here)

D´ :“ SpapZrrT ssq

is analytically partially proper and analytically smooth over SpvpZq. Note however
that D´ is not proper and not smooth over SpvpZq because the structural map is
not even an adic morphism.

In order to be able to manipulate coherent sheaves, it is convenient to put some
noetherian conditions on adic spaces:

Definition 2.22. An adic space V is said to be locally of noetherian type if it is
locally isomorphic to some SpapA, A`q with A of noetherian type.
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For adic spaces of noetherian type, we may usually work locally and make use of
theorem A and Theorem B.

From now on and unless otherwise specified, adic spaces will always be assumed
to be locally of noetherian type and simply called adic spaces.

If u : W Ñ V is a morphism locally of finite type, then Ω1
W {V is a coherent sheaf.

Moreover, there exists a Jacobian criterion:

Theorem 2.23 (Huber). 1. Let u : W Ñ V be a morphism between adic spaces
that are locally of finite type over O. Then, there exists a right exact sequence

u˚Ω1
V {O Ñ Ω1

W {O Ñ Ω1
W {V Ñ 0.

Assume moreover that W is smooth over O. Then u is smooth (resp. étale)
if and only if u˚Ω1

V {O is locally a direct summand in (resp. is isomorphic to)
Ω1

W {O

2. Let i : W ãÑ V be an immersion of adic spaces locally of finite type over O.
Then, there exists a right exact sequence

ŇW {V Ñ i˚Ω1
V {O Ñ Ω1

W {O Ñ 0.

Assume moreover that V is smooth over O. Then W is smooth (resp. étale)
over O if and only if ŇW {O is is locally a direct summand in (resp. is
isomorphic to) i˚Ω1

V {O.

Proof. The existence of the right exact sequences follow from proposition 1.6.3 in
[14] and the other assertions are proved in proposition 1.6.9 of [14].

If one has to deal with formal schemes that are not locally noetherian, then it seems
necessary to replace Huber adic spaces with the generalized adic spaces of Scholze
and Weinstein (section 2.1 of [22] - see also Peter Scholze’s lectures [21]). The point
is that SpapA, A`q need not be sheaffy. In Scholze/Weinstein theory, the affinoid
space SpapA, A`q is redefined to be the sheaf associated to the presheaf of sets

pB, B`q ÞÑ HomppA, A`q, pB, B`qq

on the category C opposite to the category of complete Huber pairs. Here, we endow
C with the topology generated by rational coverings (be careful that this is not a
pretopology in the usual sense: the inverse image of a rational embedding is only a
filtered direct limit of rational embeddings). A generalized adic space is a sheaf V

on C which is locally ind-representable by rational embeddings.

There exists a functor V ÞÑ |V | from generalized adic spaces to topological spaces
which may be defined by glueing from the affinoid case. If V “ SpapA, A`q, then

|V | :“ tcontinuous valuations on A non ´ negative on A`u{ „
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is simply the underlying space of the former SpapA, A`q (in practice, one still writes
V instead of |V |). The sheaf O (resp. O`) on C is defined as the sheaf associated to
the presheaf

pA, A`q ÞÑ A presp. A`q.
By restriction, they both induce a sheaf of topological rings on |V | that we
may denote by OV and O`

V respectively (be careful however that we may have

ΓpV, OV q ‰ pA when V “ SpapA, A`q is not sheaffy).

We can identify the category of Huber adic spaces (Scholze and Weinstein call them
honest adic spaces) with the full subcategory of generalized adic spaces V that satisfy
for all Huber pairs pA, A`q,

HompV, SpapA, A`qq » HomppA, A`q, pΓpV, OV q, ΓpV, O`
V qqq.

3 Adic spaces and formal schemes

In this section, we recall how a formal scheme may be seen as an adic space in such
a way that most geometric properties translate directly into the new world. Unless
otherwise specified, all formal schemes (resp. adic spaces) are locally noetherian
(resp. locally of noetherian type).

If I0 is a definition ideal of a Huber ring A, then A{ will denote the ring A endowed

with the I0A-adic topology (and xA{ will denote the completion of A for the I0A-adic
topology). The topology of A{ is coarser than the topology of A but an ideal a

of A is open for one topology if and only if it is open for the other. Concerning
completions, we have

pA{ “ limÐÝ A{pI0Aqn ‰ pA “ limÐÝ A{In
0

in general.

Example 1. If A is an adic ring, then A{ “ A as topological rings.

2. If A is a Tate ring, then A{ has the coarse topology and xA{ “ t0u.

Recall that a point of an adic space is said to be trivial if the corresponding valuation
is trivial (has height zero).

Proposition 3.1. Let V be an adic space, V0 the subset of trivial points and
i “ V0 ãÑ V the inclusion map. Then, we have i´1O`

V “ i´1OV and pV0, i´1OV q
is a formal scheme. If V “ SpapA, A`q, then there exists a natural isomorphism
V0 » SpfpA{q.

Proof. Clearly, O`
V,v “ OV,v when v is trivial. Now, the second statement is local

and it is therefore sufficient to prove the last assertion. We first notice that the
support induces a bijection

supp : V0 » SpfpA{q. (5)
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More precisely, the inverse map sends an open prime p of A to

vppfq “
"

0 if fppq ‰ 0
`8 otherwise

.

Now, let pf0, . . . , frq be an open ideal in A. Since any v P V0 will only take the
values 0 and `8, we see that

vpf1q, . . . , vpfrq ě vpf0q ‰ `8 ô f0pvq ‰ 0.

In other words, we have

Rpf1{f0, . . . , fr{f0q X V0 “ Dpf0q Ă V0

and it immediately follows that the support map (5) is a homeomorphism.

The sheaf i´1OV is the sheaf associated to

Dpf0q ÞÑ limÝÑ ΓpRpf1{f0, . . . , fr{f0q, OV q.

In order to see that the support map (5) is an isomorphism, we will compute this
limit. After localizing, we may assume that f0 “ 1 and then, after adding some
functions, that A “ A0rf0, . . . , frs where A0 is some ring of definition. Then by
definition, we have

Γ pRpf1{f0, . . . , fr{f0q, OV q “ xA{.

Note that we used the general assumption that A is finitely generated over A0 in
order to finish this proof.

One may also remark that V0 X V an “ H. More precisely, the closure V 0 of V0 in V

is exactly the set of non-analytic points.

The proof of the following lemma is straightforward:

Lemma 3.2. 1. The functor A ÞÑ A{ is (left) adjoint to the forgetful functor
from adic rings to Huber rings.

2. The functor pA, A`q ÞÑ A{ is (left) adjoint to the functor A ÞÑ pA, Aq from
adic rings to Huber pairs. l

Recall from [13], section 4 (or [23], chapter 9.2) that one can associate functorially
an adic space to any (locally noetherian) formal scheme P . We will denote it by P ad

(and not tpP q as Huber does). More precisely, we have the following:

Proposition 3.3. The functor V ÞÑ V0 has an adjoint P ÞÑ P ad which is fully
faithful. When P “ SpfpAq, we have P ad “ SpapAq.

Proof. We have to show that if P a formal scheme, then there exists a unique adic
space P ad such that if V is an adic space, then there exists a natural bijection

HompP ad, V q » HompP, V0q.
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The question is local on P and V and we may therefore assume that P “ SpfpAq
is affine and V :“ SpapB, B`q is affinoid. We may also assume that A is complete.
Then, it follows from lemma 3.2 that if we set P ad “ SpapAq, we have

HompP ad, V q » HompP, V0q.

It only remains to show that the functor is fully faithful, or equivalently, that the
adjunction map is an isomorphism P ad

0 » P . Again this is a local question. But if
A is an adic ring, we have A{ “ A.

As a consequence of the proposition, the functor P ÞÑ P ad commutes with all
colimits, the functor V ÞÑ V0 commutes with all limits and there exists a natural
inclusion P ãÑ P ad (identification of the points of P with the trivial points in P ad).
We may also notice that

pV0qad “ tv P V : @f P OV,v, vpfq ě 0u Ă V

is the set of all points having a trivial horizontal specialization.

We will denote by P an the analytic part of P ad (instead of P adan
). Note that

Xan “ H if X is a usual scheme (and not merely a formal scheme).

Proposition 3.4. If P is a formal scheme, then restriction along the inclusion map
P ãÑ P ad induces an equivalence between coherent modules on both sides.

Proof. We already know that the restriction of OP ad to P is exactly OP . Moreover,
the question is local and we may therefore assume that P “ SpfpAq with A complete.
In this case, we have at our disposal Theorem A and B on both sides and restriction
is simply given by M bA OP ad ÞÑ M bA OP (for some finite A-module M).

We have the following fake adjunction on the other side (recall that we denote by
V ` the topologically locally ringed space V, O`

V q):

Proposition 3.5 (Huber). If V is an adic space and P is a formal scheme, then
there exists a natural bijection

HompV `, P q » HompV, P adq

(morphisms of topologically ringed spaces on one side and morphisms of adic spaces
on the other).

Proof. This is shown by Huber in Proposition 4.1 of [13].

Note that when P “ SpfpAq with A complete, we have

HompV, P adq » HompA, ΓpV, O`
V qq

(continuous maps on the right hand side). As a consequence of this proposition, we
have the following:
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Corollary 3.6. The functor P ÞÑ P ad commutes with all finite limits.

Proof. This is not completely formal because we do not have a true adjunction.
Since SpfpZqad “ SpapZq, we only have to show that, given two morphisms of formal
schemes Pi Ñ P for i “ 1, 2 and a commutative diagram

V

((

!!

%%L
L

L
L

L
L

pP1 ˆP P2qad //

��

P ad
1

��
P ad

2
// P ad,

there exits a unique dotted arrow that preserves the commutativity of the diagram.
This is a local question and we may therefore assume that P, P1, P2 are affine with
rings of functions A, A1 and A2 respectively. But then, using the remark following
the proposition, we can build a canonical map A1 bA A2 Ñ ΓpV, O`

V q and we are
done.

Example Let S be a formal scheme.

1. We have
An,ad

S “ Dn
Sad , Pn,ad

S “ Pn
Sad and An,´,ad

S “ Dn,´
Sad .

2. When S “ SpfpAq and V “ Sad, we will also consider the relative bounded disc

Db,n
V “ Ab,n,ad

S .

There is a sequence of (strict) inclusions

D´ Ă Db Ă D` Ă Aval Ă Pval.

Definition 3.7. If P is a formal scheme, then the composition of the obvious
morphism of locally topologically ringed spaces and the adjunction morphism

sp: P ad Ñ P ad,` Ñ P

is the specialization map.

Recall that, by construction, if P “ SpfpAq, then we have

sppvq “ tf P A : vpfq ą 0u.

Alternatively, any v P P ad has a unique trivial horizontal specialization v0 and we
have sppvq “ supp v0. This is a good reason for calling this map the “specialization”
map.
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Example In the case X “ SpecpZq, we have Xad “ Xval “ SpvpZq and SpecpZq
embeds naturally in SpvpZq by sending the ideal ppq to the trivial valuation modulo
p (works also for p “ 0). The only other valuations on Z are the p-adic valuations
vp for p prime. There exists two different sections for this embedding because
supp pvpq “ p0q but sppvpq “ ppq.

Proposition 3.8. Let P be a formal scheme. Then the specialization map P ad Ñ P

(resp. the adjunction map P ad,` Ñ P ) is a flat retraction for the canonical embedding
P ãÑ P ad (resp. P ãÑ P ad,`).

Proof. One first checks that the composite morphism

P ãÑ P ad Ñ P ad,` Ñ P

is the identity. This is a local question which becomes trivial in the affine case. It
only remains to show that the specialization and adjunction maps are flat. This
follows from the fact that, if v P P ad, then the localization maps

O`
P ad,v

Ñ O`
P ad,v0

and OP ad,v Ñ OP ad,v0

are flat (noetherian hypothesis used here) and we have by definition

O`
P ad,v0

“ OP ad,v0
“ OP,sppvq.

