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Abstract: 

 
Mixing solid particles with liquid foam is a common process used in industry for manufacturing 

aerated materials. Desire for improvement of involved industrial processes and optimization of 

resulting foamed materials stimulates fundamental research on those complex mixtures of grains, 

bubbles and liquid. In this paper, we generate well-controlled particle-loaded liquid foams and we 

determine their elastic behavior as a function of particle size (6-3000 µm) and particle volume 

fraction (0-6%). We focus on both the elastic modulus exhibited by the material at small strain and 

the strain marking the end of the linear elastic regime. Results reveal the existence of a critical 

particle-to-bubble size ratio triggering a sharp transition between two well-defined regimes. For 

small size ratios, the behavior is governed by the mechanical properties of the solid grains, which 

have been proved to pack in the shape of a foam-embedded granular skeleton. In contrast, bubbles 

elasticity prevails in the second regime, where isolated large particles contribute only weakly to the 

rheological behavior of the foamed material. The modeling of elasticity for each regime allows for 

this transition to be normalized and compared with previously reported particle size-induced effects 

for foam drainage (Haffner et al. J. Colloid Interface Sci., 2015, 458, 200–208) and solid foam 

mechanics (Khidas et al., Compos. Sci. Technol., 2015, 119, 62–67). This highlights that rheology and 

the other properties of particle-loaded foams are subjected to the same size-induced morphological 

transition. 
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Nomenclature 

 

� liquid/gas surface tension 

�� bubble diameter 

�� particle diameter 

�� gas volume fraction in the precursor foam 

� gas volume fraction in the foam sample 
��	 average volume fraction value of the drained particle-free foam sample 


�� particle volume fraction in the particle/liquid suspension 

��� initial particle volume fraction in foam sample (before drainage) 

�� particle volume fraction in drained foam sample 

�� ≈ 0.64 volume fraction of packed spherical particles or bubbles 

��∗  particle volume fraction marking the onset of foam strengthening, defined by a factor 2.5 on the 

modulus value with respect the reference particle-free foam 

��∗∗ characteristic particle volume fraction introduced in order to construct a single curve 

��������� ������0�⁄ = ���� ��∗∗⁄ �  

�� ≡ ����, ��, �� ��⁄ � elastic modulus of particle-loaded foam 

��� ≡ ����, �� = 0� elastic modulus of particle-free foam 

���  elastic modulus of packed particles confined in the foam network (relevant for small particle-to-

bubble size ratios) 

������ elastic modulus of a continuous matrix (with elastic modulus �!"���#� ) loaded with hard solid 

particles  

$ confinement parameter defined as the ratio of the particle size and the characteristic size of the 

foam network 
����� critical strain amplitude (oscillatory rheometry) marking the end of the linear regime 

 

 

 

 

 

 

 

1. Introduction 

 
Mixing solid particles with liquid foam is a common process used in industry for manufacturing 

aerated materials. Typical examples can be found in the production of materials for the building 

industry1, of ceramic foams2, of products for the food3 and cosmetic industries. Desire for 

improvement of both involved industrial processes and resulting foamed materials stimulates 

fundamental research, as evidenced by the recent literature on the subject4–23. Note also that the 

mining industry extensively resorts to mixtures of foam and particles through the flotation process 

that is widely used to separate ores24. 

Previous studies were mainly focused on drainage and stability issues4–9,12–17,19,20 because those 

two processes jeopardize fresh (not solidified) foamed materials. In contrast, only few studies have 

tackled rheological issues, for all types of foamed suspensions5,12,13,22,23,25–30. However, in the 

elaboration of optimized foamed materials, the rheological behavior of fresh complex foam is of 
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primary interest also. For example, elasticity and yield stress properties allow the material to sustain 

external forces and to keep its initial shape under gravity26,27,29. In contrast, filling of molds requires 

appropriate workability of the fresh foamy material. Two recent findings have considerably increased 

our knowledge on rheology of such foamy systems. Cohen-Addad et al.18 have shown that adding a 

tiny amount of non-colloidal particles in aqueous foams can enhance the elastic and loss shear 