Corollary 3.9. If P is a formal scheme, then Rsp˚ induces an equivalence of
categories between coherent sheaves on P ad and coherent sheaves on P .

Proof. Follows from proposition 3.4.

Actually, such an equivalence may be shown directly: it follows from the construction
of the fake adjunction of proposition 3.5 that, if Q Ă P is an open formal subscheme,
then sp´1pQq “ Qad. In particular, the inverse image of an affine open subset is
always an affinoid open subset.

We insist on the fact that the functor P ÞÑ P ad is fully faithful and commutes with
all finite limits and colimits. We can also list the following properties:

Proposition 3.10. 1. A morphism of formal schemes Q Ñ P is a locally closed
(resp. an open, resp. a closed) immersion if and only if Qad Ñ P ad is a locally
closed (resp. an open, resp. a closed) immersion. Actually, there exists a
bijection between closed formal subschemes of P and closed adic subspaces
of P ad.

2. A family tPi Ñ P uiPI of morphisms of formal schemes is an open covering if
and only if tP ad

i Ñ P aduiPI is an open covering.

3. A morphism of formal schemes Q Ñ P is affine (resp. quasi-compact, resp.
quasi-separated) if and only if Qad Ñ P ad is affinoid (resp. quasi-compact,
resp. quasi-separated).
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4. A morphism of formal schemes Q Ñ P is adic (resp. (locally) of finite type,
resp. (locally) quasi-finite, resp. locally of finite type and separated, resp.
proper, resp. finite) if and only if Qad Ñ P ad is so.

5. A morphism of formal schemes Q Ñ P is unramified (resp. smooth, resp.
étale) if and only if Qad Ñ P ad is so.

Proof. By definition, if Q Ă P is an open subset, then Qad is open in P ad. And
since the functor V ÞÑ V0 has the same property, we see that the converse is also
true. The question about closed immersions is local on P and we may therefore
assume that P “ SpfpAq. In this case, closed immersions on both sides correspond
bijectively to ideals in A. Here again, noetherianness is crucial. This finishes the
proof of assertion 1).

Assertion 2) results from the fact that both functors P ÞÑ P ad and V ÞÑ V0 preserve
open coverings.

We know that when P is affine, then P ad is affinoid. And conversely, if V is affinoid,
then V0 is affine. Assertion 3) follows easily.

In assertion 4), the adic and (locally) of finite type cases follow easily from the
definitions (see also proposition 4.2 of [13]). For the finite case, we use the fact that
there exists a bijection between coherent sheaves on both sides. Since a locally quasi-
finite morphism of formal schemes is locally the composition of an open immersion
and a finite map, the direct implication is clear in the (locally) quasi-finite case.
Conversely, if Qad Ñ P ad has discrete fibres, the same si true for the induced map
Q Ñ P . The separated case is an automatic consequence of the fact that the functor
P ÞÑ P ad preserves fibered products and closed immersions. For properness, it seems
more reasonable to rely on the valuative criterion (see [11], proposition 3.12.5 for a
proof).

Assertion 5) will follow from lemma 3.11 below (formal case) because we already
know that u is locally of finite type if and only if uad is.

There exists also a beautiful theorem of Huber ([11], proposition 3.12.7) that states
that any proper adic space over P ad comes from a (unique and proper) formal scheme
over P . The finite case should be clear.

Be careful that a morphism Q Ñ P might be surjective although Qad Ñ P ad

is not: if we endow Zp with the p-adic topology, then the closed immersion
SpecpFpq ãÑ SpfpZpq is actually a homeomorphism (of one point spaces) but the
closed immersion SpapFpq ãÑ SpapZpq identifies the unique point of the first space
with the unique closed point of the second (which has also an open point). The same
example shows that assertion 2) is not true for closed or locally closed coverings.

Lemma 3.11. A locally noetherian morphism of formal schemes u : Q Ñ P is
formally unramified (resp. formally smooth, resp. formally étale) if and only if
uad : Qad Ñ P ad is.
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Proof. The question is local on P and Q (thanks to the locally noetherian hypothesis
in the smooth case) that we may assume to be affine, say P “ SpfpAq and
Q “ SpfpBq. We have to check that the lifting property on the formal side is
equivalent to the corresponding lifting property on the adic side (complete rings and
complete pairs) :

B

�� !!B
B

B
B

B Aoo

��
R{a Roooo

and pB, Bq

�� ''O
O

O
O

O
O

pA, Aqoo

��
pS{b, pS{bq`q pS, S`qoooo

.

This should be clear because pS{bq` “ S`{pb X S`q when b is nilpotent.

Recall that, when P is a formal scheme, there exists an equivalence of categories
F ÞÑ Fad between coherent sheaves on P and P ad. As a consequence, one easily sees
that, if u : Q Ñ P is a locally noetherian morphism, then pΩ1

Q{P qad “ Ω1
Qad{P ad . More

generally, if Q ãÑ P is any immersion of formal schemes, then Ň ad
Q{P “ ŇQad{P ad.

If X is a usual scheme, then there exists a natural inclusion Xad Ă Xval which is
locally given by SpapAq Ă SpvpAq. Moreover, if Z is a closed subset of X, then
Zad “ Zval X Xad.

The above example of the projective space generalizes as follows:

Proposition 3.12. A morphism of schemes Y Ñ X satisfies the valuative criterion
for properness if and only if

Y ad » YXad .

Proof. The condition means that any commutative diagram

V

%%

��

!!C
C

C
C

Y ad //

��

Xad

��
Y val // Xval,

may be uniquely completed. Using the universal properties of our functors, we see
that this is equivalent to the same assertion about the commutative diagram

V

��

// V `

��}}|
|
|
|

Y // X.

This can be checked pointwise and we may therefore assume that V “ SpapK, K`q
is a Huber point. We are then reduced to the same assertion relative to the
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commutative diagram
SpecpKq

��

// SpecpK`q

��wwp p
p
p
p
p

Y // X.

This is exactly the valuative criterion for properness.

For further use, let us prove the following:

Proposition 3.13. If u : P 1 Ñ P is the blowing up of a usual subscheme Z in a
formal scheme P and Z 1 “ u´1pZq :“ P 1 ˆP Z, then u induces an isomorphism
P 1adzZ 1ad » P adzZad. In particular, it induces an isomorphism P 1an » P an.

Proof. Assume first that u : X 1 Ñ X is the blowing up of a subscheme Z of a
scheme X. Then, it induces an isomorphism X 1zZ 1 » XzZ and therefore also an
isomorphism X 1valzZ 1val » XvalzZval. By restriction, we deduce an isomorphism
X 1adzZ 1ad » XadzZad. In general, the question is local and we may assume that
P “ X{Y where X is a scheme and Y a closed subscheme of X containing Z. By
restriction again, we obtain an isomorphism P 1adzZ 1ad » P adzZad. The last assertion
follows from the fact that Zan “ H and Z 1an “ H (note that Z 1 is a usual subscheme
because a blowing up is an adic map).

Alternatively, in the previous proof, one may assume from the beginning that P is
the completion of an affine scheme and do the computations locally. Anyway, it
should be noticed that the inclusion pP zZqad Ă P adzZad is strict in general and this
is why the above proof needs some care.

If one is only interested in the analytic part P an of P ad, then one may also use
Raynaud’s method as in [1] or [8]. This is a consequence of the following theorem:

Theorem 3.14 (Raynaud). If P is a quasi-compact formal scheme, then specializa-
tion induces an isomorphism of locally topologically ringed spaces

P an,` » limÐÝ
P 1ÑP

P 1

where P 1 Ñ P runs through all blowing ups of usual subschemes.

Proof. (sketch) For the details, we refer to part II, appendix A of [8]. First of all,
the existence of the map follows from proposition 3.13. In order to show that this
is an isomorphism, after blowing up an ideal of definition and localizing, we may
assume that P “ SpfpAq for some adic ring A and that there exists a principal ideal
of definition pπq. In this case, we have P an “ SpapAr 1

π
sq. Now, if we denote by V

the right hand side of our isomorphism, and pick up some v P V , then one first show
that the completion pOV,v of the local ring is a valuation ring. By composition, this
provides a valuation on Ar 1

π
s. This way, we obtain an inverse for our map. It is not

hard to finish the proof because blowing up an open ideal in A provides a rational
covering on the other side (and conversely).
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It should be remarked that the map P ÞÑ P an is only functorial in adic maps.
However, non adic maps will play an important role in our constructions and this is
why we cannot simply rely on this more restrictive notion. Before stating the next
lemma, recall that the (resp. the analytic) valuative criterion for properness requires
the existence of a lifting in the following situation (R a valuation ring)

Q // P

SpecpF q //

OO

SpecpRq

OOffM
M
M
M
M
M

presp. W // V

SpapF, F `q //

OO

SpapF, Rqq.

OOhhP
P
P
P
P
P
P

Lemma 3.15. If u : Q Ñ P is a morphism of formal schemes that satisfies
the valuative criterion for properness, then uad : Qad Ñ P ad satisfies the analytic
valuative criterion for properness.

Proof. We give ourselves a non-archimedean field F and valuation rings R Ă F ` Ĺ
F . We start with a morphism SpapF, F `q Ñ Qad and we denote by w the image
of the closed point. Without loss of generality, we may assume that F is complete.
Then, by definition, there exists a natural morphism Ow Ñ F which is local and
compatible with the valuations (when F is endowed with the valuation associated
to F `). It follows that κpwq Ă F and

F ` X κpwq “ κpwq` “ tα P κpwq { wpαq ě 0u

is the valuation ring of κpwq. In particular, we may as well assume from now on
that F “ κpwq and F ` “ κpwq` (and we replace R with R X κpwq Ă κpwq`).

We consider now the composition of the local morphisms of local rings

Osppwq Ñ O`
w ։ κpwq`.

We denote by S Ă Osppwq the inverse image of R Ă κpwq` (see diagram below) and
by S Ă κpsppwqq the image of S which is a valuation ring of κpsppwqq. In order
to make sure that S is a valuation ring, one may consider the image R of R in the
residue field of κpwq`, which is a valuation ring, and notice that S “ R X κpsppwqq.
We suppose now that the composite map Spapκpwq, κpwq`q Ñ Qad Ñ P ad factors
through some morphism Spapκpwq, Rq Ñ P ad and we denote by v the image of
the closed point under this last map. Then, as before, we have κpvq Ă κpwq and
κpvq` “ RXκpvq. Thus, if we consider the commutative diagram of local morphisms
of local rings

Osppvq
//

��

O`
v

// //

��

κpvq`

��

R X κpvq

Osppwq
// O`

w
// // κpwq`

S //
?�

OO

R,
?�

OO

we see that the image of Osppvq in Osppwq is contained in S. It follows that its image
in κpsppwqq is contained in S. From this, we deduce the existence of a morphism
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SpecpSq Ñ P that we may uniquely lift as SpecpSq Ñ Q because we assume that u

satisfies the valuative criterion for properness. Let us denote by q the image of the
closed point (so that, by construction, sppvq “ upqq).
After replacing Q with an affine neighborhood of q, we may assume that Q “ SpfpBq.
The lifting property tells us that the image of the natural map B Ñ κpsppwq is
contained in S. A quick look at the above diagram and we see that the image of the
natural map B Ñ κpwq` is contained in R and we are done.

Theorem 3.16. If u : Q Ñ P is a morphism of formal schemes which is formally
locally of finite type (resp. formally locally of finite type and separated, resp. partially
proper) then uad : Qad Ñ P ad is analytically locally of finite type, resp. analytically
separated, resp. analytically partially proper).

Proof. We consider the first assertion. This is a local question and we may
therefore assume that u splits into a closed immersion followed with the projection
An ˆA´,m ˆ P Ñ P . We are therefore reduced to the case where u is either a closed
immersion, the projection of the affine line A onto SpecpZq, or the projection of the
formal affine line A´ onto SpecpZq. In the first two cases, we already know that uad

is of finite type. It is therefore sufficient to recall that D´
V is locally of finite type

over V when V is analytic. More precisely, we may assume that V “ SpapB, B`q
where B is a Tate ring with topologically nilpotent unit π in which case

D´
V “

ď

nPN

DV p0, |π| 1
n q

is a (increasing) union of affinoid open subsets of finite type.