moduli by more than 1 order of magnitude. A particle-size dependence was reported, i.e., the effect 

is all the more pronounced as the particle size is smaller. Gorlier et al.22 have investigated the effect 

of small particles, i.e., particle-to-bubble size ratio (�� ��⁄ ) smaller than 0.1, and have highlighted a 

new elastic regime characterized by unequaled modulus values as well as independence on the size 

ratio. Gorlier et al. recognized that those two contradictory results are, however, not incompatible, 

insofar as the investigated ranges for �� ��⁄  were different for those two studies. In the present 

study we investigate a range of �� ��⁄  values covering both previously investigated ranges. As shown 

in the following, our results allow for a better understanding of those complex materials and suggest 

a simple physical picture for their elasticity. 

 

2. Materials and methods 

 

Particle-loaded foams are prepared by mixing aqueous foam and granular suspension. 

 

2.1 Precursor foam 

 

The first step of the preparation is the production of precursor aqueous foam with well-

controlled bubble size �� and gas volume fraction. Foaming liquid and perfluorohexane-saturated 

nitrogen are pushed through a T-junction allowing to control the bubble size by adjusting the flow 

rate of each fluid; for the present study only one bubble size has been used: �� = 450µm. Produced 

bubbles are collected in a glass column and constant gas fraction over the foam column is set at 0.99 

by imbibition from the top with foaming solution. 

 

2.2. Granular suspensions 

 

Secondarily, we prepare suspensions of polystyrene beads, with particle volume fraction 

chosen within the range 0.05-0.55 and a monodisperse particle size �� ∈	[6, 10, 20, 30, 40, 80, 140, 

500] µm. Note that foam and suspension share the same continuous phase, which is composed of 

distilled water 80% w/w and glycerol 20% w/w, and TTAB (trimethyl(tetradecyl)azanium bromide) at 



5 

 

a concentration 5 g.L-1. Shear viscosity and density of that solution have been measured to be equal 

to 1.7 mPa.s and 1050 kg.m-3, respectively. The surface tension of the solution has been measured to 

be equal to 38 mN.m-1. The density of polystyrene beads is 1050 kg.m-3 so the latter are not 

subjected to sedimentation in the suspending liquid. 

 

2.3. Foam/suspension Mixing 

 

Finally, the precursor foam and the granular suspension are mixed in a continuous process 

thanks to a mixing device based on the flow-focusing method 15,17. By tuning the flow rates of both 

the foam and the suspension during the mixing step, the gas volume fraction �� and the particle 

volume fraction ��� can be tuned. Note also that bubble size is conserved during the mixing step, 

i.e., �� = 450µm. Resulting particle-loaded foams are continuously poured into the measurement 

cell (cup geometry: height = 7 cm and diameter = 37mm). 

 

2.4. Preparation of the samples 

 

After this filling step, a six-bladed vane tool (height = 6 cm and diameter = 25mm) is inserted 

into the foam cell and the evolution of the sample is followed by measuring the shear elastic 

modulus through oscillatory rheometry (stress-controlled rheometer Malvern kinexus ultra+) with a 

strain of 10-3 at 1Hz. After a transient regime, all samples were found to reach a constant value for 

the shear modulus. This behavior is attributed to the gravity drainage of the sample, during which 

both liquid and particles can flow down through the bubble assembly. It has been shown in a 

previous work17 that this flow, as well as the final equilibrium state, i.e. the final gas fraction � and 

the final particle volume fraction ��, are governed by the initial gas fraction ��, the particle-to-

bubble size ratio �� ��⁄ , and the initial particle volume fraction within the interstitial suspension 