Assume now that u is also separated which means that the diagonal embedding
Q ãÑ P ˆQ P is a closed immersion. First of all, since u is locally formally
of finite type, this is a locally noetherian morphism, and the fibered product is
representable by a locally noetherian formal scheme. It follows that the map
Qad ãÑ P ad ˆQad P ad is also a closed immersion (but we may not call uad separated
because our definition requires a finiteness condition). Pulling back preserves
products and closed immersions. I follows that uad is analytically separated.

We assume now that u is partially proper and we consider the pull back puadq´1pV q Ñ
V of the morphism uad : Qad Ñ P ad along some morphism V Ñ P ad with V analytic.
We already know that our map is locally of finite type and separated and we apply
the analytic valuative criterion. It is actually sufficient to show that the map uad

itself satisfies the analytic valuative criterion (using the universal property of fibered
products) and this was proved in lemma 3.15.

The above functors P ÞÑ P ad, V ÞÑ V0 and V ÞÑ V ` (or even X ÞÑ Xval)
extend naturally to the context of generalized adic spaces (without any noetherian
hypothesis) but the adjunctions of proposition 3.3 and 3.5 (as well as proposition
2.13) are not valid anymore in this full generality. And there are many other issues
as well.
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Example If V is a (non discrete) valuation ring with fraction field K and P is a
formal scheme which is formally of finite type over V, then P ad is only a generalized
adic space but P ad

K :“ P ad ˆSpapVq SpapKq is an analytic Huber (honest) space. In
other words, in the non noetherian case, we would mostly use generalized adic spaces
as a bridge between formal schemes and analytic Huber spaces. Note that one could
also use directly Raynaud’s generic fiber and completely avoid adic spaces but we
would then have to stick to adic morphisms and this is not our philosophy here.

4 Formal embeddings

In this section, we study the notion of formal embedding and prove the formal
fibration theorem. Recall that all formal schemes (resp. adic spaces) are supposed
to be locally noetherian (resp. locally of noetherian type).

Definition 4.1. A formal embedding is a locally closed embedding of formal schemes
X ãÑ P .

A formal embedding is automatically universally noetherian. Formal embeddings
form a category with compatible pairs of morphisms

Y � � //

f

��

Q

u

��
X � � // P.

Of course, f is uniquely determined by u when it exists. The forgetful functor
pX ãÑ P q ÞÑ P commutes with all limits and all colimits because it has obvious
adjoint P ÞÑ pP ãÑ P q and coadjoint P ÞÑ pH ãÑ P q. And the forgetful
functor pX ãÑ P q ÞÑ X commutes with all limits because it has an obvious adjoint
X ÞÑ pX ãÑ Xq.
For later use, we endow the category of formal embeddings X ãÑ P with the coarsest
topology making cocontinuous the forgetful functor pX ãÑ P q ÞÑ P . This is the
topology generated by the pretopology made of families tpXi ãÑ Piq Ñ pX ãÑ P quiPI

where X “ Ť
iPI Xi and P “ Ť

iPI Pi are both open coverings. If we wish, we
may always assume that for all i P I, we have Xi “ X X Pi. One easily sees
that this topology is subcanonical. Moreover, both functors pX ãÑ P q ÞÑ P and
pX ãÑ P q ÞÑ X are left exact continuous and cocontinuous.

We implicitly endowed the category of formal schemes with the Zariski topology
but we may have chosen another topology such as the coarse or the étale topology
for example. The corresponding topology on the category of formal embeddings
X ãÑ P will again be defined as the coarsest topology making cocontinuous the
forgetful functor pX ãÑ P q ÞÑ P .

When X ãÑ P is a formal embedding, we will often identify X with its image in
P and consider it as a locally closed subspace of P . Conversely, if X is a locally
closed subspace of a formal scheme P , then there always exists a structure of formal
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subscheme on X and we will often consider X as endowed with such a structure.
Actually, there always exists a unique structure of reduced subscheme on X but it
might be more convenient sometimes to use another one. This applies in particular
to the closure X of a formal subscheme X in P . Note that the closure map is
functorial in the sense that any morphism of formal embeddings

Y � � //

f

��

Q

u

��
X � � // P.

will induce a morphism f : Y Ñ X (for the reduced structures for example).

For future reference, we state and prove the following result:

Lemma 4.2. Assume that we are given a morphism of formal embeddings

X 1 � � //

f
��

P 1

u
��

X � � // P

with f formally étale and u differentially smooth in the neighborhood of X 1. Then,
locally on P and P 1, there exists a morphism v : P 1 Ñ An

P which is formally étale in
the neighborhood of X and extends both f and f when X and X are embedded into
An

P through the zero section.

Proof. We follow the proof of theorem 1.3.7 of [3]. Since f is formally étale, there
exists an isomorphism

ŇX1{u´1pXq »
`
Ω1

u´1pXq{X

˘
|X1

between the conormal sheaf on one side and the restriction of the sheaf of differential
forms on the other. Now, since the question is local and u is differentially smooth
in the neighborhood of X 1, we may assume that there exists a basis of the conormal
sheaf which is induced by global sections f1, . . . fn of the ideal IX1 that define
X 1 in u´1pXq. After multiplication by a common factor, we may assume that

the sections f1, . . . fn also induce global sections of the ideal I
X

1 defining X
1

in
u´1pXq. Lifting these sections to P 1 provides a morphism v : P 1 Ñ An

P which
extends f and f (when X and X are seen as a formal subschemes of An

P via the
zero section). By construction, the morphism v˚Ω1

An
P

{P Ñ Ω1
P 1{P is an isomorphism

in the neighborhood of X 1. This implies that the map v is formally étale in the
neighborhood of X 1.

With a projective version of the same argument, we can prove the following:

Lemma 4.3. Assume that we are given a commutative diagram

Y � � j //

f
��

Z
g

��@
@@

@@
@@

@

X � � // P
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where f is étale, g is locally quasi-projective and j is a dense immersion. It will
extend locally on Y and P to a morphism of formal embeddings

Y � � j //

f

��

Z
g

��?
??

??
??

?
� � // Q

u

��
X � � // P

where u is a projective morphism which is étale in the neighborhood of Y .

Proof. This is taken from the proof of theorem 2.3.5 of [3]. The question being local
on P , we may assume that Z is a formal subscheme of the projective space PN

P . We
may also assume that P is affine. As in the proof of lemma 4.2, there exists an
isomorphism

ŇY {PN
X

»
´

Ω1
PN

X
{X

¯
|Y

.

Since the question is local on Y (but not on Z), we may assume that there exists a
basis of the conormal sheaf which is defined on some open subset U of PN

X . We may
actually assume that U “ V X PN

X
where V :“ D`psq for some s P ΓpPN

P , Opmqq
and that our basis comes from some sequence f1, . . . , fN P ΓpPN

P , Opnqq. We set
Q :“ V pf1, . . . , fN q Ă PN

P . The Jacobian criterion shows that Q is étale in the
neighborhood of Y .

Formal completion is usually only defined for usual schemes. We extend it to formal
schemes as follows:

Definition 4.4. Let X be a closed formal subscheme of a formal scheme P . If IX

denotes the ideal of X in P and I is some ideal of definition of P , we let Xn denote
the closed subscheme of P defined by pIX ` Iqn`1. Then the completion P {X of P

along X is P {X :“ limÝÑ Xn.

It is not difficult to check that this definition is independent of the choice of the
ideal of definition. Note that if we did not have noetherian hypothesis, it would be
necessary to assume that the closed immersion is locally (radically) finitely presented
in order to obtain an adic formal scheme. Note also that completion is usually
written with an extra hat as pP {X but we will rather not do that. Finally, it is not
hard to see that P {X is (representable as) a formal scheme: when P “ SpfpAq and
X “ SpfpA{aq, we will have P {X “ SpfpA{aq where A{a is the ring A endowed with
the a ` I-adic topology where I is some ideal of definition for A.

It is possible to extend the notion of completion to the locally closed situation but we
want to avoid this because this would only create confusion later once we introduce
the notion of tube.

There exists a natural map P {X Ñ P and the inclusion X ãÑ P factors through a
closed embedding X ãÑ P {X which is actually a formal thickening (and in particular
a homeomorphism). The map P {X Ñ P is formally étale and universally noetherian.
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The functor pX ãÑ P q ÞÑ P {X commutes with all limits because it has an adjoint
P ÞÑ pPred ãÑ P q. Since this last functor is fully faithful, the map P {X Ñ P is a
monomorphism (although not an immersion in general). Finally, one easily checks
that the functor pX ãÑ P q ÞÑ P {X is left exact continuous and cocontinuous.

Let us state some other basic properties of completion:

Proposition 4.5. Let X be a closed formal subscheme of a formal scheme P .

1. The formal scheme P {X only depends on the underlying subspace of X (and
not on the structure of formal scheme).

2. If P “ Ť
iPI Pi is an open covering and, for all i P I, Xi :“ Pi X X, then we

have an open covering
P {X “

ď

iPI

P
{Xi

i .

3. If u : Q Ñ P is a morphism of formal schemes, then

u´1pP {Xq “ Q{u´1pXq.

Proof. All questions are local and easily checked.

As a particular case of the last assertion, we see that if Y is a closed formal subscheme
of P that contains X and Q :“ P {Y , then

Q{X “ P {X.

When X is only a closed subspace of a formal scheme P , we will denote by P {X

the completion of P with respect to any structure of formal subscheme on X. For
example, if X is a locally closed subscheme and X denotes its closure in P , it has a
meaning to consider P {X .

We will now use lemma 4.2 in the case X “ X, X 1 “ X
1

and f is an isomorphism:

Proposition 4.6 (Formal fibration theorem). Assume that we are given two closed
formal embeddings X ãÑ P and X 1 ãÑ P 1. If a differentially smooth morphism
u : P 1 Ñ P induces an isomorphism X 1 » X, then it induces, locally on P and P 1,
an isomorphism

P 1{X1 » An,´ ˆ P {X .

Proof. Using lemma 4.2, we may assume that there exists a morphism v : P 1 Ñ An
P

which is formally étale and induces an isomorphism between X 1 and the image of X

via the zero section. We conclude with the forthcoming lemma 4.7.

Lemma 4.7. In the situation of the proposition,

1. if u is formally étale, then it induces an isomorphism P 1{X1 » P {X,

2. if P 1 “ An
P and X 1 is contained in the zero section, then P 1{X1 » An,´ ˆ P {X.
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Proof. The first assertion is an immediate consequence of the definition of formal
étaleness. The second one follows from left exactness of completion of formal
schemes.

We want now to make precise the notion of a morphism having some property
“around” a formal subscheme. Actually, this splits into two cases: properties that
are open in nature (such as formally smooth for example) and properties that are
closed in nature (such as partially proper for example). Note that some properties
are neither open or closed in nature (such as smooth which is at the same time
formally smooth (open) and locally of finite type (closed)).

Definition 4.8. A morphism of formal schemes u : Q Ñ P is said to be flat (resp.
formally smooth, resp. formally unramified, resp. formally étale) around a formal
subscheme Y of Q if there exists a neighborhood Q1 of Y in Q such that the induced
map Q1 Ñ P has this property.

This is a standard notion and we turn now to the other side:

Definition 4.9. A morphism u : Q Ñ P of formal schemes is said to be separated
(resp. affine, resp. (locally) of finite type, (locally) quasi-finite, resp. partially proper,
resp. partially finite) around a formal subscheme Y of Q if there exists a closed
subspace Z of Q containing Y such that Q{Z Ñ P is separated (resp. affine, resp.
formally (locally) of finite type, resp. formally (locally) quasi-finite, resp. partially
proper, resp. partially finite).