�� = ��� �1 − ���⁄ . Therefore, for each particle size, a significant number of samples with 

different parameters �� and 
�� have been prepared in order to obtain drained samples with 

different parameters � and ��. Note that due to limitations of the generation method we were not 

able to produce the most concentrated systems for all the particle sizes. Parameters � and �� are 

measured thanks to a second cell (height = 7 cm and diameter = 26mm) also filled during the 

generation step. The bottom of this cell is a piston allowing for the particle-loaded foam to be 

partially pushed out after drainage. This setup allows sampling the foam along its height and the 

particle fraction profile is measured as follows: each sampled volume is first weighed and then rinsed 

several times with ethanol in order to break the foam and to remove glycerol (each time 
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centrifugation is performed for separating the particles from the liquid). Finally, the collected 

particle/ethanol mixture is let for drying (twelve hours at 60°C) and the resulting dried particles are 

weighed. For all the particle sizes, vertical profiles for particle volume fraction showed very good 

homogeneity of the samples for high particle loadings, i.e. 〈��〉 ≥ 0.02 (see Gorlier et al.22 for further 

details). For 〈��〉 ≤ 0.01, very good homogeneity was obtained for the large particle sizes, i.e. 

�� ≥ 40 µm, and samples with smaller particle sizes showed reasonable homogeneity, i.e. 

0.7 ≤ Δ�� 〈��〉⁄ ≤ 1.3. Such a behavior can be explained by the effect of initial particle 

concentration on drainage17. For high concentration, particles are trapped by collective jamming, i.e., 

channel size is larger than particle size. This situation promotes uniform concentration profile. For 

low concentration, collective jamming if rather ineffective and particle trapping is mainly due to 

individual captures, i.e., channel size is equal to particle size. For such cases, the quantity of trapped 

particles is strongly related to channel size at equilibrium, which is known to increase near the 

bottom: capture is less effective in those areas. 

 

2.5. Case of large particles 

 

In order to investigate systems characterized by larger particle-to-bubble size ratio, we turn to 

another approach for making foams loaded with glass particles of diameter �� = 3200 µm. Note that 

this size represents almost 10 bubbles. Precursor foam is continuously poured into the rheometry 

cell and the dry particles are spread by hand during the filling process, ensuring homogeneity as far 

as possible. Note that (i) the significant yield stress of the precursor foam (≈ 15 Pa) prevented particle 

settling; (ii) the elastic modulus of the precursor foam will be used as the reference elastic modulus 

for nondimensionalization purpose. We focused on systems with particle volume fractions equal to 

0.025 and 0.05. 

 

2.6. Rheometry 

 

After the drainage step, the rheology measurement procedure starts: elastic and loss moduli 

are measured as a function of shear strain amplitude � at a fixed frequency of 1Hz, from � = 10-4 to 

� = 10. The critical strain amplitude ����� marking the end of the linear regime is determined using 

the following criterium: ��������� = 0.98���� → 0�. For several strongly loaded systems, reaching 

the linear regime required to decrease more the strain amplitude, which induced significant noise on 

�� and inaccuracy on �����. Note that (i) to avoid slippage on the cell wall as the shear stress is 

applied, the cell surface has been striated to jam the bubbles; (ii) the minimal gap in the vane-cup 
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geometry represents 12 bubble diameters; (iii) the presence of perfluorohexane inside bubbles 

strongly reduces the foam ripening rate31 which allows aging effects to be ignored over the time scale 

of measurements. 

 

3. Results 

 

Results showing the effect of particle size on foam rheology are presented in figure 1. For 

given particle volume fraction, both elastic and loss moduli increase as particle size decreases, and 

for the largest investigated particle sizes, the moduli are very close to those obtained for particle-free 

foams. The effect of particle loading is all the more significant as the strain amplitude is smaller. Note 

also that the critical strain amplitude ����� marking the end of the linear elastic regime decreases as 

particle size decreases. For significant particle loadings and small particles, for example �� = 0.045 

and �� ≤ 40 µm, the linear regime is reached for ����� < 1056. In contrast for the largest particle 

sizes �����~1058, as for particle-free foams. 