We will often consider a morphism of formal embeddings

Y � � //

f

��

Q

u

��
X � � // P

in which case the condition is equivalent to f : Y red Ñ Xred being separated (resp.
affine, resp. (locally) of finite type, resp. (locally) quasi-finite, resp. locally of finite
type and proper on irreducible components, resp. locally of finite type and finite on
irreducible components). We may replace P and Q by their completions along X

and Y without changing the conditions. Note that we may then also replace X and
Y with the open formal subschemes having the same underlying space if we wish.

5 Overconvergent spaces

In this section, we extend the notion of overconvergent space from [18]. We recall
that all formal schemes are supposed to be locally noetherian and all adic spaces are
assumed to be locally of noetherian type.

Definition 5.1. An adic overconvergent space is a pair

pX ãÑ P, P ad λÐ V q
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where X ãÑ P is a locally closed embedding of formal schemes and λ : V Ñ P ad is
a morphism of adic spaces. We will say analytic overconvergent space when V is
analytic.

Sometimes, we will write

X � � // P
� � // P adoo V

λoo

but we will usually make it shorter as pX ãÑ P Ð V q. Recall from proposition 3.5,
that giving the morphism λ : V Ñ P ad is equivalent to giving a morphism of locally
topologically ringed spaces V ` Ñ P and we will call specialization the composition

spV : V Ñ V ` Ñ P

with the obvious morphism of locally topologically ringed spaces (as before, we
write V ` :“ pV, O`

V q). Alternatively, spV may be defined as the composition of the
morphism λ : V Ñ P ad (seen as a morphism of locally topologically ringed spaces)
with usual specialization sp : P ad Ñ P

Note that, in the definition of an analytic overconvergent space, we only require that
V is analytic and not at all that λ factors through P an. It may even happen that
the analytic locus of P is empty.

Example Let K be a complete discretely valued field of mixed characteristic p. We
denote by V the valuation ring of K and by k its residue field.

1. We endow V with the p-adic topology. We embed Specpkq into SpfpVq and let
V “ SpapKq (λ is the inclusion). Then,

pSpecpkq ãÑ SpfpVq Ð SpapKqq
is the usual basis for rigid cohomology.

2. Now, we endow Vrrtss with the p-adic topology (and not the pp, tq-adic
topology). We embed ηk :“ Specpkpptqqq into Ab

V
:“ SpfpVrrtssq and let

V :“ Db
K “ SpapK bV Vrrtssq

be the bounded unit disc (λ is the inclusion again). Then

pηk ãÑ Ab
V

Ð Db
Kq

is the refined basis for rigid cohomology over a Laurent series field (see [16]).

Definition 5.2. A formal morphism of adic overconvergent spaces

pY ãÑ Q, Qad µÐ W q Ñ pX ãÑ P, P ad λÐ V q
is a triple of morphisms f : Y Ñ X, v : Q Ñ P, u : W Ñ V making commutative the
diagrams

Y � � //

f

��

Q

v

��
X � � // P

, Qad

vad

��

W
µoo

u

��
P ad V

λoo
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We might sometimes draw a full diagram

Y � � //

f

��

Q
� � //

v

��

Qadoo

vad

��

W
µoo

u

��
X � � // P

� � // P adoo V
λoo

or simply write

pf, u, vq : pY ãÑ Q Ð W q Ñ pX ãÑ P Ð V q.
Note also that the condition is equivalent to requiring the commutativity of the
diagram

Y � � //

f

��

Q

v

��

W
spWoo

u

��
X � � // P V.

spVoo

Example Let K be a complete discretely valued field of mixed characteristic p

with valuation ring V and residue field k. Then, the Amice ring A :“ {Vrrtssr1
t
s

is a complete discrete valuation ring with residue field kpptqq and its fraction field
is the Amice field E “ Ar1

p
s. We may then consider the formal morphism of adic

overconvergent spaces

Specpkpptqqq � � // SpfpAq

��

SpapEqoo

��
η �
� // Ab

V Db
K .oo

This is the morphism that refines the usual basis for rigid cohomology over kpptqq.
The map induced on the tubes (see below) will be given by the inclusion of the
bounded Robba ring E: (also denoted by Rb) into the Amice field E .

The following observation will allow us to split some proofs in two separate cases:

Proposition 5.3. Any formal morphism

Y � � //

f

��

Q

v

��

W
µoo

u

��
X � � // P V.

λoo

is the composition of a formal morphism with u “ IdV and another one with both
f “ IdX and v “ IdP .

Proof. It is sufficient to split our morphism as follows:

Y � � //

f

��

Q

v

��

W
µoo

X � � // P W
vad˝µoo

u
��

X � � // P V.
λoo

46



Endowed with formal morphisms, the adic overconvergent spaces form a category
(that we will need to refine later). The functor pX ãÑ P Ð V q ÞÑ pX ãÑ P q has
an adjoint pX ãÑ P q ÞÑ pX ãÑ P Ð Hq and a coadjoint pX ãÑ P q ÞÑ pX ãÑ P Ð
P ad`q. In particular, it commutes with all limits and all colimits. On the other hand,
the functor pX ãÑ P Ð V q ÞÑ V has a coadjoint V ÞÑ pSpecpZq ãÑ SpecpZq Ð V q
and commutes therefore with all colimits.

One can also check directly from the definition that the functor pX ãÑ P Ð V q ÞÑ V

actually commutes with all limits. More precisely, if we are given a diagram
tpXi ãÑ Pi Ð ViquiPI , and we assume that limÐÝ Xi, limÐÝ Pi and limÐÝ Vi exist, then
our diagram has a limit which is plimÐÝ Xi ãÑ limÐÝ Pi Ð limÐÝ Viq. We should mostly
apply this to fibered products.

We endow the category of adic overconvergent spaces and formal morphisms with
the adic topology: this is the coarsest topology making cocontinuous the forgetful
functor pX ãÑ P Ð V q ÞÑ V . It is generated by the pretopology made of families

tpX ãÑ P Ð Viq Ñ pX ãÑ P Ð V quiPI

where V “ Ť
jPj Vi is an open covering. This topology is subcanonical. Moreover,

the functor pX ãÑ P Ð V q ÞÑ V is left exact continuous and cocontinuous, giving
rise to two morphisms of topos.

We implicitly endowed the category of adic spaces with the adic topology. If we use
another topology such as the étale topology for example, then we can consider the
corresponding topology on the category of adic overconvergent spaces and formal
morphisms which is defined exactly as before. On the other hand, we may also
endow our category with the image topology of the functor

pX ãÑ P q ÞÑ pX ãÑ P Ð P adq

where the first category is endowed for example with the Zariski topology (or some
other topology if we wish). We obtain the topology generated by the pretopology
made of families

tpXi ãÑ Pi Ð Viq Ñ pX ãÑ P
λÐ V quiPI

where P “ Ť
jPj Pi is an open covering, and for each i P I, Xi “ X X Pi and

Vi “ λ´1pP ad
i q. Finally, note that it is also possible to endow the category of adic

overconvergent spaces and formal morphisms with a topology coming both from the
adic and the formal side (coarsest topology finer than both). This would give rise
for example to the Zariski-adic topology.

6 Tubes

In this section, we introduce the notion of tube that may be seen as an adic version
of completion. We recall that all formal schemes (resp adic spaces) are assumed to
be locally noetherian (resp. of noetherian type).

We start with the following observation:
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Lemma 6.1. If X ãÑ P is a closed formal embedding, then the canonical map
P {X Ñ P induces a homeomorphism between P {X,ad and its image inside P ad.

Proof. This is a local question and we may therefore assume that P “ SpfpAq is
affine and that X is defined by an ideal a Ă A. It is then sufficient to recall that
the topology on SpapAq and SpapA{aq only depend on the ring A (and not on its
topology) and are actually both induced by the topology of SpvpAq.

Example 1. In the simplest non trivial case X :“ SpecpFpq and P :“ SpecpZq,
we have P {X “ SpfpZpq (with the p-adic topology). It follows that P ad “
SpvpZq and P {X,ad “ SpapZpq. The homeomorphic image of SpapZpq into
SpvpZq is the closed subset consisting in the the point vp and its (horizontal)
specialization p.

2. If we consider the inclusion of the origin 0 ãÑ A, then we have A{0 “ A´ and
therefore

A{0,ad “ D´ Ă D “ Aad.

Recall that this inclusion is not open or closed (although it is analytically an
open immersion).

We will usually identify the topological space of P {X,ad with its homeomorphic image
inside P ad.

Definition 6.2. Let pX ãÑ P
λÐ V q be an adic overconvergent space.

1. When X is closed in P , then the tube of X in V is the subset

sXrV :“ λ´1
`
P {X,ad

˘
Ă V.

2. In general, if X denotes the closure of X in P and 8X :“ XzX its locus at
infinity, then the tube of X in V is the subset

sXrV :“ sXrV z s8XrV Ă V.

Be careful that even if P does not usually appear in the notation, the tube sXrV

also depends on P , and it might sometimes be necessary to write sXrP,V in order
to remove any ambiguity. On the contrary, when V “ P ad (and λ “ IdV ), we will
write sXrP and call it the tube of X in P . In particular, when X is closed in P ,
then sXrP is the homeomorphic image of P {X,ad in P ad discussed above.

The tube sXrV is endowed with the subspace topology coming from the topology of
V . When we consider it as a topologically locally ringed space, we use the restriction
sheaf i´1

X OV where iX : sXrV ãÑ V denotes the inclusion map. When X is closed in
P , the homeomorphism P {X,ad » sXrP is not an isomorphism of locally topologically
ringed spaces in general.

Note that we could also consider the naive tube sp´1
V pXq which is different from the

true tube just introduced (more about this later).
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Example 1. Recall that sSpecpFpqrSpecpZq is a closed subset of SpvpZq which
is homeomorphic, but not isomorphic, to SpapZpq (where Zp has the p-adic
topology). More precisely, a function on the tube is an element of the local
ring Zppq which is smaller than Zp.

2. With the adic overconvergent space

pSpecpFpq ãÑ SpecpZq Ð SpapQpqq,

in which Qp has the “p-adic” topology, then we have

sSpecpFpqrSpapQpq“ SpapQpq.

3. Let us consider now an adic overconvergent space pX ãÑ P Ð Oq where
O :“ SpapK, Ovq is a Huber point. Then, we have:

(a) If O is non-analytic, then sXrO can be any “interval” in O (totally ordered
by specialization).

(b) If O is analytic, then sXrO“ H or O.

4. If we consider the adic overconvergent space pt0u ãÑ A Ð DQp
q, we have

s0rDQp
“ D´

Qp
Ă DQp

,

which is an open subset.

5. (Lazda and Pàl setting) Let K be a discretely valued field of mixed character-
istic p with valuation ring V and residue field k. We embed the point X :“ ηk

into P :“ Ab
V
, and we let V :“ Db

K . The tube of the closed point of P is the
open unit disc D´

K and it follows that

sXrV “ Db
KzD´

K “ tvu “ tv, v´u,

where v is the Gauss point. A basis of neighborhoods of sXrV is given by the

Vn :“ Db
KzDKp0, p

1
n q. It follows that

Γp sXrV , i´1OV q “ E:

is the bounded Robba ring of K (see [16]).

6. (Monsky-Washnitzer setting) Let R be a noetherian ring and X an affine
scheme of finite type over R. From a presentation of X over R, we obtain a
sequence of inclusions X Ă An

R Ă Pn
R and we denote by X the projective closure

of X. We fix a morphism of formal scheme S Ñ SpecpRq and a morphism of
adic spaces O Ñ Sad and we consider the adic overconvergent space

XS ãÑ XS Ð XO.

Then we have
sXSrXO

“ sAn
SrPn

O
XXO Ă An

O.
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In order to lighten the notations, when we are given a fixed morphism of adic spaces
λ : V Ñ W , some v P V and some function f defined in a neighborhood of λpvq in
W , we will simply write vpfq instead of vpλ´1pfqq.

Lemma 6.3. Let P :“ SpfpAq be an affine formal scheme, X Ă P the closed formal
subscheme defined by an ideal a Ă A and λ : V Ñ P ad any morphism of adic spaces.
Then, we have

spV
´1pXq “ tv P V : @f P a, vpfq ą 0u

and
sXrV “ tv P V : @f P a, vpfnq Ñ `8u.

Proof. The first assertion immediately follows from the definition of specialization.
Now, we have

P {X,ad “ SpapA{aq Ă SpapAq “ P ad.

By definition, a point v P V belongs to sXrV if and only if λpvq, which is a point in
P ad, falls into P {X,ad. It means that λpvq is not only continuous for the topology of
A but also for the a-adic topology. It exactly means that for any f P a, we will have
vpfnq Ñ `8.

It will sometimes be convenient to use the multiplicative notation, or even work
directly inside the residue field, and we want to recall that

vpfnq Ñ `8 ô |fnpvq| Ñ 0 ô fnpvq Ñ 0.

In other words, tvpfnqunPN is unbounded in Gv if and only if fpvq is topologically
nilpotent in κpvq.
The lemma shows that sXrV Ă spV

´1pXq when X is closed. Unlike in Tate or
Berkovich theory, this inclusion is usually strict (as we shall see). As a consequence,
there is no inclusion in general when X is only assumed to be locally closed. In
particular, some points of sXrP might specialize outside X (but not too far as we
shall also see).

Example We let S “ SpfpAq be an affine formal scheme and we consider the zero-
section S ãÑ AS. If v is any valuation on A and v´ denotes the corresponding
valuation on ArT s that specializes inside the unit disc, we have v´pT q “ p0, 1q ą
p0, 0q but, if the valuation v is not trivial, we have v´pT nq “ p0, nq �Ñ `8 because
p0, nq ă pg, 0q whenever g ą 0 (we use the lexicographical order). In this case, we
see that sSrP is strictly smaller than sp´1pSq.

Proposition 6.4. Let pX ãÑ P
λÐ V q be an adic overconvergent space. Then, we

have the following:

1. if Y Ă P is another locally closed subscheme and X Ă Y , then sXrV Ă sY rV ,

2. if X “ X1 X X2 where X1, X2 are two other locally closed subschemes, then
sXrV “ sX1rV X sX2rV ,
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3. if X “ X1 Y X2 where X1, X2 are two other locally closed subschemes, then
sXrV “ sX1rV Y sX2rV .

Proof. Clearly, it is sufficient to consider the case V “ P ad. Let us first check that
these assertions hold for closed subspaces. This is a local question on P and we may
therefore rely on lemma 6.14. Assertion 1) should then be clear. For the other two,
we may assume that P “ SpfpAq and X, X1, X2 are defined by a, a1, a2, respectively.
In assertion 2) (resp. 3)), we suppose that a “ a1 ` a2 (resp. a “ a1a2). It is then
sufficient to notice that if f, g P A, we have

v ppf ` gqnq Ñ `8 ô pvpfnq Ñ `8 and vpgnq Ñ `8q

and
v ppfgqnq Ñ `8 ô pvpfnq Ñ `8 or vpgnq Ñ `8q.

Note that, for the second equivalence, it is necessary to use the fact that our
valuations are non-negative on A.

We derive now from the closed case that if U and Z are open and closed complements
in the topology of P , then sUrP and sZrP are complements in P ad (this is not
obvious from the definition). Equivalently, it means that sUrP X sZrP “ s8U r and
this equality follows from assertion 2) in the closed case since U X Z “ 8U . Note
that this implies that the proposition also holds in the open case.

As an intermediate step, we prove now that if Z is closed, U open and X Ă U X Z,
then we have sXrP Ă sUrP X sZrP . From the closed case, we have sXrP Ă sZrP and
therefore also sXrP Ă sZrP . In order to prove that sXrP Ă sUrP , we introduce a
closed complement F for U and use the previous remark. We may then rewrite our
inclusion on the form sXrP X sF rP Ă s8XrP , and this follows from the closed case
again since X X F Ă 8X .

Assume that we actually have an equality X “ U X Z. Then one shows that we also
have an equality sXrP “ sUrP X sZrP . We only have to prove the reverse inclusion
sUrP X sZrP Ă sXrP . Equivalently, we have to show that sZrP Ă sXrP Y sF rP (where
F is a closed complement for U as before), and this follows again from the closed
case since Z Ă X Y F .

It is now easy to finish the proof of assertions 1) and 2). For assertion 1), we may
write Y “ U X Z with U open and Z closed. We assume that X Ă Y “ U X Z

and it follows that sXrP Ă sUrP X sZrP but, from what we just proved, we know that
sY rP “ sUrP X sZrP . For assertion 2), we can write Xi “ Ui X Zi with Ui open and
Zi closed, and use the stability by intersection for open or closed that we already
know.

Assertion 3) also results from the closed case because closure commutes with union,
and therefore, X “ X1 Y X2. More precisely, thanks to assertion 1), only the
direct inclusion needs a proof and this is equivalent to sXrP Ă sX1rP Y sX2rP Y s8XrP .
Actually, since, for i “ 1, 2, we have 8Xi

Ă 8X , the same is true for the tubes, and
we are reduced to check that sXrP Ă sX1rP Y sX2rP Y s8XrP . Thus, as expected, this
again follows from the closed case.
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Corollary 6.5. Let pX ãÑ P
λÐ V q be an adic overconvergent space. If P :“ SpfpAq

is affine and X is defined modulo an ideal of definition by

@i P t1, . . . ru, fipxq “ 0 and Dj P t1, . . . , su, gjpxq ‰ 0,

then sp´1
V pXq is defined in V by

@i P t1, . . . ru, vpfiq ą 0 and Dj P t1, . . . , su, vpgjq ď 0.

and sXrV is defined by

@i P t1, . . . ru, vpfn
i q Ñ `8 and Dj P t1, . . . , su, vpgn

j q �Ñ `8.

Proof. When X is a closed subset defined by an open ideal a, our hypothesis means
that a “ I ` pf1, . . . , frq for some ideal of definition I of A. Since we always have
vpfnq Ñ `8 for f P I, the assertion follows from proposition 6.14. In general, X is
the intersection of a closed subset and an open subset and we may use assertion 2)
of proposition 6.4.

The standard properties of completion translate directly into the language of tubes:

Proposition 6.6. Let pX ãÑ P
λÐ V q be an adic overconvergent space. Then,

1. The tube sXrV only depends on the underlying subspace of X (and not on the
structure of formal scheme).

2. if P “ Ť
iPI Pi is an open covering, Xi :“ X X Pi and Vi :“ λ´1pP ad

i q, then we
have an open covering

sXrP,V “
ď

iPI

sXirPi,Vi
,

3. if u : Q Ñ P is a morphism of formal schemes and λ factors through Qad, then

sXrP,V “ su´1pXqrQ,V .

Proof. Thanks to proposition 6.4, we may assume that X is closed in P in which case
everything follows from proposition 4.5 and the standard properties of the functor
p´qad.

Be careful that, when Q is an open formal subscheme of P containing X, then
sXrQ‰ sXrP in general: we may not replace P with a neighborhood of X (this is
a striking difference with the notion of tube in Tate or Berkovich theory). On the
contrary, if Y is a closed formal subscheme of P that contains X and Q :“ P {Y ,
then we do have

sXrP “sXrQ.

As a consequence of assertion 3), we see that the tube is functorial in the sense that
any morphism of adic overconvergent spaces

pY ãÑ Q Ð W q ÞÑ pX ãÑ P Ð V q
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induces a morphism of locally topologically ringed spaces

sf rv : sY rW Ñ sXrV

(this is not built into the definition). The functor pX ãÑ P Ð V q ÞÑ sXrV is clearly
continuous and cocontinuous. Be careful however that the (composite) functor
pX ãÑ P q ÞÑ sXrP is still continuous, but it is not cocontinuous because the adic
topology is usually finer than the Zariski topology.

We can also prove that he tube is left exact in the following sense:

Proposition 6.7. Assume that we are given two morphisms of formal embeddings
pXi ãÑ Piq Ñ pX ãÑ P q for i “ 1, 2 and that P1 ˆP P2 is representable by a locally
noetherian formal scheme. Then, if we are given λ : V Ñ P ad

1 ˆP ad P ad
2 , we have

sX1 ˆX X2rV “sX1rV XsX2rV .

Proof. We may assume that V “ P ad
1 ˆP ad P ad

2 . In other words, if we denote by
pi : P1 ˆP P2 Ñ Pi the projections, we have to show that

sX1 ˆX X2rP1ˆP P2
“ ppad

1 q´1p sX1rP1
q X ppad

2 q´1p sX2rP2
q.

We may assume that X “ P “ SpfpAq, that Pi “ SpfpAiq and that Xi is closed in
Pi defined by ai for i “ 1, 2. It follows that P1 ˆP P2 “ SpfpA1 bA A2q and that
X1 ˆX X2 is defined by a1 bA A2 ` A1 bA a2. Therefore, when v P P1 ˆP P2, we will
have

v P sX1 ˆX X2rP1ˆP P2
ô @f P ai, vpp´1

i pfqnq Ñ `8 for i “ 1, 2

ô ppad
i qpvq P sXirPi

for i “ 1, 2

since vpp´1
i pfqnq “ pppad

i qpvqqpfnq for i “ 1, 2.

Unfortunately, the following fibration theorem will not be very useful but it is worth
mentioning however, as a formal consequence of the formal fibration theorem:

Proposition 6.8 (Weak fibration theorem). Assume that we are given two formal
embeddings X ãÑ P and X 1 ãÑ P 1. If a differentially smooth morphism u : P 1 Ñ P

induces an isomorphism X 1 » X and an isomorphism X
1 » X, then, it induces

locally on P , an isomorphism

sX 1rP 1» D´,nˆ sXrP .

Proof. We may assume that X and X 1 are closed in P and P 1 respectively, in which
case our assertion follows directly from the formal fibration theorem 4.6.

One would like to relax our hypothesis in the proposition and only assume that u

induces an isomorphism X 1 » X (and not necessarily X
1 » X). Unfortunately, the

conclusion will not hold anymore as the case of an open immersion P 1 ãÑ P shows
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(with X “ X 1 “ P 1). The tube inside P will be strictly bigger than the tube inside
P 1 in general.

A tube has no reason to be locally closed (even for the constructible topology) as the
example of the absolute open unit disc inside the absolute closed unit disc shows.
The situation will be much nicer when we stick to analytic spaces (as we shall see
later) or if we consider the naive tube:

Proposition 6.9. Assume that X is a locally closed (resp. a closed, resp. an open)
formal subscheme of a formal scheme P and let λ : V Ñ P ad be any morphism of
adic spaces. Then, sp´1

V pXq is a locally closed (resp. a closed, resp. an open) locally
constructible subset of V .

Proof. Note that only constructibility really needs a proof because specialization
is continuous. We may clearly assume that P “ SpfpAq and that X is the closed
subset defined by an ideal a. If f1, . . . , fr are generators of a, then

sp´1
V pXq “

!
v P V :

r

min
i“1

vpfiq ą 0
)

is a closed constructible subset of V (finite intersection of complements of rational
open subsets which are quasi-compact).

We can now describe how far our tube differs from the naive tube. In particular, we
will see that the points of the tube of X cannot specialize too far from X itself (we
will denote by W̊ and W the interior and the closure of a subset W ):

Proposition 6.10. Let pX Ñ P Ð V q be an adic overconvergent space. If we let
W :“ sp´1

V pXq, then we have
W̊ Ă sXrV Ă W.

Moreover, if V is analytic, then sXrV “ W̊ (resp. sXrV “ W ) when X is closed
(resp. open) in the topology of P .

Proof. First of all, we should recall that, if we write W pXq instead of W , then W

sends closed to closed and preserves standard set operations. And we know from
proposition 6.4 that the tube also preserves these operations (although it does not
send closed to closed). Assume for a while that we know that the conclusion holds
in the closed case. If we write X “ Z X U with Z closed and U open in the topology
of P , we will have

8ŔW pZq Ă sZrV Ă W pZq
and, by considering a closed complement of U , we deduce that

W pUq Ă sUrV Ă W pUq.