 

Results obtained for �′ ≡ �′�� → 0� are plotted in figure 2a as a function of �� for all the 

investigated particle sizes. Note that modulus values are divided by the modulus of the 

corresponding particle-free foam, i.e. the aqueous foam with same bubble size and gas volume 

fraction, as estimated by the following relationship32: ��� ≡ �′��, 0� ≈ :�� ��⁄ ���� − ���. As we 

measured �′ = 44 Pa for the drained particle-free foam, which is characterized by � = ��	 ≈ 0.97, 

chosen parameters are : ≈ 1.8 and �� ≈ 0.64, the volume fraction corresponding to the random 

close packing of spheres. For particle volume fractions �� ≳ 0.02, elastic moduli show a strong 

evolution from the low values, measured for the largest particle sizes, towards the high values 

measured for the small particle sizes. For �� ≈ 0.05, more than one order of magnitude is measured 

between the smallest and the largest modulus values. The size-induced evolution is presented in 

figure 2b, revealing a transition-like behavior for all particle volume fractions: (i) the modulus does 

not evolve significantly for small particle-to-bubble size ratios, i.e., for �� ��⁄ ≲ 0.03, (ii) it decreases 

strongly for 0.03 ≤ �� ��⁄ ≲ 0.2, (iii) it remains close to unity for �� ��⁄ ≳ 0.2.  

 

Critical strain amplitudes ����� are reported in figure 3a as a function of particle volume 

fraction. At small particle volume fractions the critical strain of loaded foams is equal to the critical 

strain of particle-free foams, i.e., ��������� ≈ ������0�. However, as �� increases, ��������� 

decreases over two orders of magnitude. Note that the �� value for which ��������� starts to 

decrease is itself smaller as �� is smaller. 
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Images of the foam microstructure are presented in figure 4, revealing the organization of 

particles for similar particle loadings. For small particle-to-bubble size ratios, the particles aggregate 

in the interstitial foam network (Fig. 4a,b). Note that particles can form packings (Fig. 4a) or strings 

(Fig. 4b). For those size ratios, particles form a granular skeleton. For larger size ratios, particles are 

located in the nodes of the network without forming a percolating structure (Fig. 4c). Finally, the 

microstructure for the largest investigated size ratio is made of isolated large particles embedded in 

aqueous foam (Fig. 4d). 

 

 

4. Discussion 

 

Our results confirm that particle size has strong influence on the rheology of particle-loaded 

foams. The shear elastic modulus measured at small strain amplitude shows a transition-like 

behavior as a function of particle size.  

 

4.1. Case of small size ratios 

 

In a previous paper22, it has been shown that modulus values obtained for small particle-to-

bubble size ratios can be described by a simple model accounting for the intrinsic elasticity of the 

interstitial skeleton made of packed particles. The contribution of the skeleton is assumed to be 

given by �= ≈ >���1 − ��?, where �� is the bulk shear modulus of the matrix forming the skeleton 

and > is a numerical coefficient33. This contribution superimposes to that of the bubble assembly 

��� ≈ :�� ��⁄ ���� − ���, and the global elastic behavior is obtained by summing those two 

contributions: �′ ≈ >���1 − ��? + :�� ��⁄ ���� − ���.  As the skeleton is made of packed 

particles, the volume fraction occupied by the skeleton is 1 − � ≈ �� ��⁄ ,  and the reduced elastic 

modulus can be written: 

 

A8 ≡ BC�D,DE ,FE GH⁄ ≪8�
BJC

= 1 + K"
�L BJ

M GH⁄ ℎ����     (eq. 1) 

 

where ℎ���� = O��� ��⁄ − 1���� ��⁄ − 1 − ��? ��P �Q58
. According to literature32,33, we set 

> :⁄ = 0.36. Therefore, �� is the only fitting parameter and it represents the shear elastic modulus of 

the bulk granular packing forming the skeleton. As shown in figure 2a, good agreement is obtained 

with our data over the full range of �� values as �� = 150 kPa is used in eq. 1. This value has been 

found to be compatible with the elastic modulus measured for bulk granular material under 
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confinement pressures corresponding to pressures exerted by the bubbles on the granular skeleton22 

in foam. 