Since sZ X UrV “ sZrV X sUrV , this will imply that

8ŔW pZ X Uq “ 8ŔW pZq X W pUq Ă sZ X UrV Ă W pZq X W pUq “ W pZ X Uq
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and we will be done.

Thus, we assume from now on that X is closed in P . Since the question is local
on V , we may also assume that V “ SpapB, B`q with pB, B`q complete, that P is
affine and that X is defined by some ideal a. Then sXrV is defined as a subset of
V by the conditions vpfnq Ñ `8 and W is defined by the conditions vpfq ą 0 for
f P a. We proved in lemma 2.9 that both conditions are stable under specialization.
Now, any v P V has a generization w P V of minimal height ď 1 and it follows that

wpfq ą 0 ô wpfnq Ñ `8 ñ vpfnq Ñ `8.

Now, since W is a (closed) constructible subset of V , one knows that v P W̊ if and
only if any generization of v belongs to W . This implies the first assertion and we
may now assume that V is analytic. In this case, w has height exactly 1 and this
is the maximum (vertical) generization of v. Moreover, there exists an isomorphism
Hpwq » Hpvq on the completed residue fields, and it follows that

wpfq ą 0 ô wpfnq Ñ `8 ô vpfnq Ñ `8

(because this last condition is purely topological). Thus, we see that w P W when
v P sXrV . Actually, the same holds for any other generization of v because it is
necessarily a specialization of w.

Corollary 6.11. The tube of a locally closed (resp. closed, resp. open) formal
subscheme in an analytic space is a locally closed (resp. open, resp. closed) subset.

In particular, the tube of a closed formal subscheme into an analytic overconvergent
space has a natural structure of analytic space (as an open subset).

Assume that X ãÑ P is a locally closed embedding such that X is open in the
topology of P . Then, there exists a unique open formal subscheme Q of P having
the same underlying space as X and we have sp´1pXq “ Qad which is an open subset
of P ad. It follows that sXrP an is the same thing as the closure of Qan in P an. More
generally, if we are given λ : V Ñ P ad with V analytic, then sXrV will be the closure
of λ´1pQadq in V .

Recall that we denote by V1 the set of points of height 1 in an analytic space V and
by sep : V Ñ V1 the canonical retraction (the projection on the Berkovich quotient).

Proposition 6.12. If pX ãÑ P Ð V q is an analytic overconvergent space and
v P V , then

v P sXrV ô spV pseppvqq P X.

Proof. We may assume that X is open in the topology of P - and use complement
and intersection in order to deduce the general case. Then, we know from proposition
6.10 that sXrV “ W with W :“ sp´1

V pXq. Since W is a constructible subset, we will
have v P W if and only if v has a generization v1 in W . Since W is open, the
maximum generization v1 of v1 will also be in W and we may therefore assume that
v1 “ v1, which is also the maximum generization of v. In other words, we have
v P W “ sXrV if and only if seppvq “ v1 P W “ sp´1

V pXq as asserted.
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As a consequence of this proposition, when V is analytic, we can recover the true
tube from the naive one:

sXrV “ sep´1pspV
´1pXq X V1q.

In particular, we see that, when V is analytic, the tube sXrV is stable both under
specialization and generization.

We want now to describe more precisely the analytic points of the tube of a closed
formal subscheme. Recall that if a is an ideal in a ring A, we denote by apnq the
ideal generated by all fn with f P a.

Definition 6.13. Let pX ãÑ P
λÐ V q be an adic overconvergent space with X closed

in P . Let V Ñ SpapB, B`q be an adic morphism and J an ideal of definition for
B. Then the tube of radius n P N of X in V (relatively to J) is

rXsV,n :“
#

v P V : inf
fPI

pnq
X,sppvq

vpfq ě inf
gPJ

vpgq ‰ `8
+

.

We will give some examples below but we want to first prove the following:

Proposition 6.14. Let pX ãÑ P Ð V q be an adic overconvergent space with X

closed in P , V Ñ SpapB, B`q an adic morphism and J an ideal of definition for B.
Then, for all n P N, rXsV,n is a constructible open subset of V such that

rXsV,n Ă rXsV,n`1

and we have
sXran

V “
ď

nPN

rXsV,n.

Proof. All questions are local on V and therefore also on P . We may therefore
assume that P :“ SpfpAq, so that X is defined by an ideal a Ă A, and that
V “ SpapB, B`q. In this situation, if f1, . . . , fr are some generators for a modulo J

and g1, . . . , gs some generators for J , we have

rXsV,n :“
"

x P V :
r

min
i“1

vpfn
i q ě

s

min
j“1

vpgjq ‰ `8
*

.

One may then notice that rXsV,n is the finite union of the rational subsets

"
x P V :

r,s

min
i,j“1

tvpfn
i q, vpgjqu ě vpgkq ‰ `8

*

for k “ 1, . . . , s. This is therefore a quasi-compact (which is equivalent to
constructible since V is affinoid) open subset of V as asserted. Now that we know
that rXsV,n is constructible, in order to prove the second assertion, it is sufficient
to check that if w P rXsV,n specializes to v P V , then v P rXsV,n`1. At this
point, it seems more natural to work in the residue fields and use the multiplicative
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notation (even if the absolute value might have higher height). Let us assume
that |fnpwq| ď |gpwq| ‰ 0 with f P a and g P J . Then necessarily fpwq is

topologically nilpotent (because gpwq is) and
ˇ̌
ˇ fnpwq

gpwq

ˇ̌
ˇ ď 1. It follows that fn`1pwq

gpwq

is also topologically nilpotent. Since Hpvq is homeomorphic to Hpwq, we also have

gpvq ‰ 0 and fn`1pvq
gpvq

topologically nilpotent. In particular, we must have
ˇ̌
ˇfn`1pvq

gpvq

ˇ̌
ˇ ď 1

and therefore |fn`1pvq| ď |gpvq| ‰ 0.

For the last assertion, it is sufficient to check that, for f P a and v P V , we have

pvpfnq Ñ `8 and v P V anq ô pDn P N, Dg P J, vpfnq ě vpgq ‰ `8q .

First of all, we know that

v P V an ô Dg P J, vpgq ‰ `8,

because J is an ideal of definition. Moreover, once we know that vpgq ‰ `8, then
the equivalence

vpfnq Ñ `8 ô Dn P N, vpfnq ě vpgq
follows from the fact that vpgnq Ñ `8 (because g P J and our valuations are
continuous).

Example Assume that we are given a morphism of adic spaces O Ñ SpapB, B`q
where B is a Tate ring with topologically nilpotent unit π (in which case the
morphism is automatically adic and O is automatically analytic).

1. We consider the analytic overconvergent space (zero section)

SpecpZq � � // A DO
oo .

Then, we have
sSpecpZqrDO

“ D´
O

(even as adic spaces, as we shall see below), and

rSpecpZqsDO,n “ DOp0, π
1
n q :“ tv P AO : vpT nq ě vpπqu

is a closed disk which is an affinoid space for each n P N. The formula of the
proposition reads

D´
O “

ď

nPN

DOp0, π
1
n q.

Recall that the open unit disc does not contain the v´-points.

2. We consider now the analytic overconvergent space

A � � // P PO
oo .

Then, from the first example, one can easily deduce that

sAran
PO

“
č

nPN

DOp0, π´ 1
n q
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where
DOp0, π´ 1

n q :“ tv P AO : vpπT nq ě 0u
is also an affinoid open subset for each n P N. This tube is slightly bigger than
the closed unit disc DO: it contains the v`-points.

3. To make it more explicit, we may consider the case O “ SpapQpq (with the“p-
adic” topology). Then we have

Pan
Qp

“ Dp0, 1`q \ tv`
p uloooooooomoooooooon

sAr

\Dp8, 1´qlooomooon
s8r

.

4. This can be extended to the Monsky-Washnitzer setting. We let R be a
noetherian ring and S Ñ SpecpRq be any morphism of formal schemes. Then,
we consider an R-algebra of finite type A and denote by X some projective
closure of X :“ SpecpAq. Finally, we give ourselves a morphism R Ñ B0 where
B is a Tate ring with topologically nilpotent unit π and let O “ SpapB, B`q.
Then we have

Γp sXSrXO
, i´1

OXO
q “ pB0 bR Aq:r1{πs.

We can now prove the following adic variant of the famous proposition 0.2.7 of [3]:

Proposition 6.15. If pX ãÑ P
λÐ V q is an analytic overconvergent space with X

closed in P , then there exists an isomorphism of adic spaces:

λ´1
`
P {X,ad

˘
:“ P {X,ad ˆP ad V » sXrV Ă V.

Proof. The question is local. We may therefore assume that P “ SpfpAq is affine
with X defined by an ideal a “ pf1, . . . , frq and that V “ SpapB, B`q with B a
complete Tate ring with topologically nilpotent unit π. Recall that, in this situation,
P {X “ SpapA{aq where A{a is identical to A as a ring but its topology is defined
by a ` I if I denotes an ideal of definition for A. Proposition 6.14 tells us that
sXrV “ Ť

nPNrXsV,n with

rXsV,n “
!

x P V :
r

min
i“1

tvpfn
i qu ě vpπq ‰ `8

)
,

and we need to show that the natural map rXsV,n Ñ P ad factors canonically through
P {X,ad. After replacing a with apnq, we may assume that n “ 1. If we write
rXsV,1 “ SpfpC, C`q with pC, C`q complete, we need to show that the composite
map A Ñ B Ñ C is continuous for the a-adic topology. Thus, we have to check
that fn

i Ñ 0 in C for all i “ 1, . . . , r (we may re-use the letter n). This follows
from the fact that, by definition, fi{π is power-bounded in C and π is topologically
nilpotent.

As a consequence of this proposition, we see that, in an analytic overconvergent
space pX ãÑ P Ð V q, we may replace P with is completion along X and then
replace X with the open formal subschemes Q of P having the same underlying
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space as X, without modifying the tube. In practice, we are therefore often reduced
to the case when X “ Q is an open formal subscheme of P as we shall see later.

Note that it is necessary to assume V analytic in the proposition in order to
consider sXrV as an adic space (as an open subset of V ). Anyway, the map
λ´1pP {X,adq Ñ sXrV is not even an isomorphism of locally topologically ringed spaces
in general.

In order to generalize the constructions of this section to the case where P is
not locally noetherian, it is necessary to assume that X is locally radically finitely
presented : it means that locally, X is defined modulo an ideal of definition by an
ideal a such that

?
a “

?
A ¨ S for some finite set S P A. One may then proceed

in the same way as above, using generalized adic spaces of Scholze and Weinstein
instead of the honest adic spaces of Huber. We will not work out the details here.

Example If V is a (non discrete) valuation ring with residue field k and X ãÑ P is a
locally closed embedding of a k-variety into a formal scheme which is locally finitely
presented over V, then X is locally radically finitely presented. This follows from
the fact that, if m denotes the maximal ideal of V, then we have

?
m “ m “

a
pπq

for any topologically nilpotent unit π.

7 Strict neighborhoods

In this section, we relax our category of overconvergent spaces in order to make the
role of the ambient formal scheme secondary and to allow the replacement of the
adic space by some neighborhood of the tube. As usual, formal schemes are always
locally noetherian and adic spaces are locally of noetherian type.

Definition 7.1. A strict neighborhood is a formal morphism

X 1 � � //

f
��

P 1

v

��

V 1oo

u

��
X � � // P V.oo

where

1. f is an isomorphism,

2. v is locally noetherian,

3. u is an open immersion,

4. sf ru is surjective.

Note that a strict neighborhood automatically induces an isomorphism

sf ru : sX 1rV 1» sXrV
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of topologically locally ringed spaces (for the induced structures).

Up to isomorphism, we may always assume that X 1 “ X, that f “ IdX and that u

is the inclusion of an open subset so that sXrV 1“ sXrV , and we would then write

X � � // P 1

v
��

V 1oo
_�

��
X � � // P V.oo

Example Assume that we are given a formal scheme S and a morphism O Ñ Sad

with O analytic. Then there exists a sequence of strict neighborhoods

pS ãÑ A´
S Ð D´

Oq Ñ pS ãÑ AS Ð DOq Ñ pS ãÑ PS Ð POq

(this is not true however when O is not analytic).