 

4.2. Case of large size ratios 

 

In contrast, for systems characterized by the largest investigated size ratio, i.e. �� ��⁄ ≳ 1, 

particles do not form such a granular structure. Instead, isolated large particles are embedded in 

aqueous foam, which is known as yield stress fluid34,35. It is therefore natural to describe such 

particle-loaded material with the modeling proposed for suspensions of non-colloidal particles in 

yield stress fluids36. The strengthening effect due to solid particles embedded in continuous matrix of 

elastic modulus �!"���#�  has been shown to be given by: ������ �!"���#�P = �1 − �� ��⁄ �5?.RDS
. 

Applying this result to our system requires to express the bulk elastic modulus �!"���#�  of the 

embedding foam. Within our experimental configuration, the average volume fraction value of the 

drained particle-free foam, that fills spaces between large particle inclusions, is ��	. This value differs 

from the value � measured for the particle-loaded foam, i.e., � = ��	�1 − ���, so the modulus of 

the reference aqueous foam ��� = :�� ��⁄ ���� − ��� differs from the modulus of the embedding 

foam �!"���#� = :�� ��⁄ ���	���	 − ���. Therefore, we introduce the factor T���� = �!"���#� ���⁄ , 

which can be written T���� = ���	 − ��� O�1 − ������	�1 − ��� − ���QP . Within our 

experimental configuration, T���� varies from 1 to 1.23 as �� increases from 0 to 0.05. Note that 

other experimental configurations are expected to induce other behaviors for T����: in Cohen-

Addad et al.18 for example, particle-loaded foams were obtained by mixing the reference foam with 

dry particles and the system was not expected to drain, i.e., in such a case, the embedding foam is 

always the reference foam and T���� = 1. 

The reduced shear elastic modulus is obtained by writing37 ����, ��, �� ��⁄ ≫ 1� ���⁄ =
������ �!"���#�P × �!"���#� ���⁄ , which can be expressed as:  

 

A� ≡ BC�D,DE ,FE GH⁄ ≫8�
BJC

= T���� × K1 − DE
DS

L5?.RDS
     (eq. 2) 

 

The particle-to-bubble size ratio does not appear in eq. 2 because foam is assumed to behave as a 

continuous material. Eq. 2 is plotted in Fig. 2a, using 

T���� = ���	 − ��� O�1 − ������	�1 − ��� − ���QP , and it is shown to compare well with data 

obtained for �� ��⁄ ≳ 1.  
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4.3. Case of intermediate size ratios 

 

4.3.1. Transition behavior of the elastic modulus 

 

The elastic modulus of particle-loaded foams appears to evolve from the upper bound given by 

eq. 1 and valid for �� ��⁄ ≪ 1, towards the lower bound given by eq. 2 and valid for �� ��⁄ ≫ 1. In 

order to highlight the transition behavior over the whole range of particle volume fractions, we 

introduce the normalized elastic modulus: 

 

�W� =
XC�Y,YE,ZE [H⁄ �

XJC
5\J

\]5\J
          (eq. 3) 

 

In eq. 3, �W� measures the magnitude of ����, ��, �� ��⁄ � with respect to both upper and lower 

bounds defined by eqs 1 and 2, for which �W� = 1 and �W� = 0 respectively. �W� is plotted in figure 5a as 

a function of �� ��⁄ , for several �� values and using �� = 150 kPa 22. It is shown that for all �� values 

�W� decreases from 1 over two orders of magnitude as �� ��⁄  increases from 0.01 to 1. Note that the 

decrease is not observed from the smallest �� ��⁄  values, for which �W� ≈ 1. In the inset of figure 5a, 

�W� is plotted as a function of the so-called confinement parameter, $. This parameter, introduced by 

Louvet et al.38 in order to describe the capture of particles within interstitial foam networks, 

compares the size of particles to the size of constrictions formed between contacting bubbles in 

foam: $ = ^��� �� ��⁄ , with ^��� = �1 + 0.57�1 − ���.?`� �0.27a�1 − �� + 3.17�1 − ��?.`R�P . 

We choose to use � = ��	 ≈ 0.97, the average value of the gas volume fraction in the drained 

particle-free foam. As shown in Fig. 5a, the transition between the regime �W� ≈ 1 and the regime of 

decrease occurs at $ ≈ 1. Note that as $ increases from $ ≈ 1, the deformation of interfaces 

delimiting the foam network intensifies and simultaneously particles increase their contact surface 

area with the liquid/gas interface16, which can be viewed as the progressive exclusion of the particles 

from the bulk foam network. For foam drainage and as well as for mechanics of solid foams, this size-

induced morphological evolution, also named particle exclusion transition, has been found to induce 

a significant evolution of the foam properties17,37. Therefore, figure 5a shows that rheology of 

particle-loaded foams also is governed by this morphological transition. 
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4.3.2. Consistency with previous work 

 

Now, we show how results from Cohen-Addad et al.18 can be interpreted within the framework 

of the particle exclusion transition by plotting �W� as a function of �� ��⁄  or $. The starting point is to 

determine the optimal elastic modulus which characterizes the system for $ ≲ 1, even though this 

modulus has not been measured by Cohen-Addad et al.18. This can be done by choosing a �� valuei 

and adjusting �� in eq. 3 in order to get a consistent plot with our data. The resulting plot is 

presented in figure 5b. We would like to stress three issues: (i) despite differences in bubble and 

particle sizes, previous results are found to complement our data and to exhibit the same behavior in 

terms of power law, i.e. �W� ∼ ��� ��⁄ �58.R
; (ii) previous results corresponding to plate-like particles 

are clearly shown to not belong to the same set of data as spherical particles; (iii) the value obtained 

for �� is equal to 1.5 MPa. This value is significantly larger than the one obtained for our data (0.15 

MPa), but in fact it is in perfect agreement with the expected value for the bulk granular material22. 

As already mentioned in Gorlier et al.22, we stress that within our experimental conditions the 

confinement pressure, i.e., the pressure exerted by liquid/gas interface on packed particles, is rather 

low and it does not allow reaching the full range of values expected for ��. In contrast, the 

confinement pressure involved in the experiment of Cohen-Addad et al. is significantly largerii and 

the elasticity of the granular skeleton is therefore expected to be in much closer agreement with 

measured elastic modulus of bulk granular matter. 

 

4.3.3. Transition regime expressed in terms of particle volume fraction 

 

 

Previous work18 interpreted the particle size-induced evolution for foam elasticity in terms of 

particle volume fraction for rigidity percolation threshold. We consider this approach also and we 

determine the particle volume fraction ��∗  marking the onset of particle-induced strengthening. 

Firstly, we focus on the smallest particles, characterized by $ < 1. For such a situation, strengthening 

is expected to start as packed particles fully fill the interstitial network, i.e. ��∗ ≈ ���1 −
��	� ≈ 0.015, where ��	 is the average gas volume fraction of the reference particle-free foam. For 

such a ��∗  value, the modulus of foams containing particles with diameter �� ≤ 20 µm is increased by 

                                                           
i
 We choose particle volume fraction as large as possible with our data, i.e. �� ≈ 0.07, in order to observe the 

maximum strengthening effect. 
ii
 Parameters of aqueous foams used by Cohen-Addad et al. are: ��= 30µm, � ≈ 0.9. The osmotic pressure is 

expected to be Π = 1.2 � ��⁄ ≈ 1600 Pa, which is 4 times larger than the confinement pressure in our 

experiment. 
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a factor 2.5 (see Fig. 2a). Then, for all other particle sizes, we determine ��∗  such that 

�����∗� �!"���#�P ≈ 2.5, and we follow the same procedure for data from Cohen-Addad et al. The two 

sets of ��∗  values are plotted in figure 6 as a function of �� ��⁄ , showing a transition in the ��∗  values, 

from ��∗ ≈ ���1 − ��	� for small size ratios, towards ��∗ ≈ 0.3. The latter corresponds to the 

expected value for large size ratios deduced from eq. 2 with T���� = 1 (i.e., corresponding to the 

experimental conditions of Cohen-Addad et al.):  ��∗ ≈ ���1 − �2.5�58 �?.RDS�⁄ �. Therefore, 