A strict neighborhood always splits as follows:

Proposition 7.2. Any strict neighborhood

X 1 � � //

f
��

P 1

v
��

V 1oo

u

��
X � � // P V.oo

is the composition of a strict neighborhood with u “ IdV and another strict
neighborhood with both f “ IdX and v “ IdP .

Proof. Follows from proposition 5.3.

Strict neighborhoods will allow us to increase (or shrink) P as the next proposition
shows.

Proposition 7.3. If pX ãÑ P Ð V q is an adic overconvergent space and P ãÑ Q is
a locally closed embedding, then we have a strict neighborhood:

X � � // P� _

��

Voo

X � � // Q V.oo

Proof. Since the left hand square is cartesian, we have sXrQXP ad “ sXrP . Every-
thing follows because a locally closed embedding is locally noetherian.

Be careful however that the morphism

X � � // P� _

��

P ad
� _

��
X � � // Q Qad.
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is not a strict neighborhood in general as the case X “ P “ A and Q “ P shows:
we have sXrP “ D ‰sArP“sXrQ. In the statement of the proposition, it is therefore
important to keep the same V on the right.

Using the next property, it will also be possible to assume that the locus at infinity
is a divisor:

Proposition 7.4. Let pX ãÑ P Ð V q be an adic overconvergent space. If v : P 1 Ñ P

is a blowing up of a usual subscheme centered outside X, then it extends to a strict
neighborhood

X � � // P 1

v

��

V 1λ1
oo

u

��
X � � // P V.

λoo

Proof. We may clearly assume that V “ P ad. Now, the assertion results from
proposition 3.13. More precisely, if we denote by Z the center of the blowing up
and let Z 1 “ v´1pZq so that X X Z “ H and X X Z 1 “ H, then v induces an
isomorphism P 1adzZ 1ad » P adzZad between an open neighborhood of sXrP 1 and an
open neighborhood of sXrP . We may set V 1 “ P 1adzZ 1ad.

As a consequence, we obtain Chow’s lemma for overconvergent spaces:

Corollary 7.5. Assume that we are given a formal morphism

Y � � //

f

��

Q

v

��

Woo

u

��
X � � // P Voo

in which v : Q Ñ P is separated of finite type around Y (see definition 4.9). If
Y is reduced, f is quasi-projective and X quasi-compact, then, there exists a strict
neighborhood

Y 1 � � //

��

Q1

��

W 1oo

��
Y � � // Q W.oo

such that the composite map v1 : Q1 Ñ P is quasi-projective in the neighborhood of
Y 1.

Proof. We may assume that X also is reduced. We are in the situation to apply the
precise Chow’s lemma (corollary 5.7.14 of [20]): there exists a blowing-up Z Ñ Y

centered outside Y such that the composite map Z Ñ X is projective. This blowing
up is always induced by some blowing up Q1 Ñ Q and we may apply proposition
3.13 (we have Y 1 “ Y and Y 1 “ Z).

When V is analytic, we also have the following:
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Proposition 7.6. If pX ãÑ P Ð V q is an analytic overconvergent space, then there
exists a strict neighborhood

X � � // P 1

v
��

V 1λ1
oo

u
��

X � � // P V.
λoo

with X open and dense in the topology of P 1 and sXrV 1 closed in V 1.

Proof. Simply choose P 1 “ P {X and V 1 “ sXrV . The result is then an immediate
consequence of proposition 6.15.

The next two propositions will allow us to prove that strict neighborhoods form a
right multiplicative system.

Lemma 7.7. Strict neighborhoods are stable under pull back.

Proof. Immediate consequence of proposition 6.7.

Lemma 7.8. If a strict neighborhood

X 1 � � //

f
��

P 1

v
��

V 1oo

u

��
X � � // P V.oo

has a section, then this section is also a strict neighborhood.

Proof. Condition 1) and 4) are clearly satisfied because f and sf ru are always
isomorphisms and a section of an isomorphism is necessarily an isomorphism.
Actually, the same holds for condition 3) because an open immersion with a section
is also an isomorphism. Finally, condition 2) follows from the fact that a section of
a locally noetherian map is locally noetherian.

Proposition 7.9. Adic overconvergent spaces and formal morphisms admit right
calculus of fractions with respect to strict neighborhoods.

Proof. This is a formal consequence of lemmas 7.7 and 7.8 as lemma 7.10 below
shows.

Lemma 7.10. Let C be a category and S a set of morphisms which contains
identities, is stable by composition, is stable by pull-back and is stable by taking
sections. Then, C admits right calculus of fractions with respect to S.

Proof. According to definition 2.3 of [9], there are four (sometimes called after Ore)
conditions to check, the first two of which coincide with our first two. For the third
condition, we have to show that any diagram

Y 1 f 1
//___

t
���
�

� X 1

s

��
Y

f // X
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with s P S may be completed into a commutative diagram with t P S. We may
simply choose for t the pull back of s along f . For the fourth condition, we must
show that any commutative diagram

Y 1 t //___ Y
f //
g

// X
s // X 1

with s P S may be completed into a commutative diagram with t P S. First of
all, if we pull back s along itself, we see that X ˆX1 X is representable and that
the projection p : X ˆX1 X Ñ X belongs to S. It follows that the diagonal map
δ : X ãÑ X ˆX1 X also belongs to S because this is a section of p. We may then pull
back δ along the map pf, gq : Y Ñ X ˆX1 X in order to obtain t : Y 1 Ñ Y (which is
actually the kernel of f and g).

Definition 7.11. The adic overconvergent site is the category of adic overconvergent
spaces localized with respect to strict neighborhoods and endowed with the image
topology.

In other words, an object of the adic overconvergent site is an adic overconvergent
space and a morphism is, up to equivalence, a diagram

pY 1 ãÑ Q1 Ð W 1q

�� ))SSS
SSS

SSS
SSS

SS

pY ãÑ Q Ð W q pX ãÑ P Ð V q

where the vertical map is a strict neighborhood. It means that we may always
replace W with some neighborhood of the tube and modify Q almost as we wish.

Our category is endowed with the image topology which is the coarsest topology
making continuous the localization map. This is the topology generated by the
pretopology made of families of formal morphisms

tpX ãÑ P Ð Viq Ñ pX ãÑ P Ð V quiPI

where, for each i P I, Vi is open in V , and sXrV “ Ť
iPI sXrVi

. Again, it is
subcanonical.

If necessary, we will call this topology the adic topology. We may also endow our
category with the Zariski topology (image of the Zariski topology) or even with the
Zariski-adic topology which is the coarsest topology finer than the two others, for
example. Many other choices are possible.

Since the formal scheme P plays a very loose role in the theory, we will usually
denote by pX, V q an object of the adic overconvergent site. The localization functor

pX ãÑ P Ð V q ÞÑ pX, V q

from the category of overconvergent adic spaces and formal morphism to the
overconvergent adic site commutes with finite limits ([9] again) and is continuous (by
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definition). Let us remark that, as a consequence, the functor pX ãÑ P q ÞÑ pX, P adq
from the category of formal embeddings to the category of adic overconvergent sites
also commutes with finite limits. It is continuous for the Zariski or Zariski-adic
topology but not for the adic-topology (see proposition 7.16 however). Also, the
functor pX, V q ÞÑ X commutes with all limits because it has an adjoint X ÞÑ pX, Hq.
And it is also continuous. Finally, giving a sheaf (or a presheaf) on the adic
overconvergent site is equivalent to giving a sheaf (or a presheaf) with respect to
formal morphisms which becomes an isomorphism on strict neighborhoods.

We insist on the fact that we usually write pX ãÑ P Ð V q for an adic overconvergent
space seen as an object before localization (with formal morphisms) and pX, V q when
we see it as an object of the adic overconvergent site (up to strict neighborhoods).

Proposition 7.12. A formal morphism

pY ãÑ Q Ð W q Ñ pX ãÑ P Ð V q
induces an isomorphism pY, W q » pX, V q if and only if there exists a commutative
diagram

pY 1 ãÑ Q1 Ð W 1q

uukkkk
kkk

kkk
kkk

k

))SSS
SSS

SSS
SSS

SS

pY ãÑ Q Ð W q // pX ãÑ P Ð V q

where both diagonal arrows are strict neighborhoods.

We may always assume that Y 1 “ Y , that the corresponding map is the identity
and that W 1 is an open subset of W .

Proof. Only the direct implication needs a proof. According to proposition 7.1.20.
(i) of [15] (be careful that they call left what we call right) or section 3.5 of chapter
I in [9], there exists a commutative diagram of formal morphisms:

pY 1 ãÑ Q1 Ð W 1q //

��

pX 1 ãÑ P 1 Ð V 1q

��uukkkk
kkk

kkk
kkk

kk

pY ãÑ Q Ð W q // pX ãÑ P Ð V q

with strict neighborhoods as vertical maps. It is sufficient to prove that the upper
map is a strict neighborhood. Since the composite map Q1 Ñ P 1 Ñ Q is locally
noetherian, the first one Q1 Ñ P 1 is also necessarily locally noetherian (see [7]) and
condition 2) holds. The proofs that the other three conditions hold are very similar
to each other and we will only do condition 3) which is the one that requires some
care. Let us denote by V 2 the inverse image of W 1 in V 1 through the diagonal map,
and identify W 1 and V 2 with their images in W and V respectively. Then, there
exists a commutative diagram

W 1 // V 2

}}{{
{{
{{
{{

W 1 // V 2
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The diagonal map has both a section and a retraction and must be an isomorphism.
It follows that the upper map is also an isomorphism and we are done.

Be careful that the map Q Ñ P is not necessarily locally noetherian as the following
example shows:

pH Ă Ab Ð Hq Ñ pH Ă SpecpZq Ð H.q

We will mostly be interested in the following consequence:

Corollary 7.13. Assume that we are given two adic overconvergent spaces pXi ãÑ
Pi Ð Viq for i “ 1, 2. Then, pX1, V1q » pX2, V2q if and only if there exists a common
strict neighborhood

pX ãÑ P Ð V q

uukkkk
kkk

kkk
kkk

k

**TTT
TTT

TTT
TTT

TTT

pX1 ãÑ P1 Ð V1q pX2 ãÑ P2 Ð V2q.

Note that when X2 “ X1, we may also assume that X “ X1 “ X2 and that the
corresponding maps are the identity.

Most of the time, we will work over a given adic overconvergent space pC ãÑ S Ð Oq.
It is important to notice that, by construction, the diagonal maps in corollary 7.13
will be defined over pC ãÑ S Ð Oq as well.

It will be convenient to call a formal morphism pX ãÑ P Ð V q Ñ pC ãÑ S Ð Oq
locally noetherian when the morphism P Ñ S is locally noetherian.

Proposition 7.14. Assume that we are given two locally noetherian adic over-
convergent spaces pXi ãÑ Pi Ð Viq over pC ãÑ S Ð Oq for i “ 1, 2. Then,
pX1, V1q » pX2, V2q if and only if the projections extend to strict neighborhoods

pX ãÑ P1 ˆS P2 Ð V q

ttiiii
iii

iii
iii

iii

**UUU
UUU

UUU
UUU

UUU
U

pX1 ãÑ P1 Ð V1q pX2 ãÑ P2 Ð V2q.

Again, when X2 “ X1, we may also assume that X “ X1 “ X2 and that the
corresponding maps are the identity.

Proof. In the situation of corollary 7.13, we may always assume (as we indicate
after the statement of the corollary) that the morphisms are compatible with the
structural maps. Then the common strict neighborhood factors as

pX ãÑ P Ð V q

��
pX ãÑ P1 ˆS P2 Ð V q

ttiiii
iii

iii
iii

iii

**UUU
UUU

UUU
UUU

UUU
U

pX1 ãÑ P1 Ð V1q pX2 ãÑ P2 Ð V2q.
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It should be clear that both diagonal arrows are strict neighborhoods. For example,
the composite map

sXrP,V Ñ sXrP1ˆSP2,V Ñ sX1rP1,V1

being surjective, the second map must also be surjective and condition 4) holds.