expressing the onset of foam strengthening in terms of particle volume fraction highlights also the 

so-called particle exclusion transition between two extreme configurations: for $ < 1 the particles 

concentrate into the interstitial foam network, whereas for $ ≫ 1 the particles are large inclusions 

embedded into aqueous foam. Although those two bounds have been identified, the global modeling 

of the transition is still lacking. It is however possible to bring some understanding elements for the 

behavior observed at small particle-to-bubble size ratios. Indeed, a particular morphological 

configuration has been identified in figure 4c: particles concentrate into the foam network in forming 

particle strings along the Plateau borders. One can estimate the corresponding particle volume 

fraction ��
=���d\

 as follows. First, we assume the Kelvin cell geometry32, i.e. 6 nodes (each with 2 half-

Plateau borders) per gas bubble of volume Ω\ = f��6 6⁄ , and a node-to-node distance gdd ≈
0.36��. Therefore, the number of particles per bubble is 6�2 gdd ��⁄ − 1�, where the constant (-1) 

accounts for the non-overlapping of node-to-node distances. Combining those expressions gives the 

volume of particles per bubble: Ω� ≈ �0.72�� ��⁄ − 1�f��6. The latter can be used to estimate the 

corresponding volume of interstitial phase, i.e. liquid plus particles, per bubble: 

Ω� ≈ �1 
8⁄ ��0.72�� ��⁄ − 1�f��6, where 
8 ≈ 1 3⁄  is the particle volume fraction within the 

interstitial phase for the particle-string configuration (see details in Haffner et al.14). The particle 

volume fraction in the particle-string configuration is ��
=���d\ ≈ Ω� �Ω� + Ω\�⁄ , which can be 

expressed as: 

 

��
=���d\ ≈ h3 + GHi

j��.`?GH FE⁄ 58�FEi
k

58
   (eq. 4) 

 

Eq. 4 is expected to apply as particles are too big for forming a 3D packing structure into the foam 

network, but small enough for percolating through that network. As shown in the inset of figure 6, 

eq. 4 predicts correctly the strong increase observed for ��∗  as $ ≈ 2. From that value, increasing the 

confinement parameter results in progressive particles exclusion from the interstitial network. 
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4.3.4. Transition regime expressed in terms of critical strain amplitude 

 

Finally, we turn to results for the critical strain amplitudes (Fig. 3a), which have been found to 

depend on both particle size and particle volume fraction. Similarly to the procedure applied to ��, 

we introduce the characteristic particle volume fraction ��∗∗ in order to construct a single curve 

��������� ������0�⁄ = ���� ��∗∗⁄ � for all the particle sizes (see figure 3b). The values ��∗∗ are plotted 

as a function of $ in the inset of figure 3b. It is shown that ��∗∗ exhibits the same behavior as ��∗, i.e., 

��∗∗ ≈ ���1 − ��	� ≈ 0.15 for $ ≲ 1 and ��∗∗ ≈ ��
=���d\

 for 1.5 ≲ $ ≲ 3, showing that within that 

range of size ratios, �� and ����� are both governed by the mechanical properties of packing 

structures formed by particles in the interstitial foam network. 

 

5. Conclusion 

 

We have generated well-controlled particle-loaded liquid foams and we have measured both 

the elastic modulus exhibited by the material at small strain and the strain marking the end of the 

linear elastic regime. Results have revealed the existence of a critical particle-to-bubble size ratio 

triggering a sharp transition between two well-defined regimes, which have been found to be 

equivalently described in terms of elastic modulus or in terms of particle volume fraction for the 

onset of strengthening. Previous results from literature have been successfully incorporated to our 

description, providing a consistent set of data supporting the physical picture of a transition between 

two regimes. For small size ratios, more precisely as the confinement parameter $ is smaller than 

unity, the behavior is governed by the mechanical properties of the solid grains, which have been 

proved to pack in the shape of a foam-embedded granular skeleton. The elasticity of the granular 

skeleton has been estimated using models available for solid foams, to which elasticity of the bubble 

assembly has been added. In contrast, bubbles elasticity prevails in the second regime, where 

isolated large particles contribute only weakly to the rheological behavior of the foamed material. 

The general modeling available for non-colloidal hard particles embedded in soft elastic matrix has 

been shown to describe correctly the results in the second regime. Both theoretical bounds, for small 

and large particles, have been used to normalize the observed transition, highlighting the strong 

analogy with previously reported particle size-induced effects on foam drainage17 and solid foam 

mechanics37. In particular, the normalized elastic modulus has been shown to decrease as a function 

of the particle-to-bubble size ratio according to a power law �W� ∼ ��� ��⁄ �5d
, with l close to 1.5. 

This indicates that rheology and the other properties of particle-loaded foams are subjected to the 

same size-induced morphological transition. Further work could be devoted to the modeling of the 

particle exclusion transition. 
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Fig. 1: (a,c) Shear elastic modulus G� and (b,d) shear loss modulus G�� as a function of strain amplitude (imposed 

at a frequency equal to 1 Hz) for aqueous foams loaded with particles of different diameters. Two particle 

volume fractions are presented: �� = 0.015 (a,b) and 0.045 (c,d). Solid lines represent the particle-free foam. 
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Fig. 2: (a) Reduced elastic modulus �� ���⁄  measured as a function of the particle volume fraction for several 

particle-to-bubble size ratios. Continuous and dashed black lines correspond to eqs 1 and 2 respectively. (b) 

Reduced elastic modulus �� ���⁄  as a function of particle-to-bubble size ratio for several particle volume 

fractions ϕo and several particle sizes do. Note that several points have been obtained from interpolation and 

extrapolation of experimental data presented in 2a.  
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Fig. 3: (a) Reduced critical strain amplitude ϵrstu�ϕo� ϵrstu�0�⁄  as a function of the particle volume fraction for 

several particle-to-bubble size ratios. (b) Reduced critical strain amplitude ϵrstu�ϕo� ϵrstu�0�⁄  as a function of 

reduced particle volume fractions ϕo ϕo∗∗⁄  (see details about ϕo∗∗ in the main text) for several particle-to-bubble 

size ratios. Inset: characteristic particle volume fraction ϕo∗∗ as a function of the confinement parameter λ. The 

continuous line corresponds to eq. 4. 
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Fig. 4: Images of particle-loaded foams showing the evolution of the microstructure as particle size increases 

(bubble size is equal to 450 µm; length scale is given by the particle size indicated in the following). (a) packings 

of particles (�� = 10 µm, ϕo ≈ 1.5%), (b) strings of particles (�� =	40 µm, ϕo ≈ 2.5%), (c) isolated particles in 

foam nodes (�� = 80 µm, ϕo ≈ 1%), (d) isolated large particles embedded in foam (�� = 500 µm, ϕo ≈ 3%). 

 

  



20 

 

 

 

Fig. 5: (a) Normalized elastic modulus Gw� defined by eq. 3 as a function of particle-to-bubble size ratio for 

several particle volume fractions. Inset: Normalized elastic modulus Gw� as a function of the confinement 

parameter λ. (b) Normalized elastic modulus Gw� defined by eq. 3 as a function of particle-to-bubble size ratio 

for a particle volume fraction ϕo ≃ 0.07. Empty symbols represent data of figure 5a (ϕo = 0.065) and filled 

symbols represent data from reference 
18

 and adapted according to eq. 3 (see main text for details). Note that 

filled circles represent spherical particles whereas the filled square represents plate-like talc particles. Grey line 

is a power law: Gw� = 0.013�do Dz⁄ �58.{|
. Inset: Normalized elastic modulus Gw� as a function of particle-to-

bubble size ratio. 
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Fig. 6: Characteristic particle volume fraction ϕo∗  as a function of particle-to-bubble size ratio. The dashed grey 

line is a guide for the eye. Thick horizontal dashed lines represent the particle volume fractions discussed in the 

main text. Inset: Characteristic particle volume fraction ϕo∗  as a function of the confinement parameter λ. The 

continuous line corresponds to eq. 4. 

 

 

 

 

 