The following obvious consequence of proposition 7.14 will often make it possible
to assume that X is a usual scheme when considering an adic overconvergent space
pX, V q.
Corollary 7.15. Assume that pX, V q and pX, V 1q are two locally noetherian adic
overconvergent spaces over pC, Oq. Then we have

pX, V q » pX, V 1q ô pXred, V q » pXred, V 1q

Note that this is the same X on both sides and we implicitly assume that the map
induced at this level is the identity.

There is no chance for the forgetful functor pX, V q Ñ X to be continuous (for the
Zariski topology of X) because we choose to use the coarse topology on the algebraic
side when we defined the topology on the adic overconvergent site. However, we have
the following consequence of the proposition:

Corollary 7.16. Let pX ãÑ P
λÐ V q and pX ãÑ P 1 λ1Ð V 1q be two locally noetherian

adic overconvergent spaces over some pC ãÑ S Ð Oq. Assume that there exists
two open coverings P “ Ť

iPI Pi and P 1 “ Ť
iPI P 1

i such that, for each i P I,
X X Pi “ X X P 1

i and, locally, we have pX X Pi, λ´1pP ad
i q » pX X P 1

i , λ
1´1pP 1ad

i q.
Then, locally, we have pX, V q » pX, V 1q.

Proof. Let us write Xi :“ X X Pi “ X X P 1
i , Vi :“ λ´1pP ad

i q and V 1
i :“ λ1´1pP 1ad

i q.
We assume that there exists, for each i P I, a family of open subsets tVijujPJi

of
Vi such that sXirVi

“ Ť
jPJi

sXirVij
, a family of open subsets tV 1

ijujPJi
of V 1

i such that
sX 1

irV 1
i
“ Ť

jPJi
sX 1

irV 1
ij

, and an isomorphism pXi, Vijq » pXi, V 1
ijq. Then, proposition

7.14 tells us that for each i P I, j P Ij , the projections extend to a common strict
neighborhood

pXi ãÑ Pi ˆS P 1
i Ð Wijq

ttiiii
iii

iii
iii

iii
i

**UUU
UUU

UUU
UUU

UUU
UU

pXi ãÑ Pi Ð Vijq pXi ãÑ P 1
i Ð V 1

ijq.

It follows that the projections

pX ãÑ P ˆS P 1 Ð Wijq

ttjjjj
jjj

jjj
jjj

jjj

**UUU
UUU

UUU
UUU

UUU
U

pX ãÑ P Ð Vijq pX ãÑ P 1 Ð V 1
ij.q

also provide a common strict neighborhood and pX, V q is locally isomorphic to
pX, V 1q.
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8 The strong fibration theorem

At last, we give the the strong fibration theorem, building on all the previous results.
As usual, formal schemes are supposed to be locally noetherian and adic spaces are
assumed to be locally of noetherian type.

Recall that adic overconvergent spaces were first made into a category by using
formal morphisms and that we turned strict neighborhoods into isomorphisms in
order to obtain the adic overconvergent site. In the process, the formal scheme which
is used as a link between the algebraic and the analytic world almost disappears.
We will see that, however, many properties of the formal morphism are somehow
transferred to the (true) morphism.

We start by explaining how we can extend some notions coming from formal schemes
(resp. adic spaces) to adic overconvergent spaces and formal morphisms (resp. to the
adic overconvergent site):

Definition 8.1. 1. A formal morphism

Y � � //

f

��

Q

v

��

Woo

u

��
X � � // P V.oo

of adic overconvergent spaces is

(a) right cartesian W is a neighborhood of Y in pvadq´1pV q,
(b) said to satisfy a property P (of formal schemes) if v satisfies the property

P around Y .

2. A morphism of adic overconvergent spaces pY, W q Ñ pX, V q is said to satisfy
a property P (of adic spaces) if there exists a neighborhood V 1 of X in V and
a neighborhood W 1 of Y in W such that the induced map W 1 Ñ V 1 satisfies
the property P.

Recall from definitions 4.8 and 4.9 that the expression “around Y ” has two different
meanings depending on the “open” or “closed” nature of the property.

Proposition 8.2. If a right cartesian formal morphism

Y � � //

f

��

Q

v

��

Woo

u

��
X � � // P V.oo

of analytic overconvergent spaces is formally locally of finite type and formally
unramified (resp. and formally smooth, resp. and formally étale), then it induces
an unramified (resp. a smooth, resp. an étale) morphism

pY, W q Ñ pX, V q.
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Proof. We may assume, after completion, that X and Y are open in P and Q

respectively.

If v is formally unramified around Y , then the coherent sheaf Ω1
Q{P has a support

Z which is a closed formal subscheme of Q that does not meet Y . The inclusion
Z ãÑ P Z induces an inclusion Zad ãÑ sZrP and it follows that µ´1pZadq Ă sZrV . In
particular, the support of Ω1

W {V , which is a closed subset contained in µ´1pZadq,
does not meet sY rV . It follows that there exists a neighborhood W 1 of Y in W such
that Ω1

W 1{V “ 0. Moreover, since v is locally of finite type around Y , we may assume
thanks to corollary 8.3 that W 1 Ñ V is locally of finite type. It follows that u is
unramified in the neighborhood of Y .

We proceed in an analogous way for smoothness using the jacobian criterion. Since
the question is local and v is formally locally of finite type, we may assume that
there exists a closed embedding Q ãÑ A˘,N

P defined by an ideal pf1, . . . , frq and that
the minor detrBfi{BTjsr

i,j“1 is invertible outside a closed subset Z not meeting Y .

Pulling back, we obtain a locally closed embedding W 1 ãÑ D˘,N
V and the above minor

stays invertible outside Zad. As above, µ´1pZadq does not meet sY rW 1 and we know
that the locus where le minor is invertible is open.

Theorem 3.16 has the following consequence:

Corollary 8.3. If a right cartesian formal morphism

pY ãÑ Q Ð W q Ñ pX ãÑ P Ð V q

of analytic overconvergent spaces is formally locally of finite type (resp. formally
locally of finite type and separated, resp. partially proper), then the associated
morphism

pY, W q Ñ pX, V q
is locally of finite type (resp. separated, resp. partially proper) .

Proof. Simply replace V and W with V 1 :“ sXrV and W 1 :“ sY rW .

In order to go further, it will be necessary to mix open (such as formally smooth)
and closed (such as partially proper) conditions.

Theorem 8.4. If a right cartesian formal morphism of analytic overconvergent
spaces

X 1 � � //

f
��

P 1

v

��

V 1λ1
oo

u

��
X � � // P V

λoo

is partially proper and formally étale, and induces an isomorphism f : X 1 » X, then
it induces an isomorphism

pX 1, V 1q » pX, V q.
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Proof. After completing along X (resp. X
1
), we may assume that X (resp. X 1) is

open in the topology of P (resp. P 1). If we denote for the moment by U (resp. U 1) the
open subset of P (resp. P 1) having the same underlying space as X (resp. X 1), then
the induced morphism U 1 Ñ U is formally étale and induces an isomorphism on the
maximal reduced subschemes. This is necessarily an isomorphism. We may therefore
replace X (resp. X 1) by U (resp. U 1) and assume that it is a formal open subscheme
of P (resp. P 1). In this situation, we have sp´1pXq “ Xad (resp. sp´1pX 1q “ X 1ad).
Let us consider now the open subspaces W “ sp´1

V pXq and W 1 “ sp´1
V pX 1q of V

and V 1 respectively. Since the right hand square of our diagram is cartesian in the
neighborhood of the tubes, we see that u induces an isomorphism

W 1 “ λ1´1pX 1adq » λ´1pXadq “ W.

Since v is partially proper around X 1, we know from corollary 8.3 that u is partially
proper in the neighborhoods of the tubes. In particular, it is specializing and the
isomorphism W 1 » W extends therefore uniquely to a homeomorphism

sX 1rV 1“ W
1 » W “ sXrV

(recall that W and W 1 are locally constructible). Now, any v1 P sX 1rV 1 generizes
to some w1 P W 1 and since V 1 is analytic, the canonical map Ov1 Ñ Ow1 (is
local and) induces an isomorphism Hpv1q » Hpw1q. For the same reason, we have
Hpupv1qq » Hpupw1qq. On the other hand, the isomorphism W 1 » W provides
an isomorphism Hpupw1qq » Hpw1q and it follows that Hpupv1qq » Hpvq. We
may therefore apply proposition 2.3.7 of [14] (analytic variant) which tells us that
u induces an isomorphism between the étale topos of pV 1, sX 1rV q and the étale
topos of pV, sXrV q. Moreover, thanks to proposition 8.2, we may assume that the
map u : V 1 Ñ V is étale. Then, necessarily, u induces an isomorphism between a
neighborhood of sX 1rV in V 1 and a neighborhood of sXrV in V .

Note that the étale site of a pseudo-adic space pV, T q is not subcanonical because
any open immersion V 1 ãÑ V with T Ă V 1 will induce an isomorphism between the
étale topos of pV 1, T q and pV, T q. This is why we need to shrink V and V 1 once more
at the end of the proof. Alternatively, one could use the modified étale site obtained
by formally inverting such an open immersion (which is then subcanonical).

Theorem 8.5 (Strong fibration theorem). If a right cartesian formal morphism of
analytic overconvergent spaces

pX 1 ãÑ P 1 Ð V 1q Ñ pX ãÑ P Ð V q

is partially proper and formally smooth, and induces an isomorphism X 1 » X, then
there exists, locally in the adic overconvergent site, an isomorphism

pX 1, V 1q » pX,Pn
V q.

Here, we denote by pX,Pn
V q the adic overconvergent space associated to pX ãÑ Pn

P Ð
Pn

V q.
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Proof. The strategy is due to Berthelot and we follow essentially the proof of theorem
4.1.3 in [18]. First of all, thanks to corollary 7.15, we may assume that both X

and X 1 are reduced. Also, using proposition 7.4, we may assume that X 1 is the
complement of a divisor in in X

1
. Now, since the question is local for the adic

topology of the overconvergent site, we may assume that V is affinoid. Moreover,
thanks to corollary 7.16, the question is local on X and therefore also on P that
we may both assume to be affine. Also thanks to proposition 7.8, we may assume
that P 1 is quasi-compact. We are then in the situation of applying our version of
Chow’s lemma (corollary 7.5) and we may therefore assume that the map X

1 Ñ X

induced on the compactifications is projective. Next, proposition 4.3 grants us the
existence of a projective morphism of formal embeddings pX 1 ãÑ Qq Ñ pX ãÑ P q
which is étale around X 1 and such that the closure of X 1 in Q is identical to the
closure of X 1 in P 1. The formal morphism pX 1 ãÑ Q Ð QˆP V q Ñ pX ãÑ P Ð V q is
right cartesian, partially proper and étale around X 1 and induces therefore, thanks
to theorem 8.4, an isomorphism in the adic overconvergent site. After pulling back
along this formal morphism, we may therefore assume that v actually induces an
isomorphism f : X

1 » X. We may now use lemma 4.2 and apply theorem 8.4
again.

In order to state the last result, we recall that if B is a site, then a morphism T 1 Ñ T

of presheaves on B is called a local epimorphism (resp. local isomorphism)1 if the

morphism of associated sheaves rT 1 Ñ rT is an epimorphism (resp. isomorphism).
And a morphism Y Ñ X in B is a local epimorphism (resp. local isomorphism) if

the corresponding morphism of presheaves pY Ñ pX is.

Corollary 8.6. If a formal morphism of analytic overconvergent spaces

pY ãÑ Q Ð W q Ñ pX ãÑ P Ð V q

is partially proper and formally smooth, and induces an isomorphism X 1 » X, then
it induces a local epimorphism

pX 1, V 1q Ñ pX, V q

in the adic overconvergent site.

Proof. It follows from theorem 8.5 that, locally, the morphism pX 1, V 1q Ñ pX, V q
has a section.
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