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Abstract: Soft robots present several advantages. However, one of the main challenges of this
new field of robotics is to control these robots. The methods used to control rigid robots are not
directly relevant and new approaches have to be invented or updated to be applied to this kind
of robots. This paper introduces control solutions for soft robots studies taking into account
dynamics of the system.
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1. INTRODUCTION

Soft robots are made of complex deformable structures
with designs often inspired by the organic materials we can
find in the nature. Soft robotics present several advantages
over their rigid counterparts such as being more flexible
and compliant to the environment (Trivedi et al. (2008);
Kim et al. (2013)). It makes them inherently safer for
human-robot interaction. The use of soft robots is a
new way to build robotic systems that can deal with
uncertainty and dynamic environments, see for instance
Majidi (2014).

At the same time, classical control tools used to work with
rigid bodies are not suitable anymore. As pointed out by
some recent papers, such as Rus and Tolley (2015), new
approaches have to be created or adapted to soft robotics.
In contrast to rigid ones, soft robots have a theoretical infi-
nite number of degrees of freedom. In practice, the spatial
discretization of the structure leads to a huge number of
partial ordinary differential equations and state variables.
Moreover, soft robots are highly nonlinear systems and the
sensitivity of the materials can easily cause a change in the
dynamics of the system. That is why the classical tools of
control science cannot be used.

Soft robots motion depends on their deformation for
which an accurate model can be obtained using numerical
methods, such as the Finite Element Method (FEM). Our
work is based on the work promoted in Duriez (2013);
Largilliere et al. (2015). These papers introduced a feed-
forward control method that changes the equilibrium point
of the studied structure using an inverse model computed
by optimization.

These approaches have been extended to real-time closed-
loop control in Zhang et al. (2016). However, the control
solutions developed were based on a quasi-static model,
which limits the control to low velocities trajectories.

In this paper, we focus on the dynamics of the soft
robots. We will use the FEM methodology to get a
dynamical model of the soft robot. First, we investigate
a model order reduction approach. Then, we propose a
controller based on the dynamical reduced-order model of
the robot. Our method is generic and does not require any
geometrical consideration. Finally, we present work tracks
to be investigated in the future.

2. PROBLEM STATEMENT

We define q ∈ Rn as the position of each nodes of the finite
element model. Thus, v = q̇ is the velocity vector of the
mesh. From the second law of Newton, we get a nonlinear
model of the soft robot behaviour :

M(q)v̇ = P − Fint(v, q) +HTλ(t) (1)

where M(q) is the mass matrix, P gathers all the known
external forces (in practice, we consider only the gravity
field), Fint are the internal forces and HTλ is the actuator
contribution : HT is the direction and λ is the amplitude of
the actuator forces. Through a linearization of the internal
forces (see Saupin et al. (2009); Bosman et al. (2015) for
details), we obtain the following non-linear approximation
of the soft robot behaviour :

M(q)v̇ +D(q, v)v +K(q, v)(q − q0) = HTλ(t) (2)

where q0 is one equilibrium point induced by P . The ma-
trices K(q, v) and D(q, v) are respectively the compliance
matrix and the Rayleigh damping matrix defined as :

D(q, v) = αM(q) + βK(q, v) (3)

α and β being respectively the mass-proportional and the
stiffness-proportional damping coefficients of the material.

We then obtain a large-scale non-linear system described
by the following state-space equation :{

ẋ(t) = A(x)x(t) +B(x)u(t)

y(t) = Cx(t)
(4)

with system matrices defined as :



x =

(
v

q − q0

)
; A =

(
−M(·)−1

D(·) −M(·)−1
K(·)

In 0

)
B =

(
M(·)−1

HT

0

)
; u(t) = λ(t)

In is the identity matrix of the same dimension as the
position vector q, the matrix C is a sparse matrix defining
the effector coordinates and (·) represent omitted matrix
function arguments.

We consider a deformable structure such as the one pre-
sented in Fig. 1. This structure does not have a specific
shape. It is actuated by three cables pulling on the arms
which allows the top of the robot to move on the 2D space.
When actuated, each cable creates a deformation on the
whole structure so that the three cables are coupled by
deformation. The triangular mesh of the robot is made
of 157 nodes. Considering both position and velocity in
the two dimensions, we will have a system, described by
equation (4), of order 628.

Fig. 1. FEM model of the 2D robot used in simulation.

3. LINEAR REDUCED ORDER CONTROL

3.1 Motivations

Considering the linearization of equation (4) around an
equilibrium point, we can assume that the mass, compli-
ance and damping matrices are constant, i.e M(q) = M ,
K(q, v) = K and D(q, v) = D during all the simulation.
Thus, the state-space equation (4) becomes a Linear Time
Invariant (LTI) model :{

ẋ = Ax+Bu

y = Cx
(5)

with A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. In this case, an
accurate dynamical control of the soft body could be done
with a pole placement feedback. However, the existing
algorithms of model reduction in control science are not
able to deal with so large scale systems. For instance, the
balanced truncation method failed when the order of the
system is too high (see Antoulas (2005)).

We could investigate and use different order reduction
methods, such as the Iterative SVD-Krylov based method
(Gugercin (2008)) extended to the multi-input multi-
output case with the Iterative SVD-Tangential Interpola-
tion Method (see Poussot-Vassal (2011) for details). How-
ever, these methods are adapted to the linear case only.
Our final objective is to deal with the non-linear represen-
tation of the soft-robot, we thus use a method which is
more intended for non-linear systems.

3.2 Preliminaries

In this contribution, we will use the snapshot-Proper Or-
thogonal Decomposition (POD) (see for example Sirovich
(1987); Goury (2015)) well known in the computational
mechanics community for reducing the computational bur-
den of numerical simulations while keeping an accuracy
chosen by the user. The state variables are expressed as a
linear combination of modes, which are fixed once and for
all. Typically, few modes are required to capture the mo-
tion of a mechanical structure, even though this structure
is represented by a fine mesh. In consequence, the number
of degrees of freedom becomes the magnitude of each mode
in the reduced model rather than the displacement of
each node of the FEM mesh. The number of degrees of
freedom are also greatly reduced. The modes are extracted
from a so-called snapshot space using a singular value
decomposition. The snapshot space is generated in an
offline, expensive stage, where many full order simulations
of the structure are performed, under various parametric
conditions. These simulations should be as exhaustive as
possible, so as to capture any case the structure may
encounter in the online stage.

In the context of control of soft robots, this method will
provide us with a system of achievable size to apply
traditional rigid robotics control techniques. In the case
of the robot depicted in Fig. 1, the reduced order is 8.

We can approximate the displacement vector q − q0 by :

q − q0 ≈
n∑
i

αiφi = Φα (6)

where

Φ = (φ1 φ2 . . . φn) and α =


α1

α2

...
αn

 (7)

Φ being the chosen deformation modes and the corre-
sponding weighting α. The vectors φi are all orthogonal.

As we are interested in the dynamics of the robot, we store
the acceleration of the robot at any time during a first
experiment. We also obtain the snapshot matrix S :

S = (v̇t0 v̇t1 v̇t2 . . . v̇tf ) (8)

Performing a singular value decomposition of this snapshot
matrix, we get Φ, the left-singular matrix. For the reduc-
tion model to be as accurate as possible, the singular value
decomposition has to be performed on a large number of
values, in our case, we store 3360 snapshots of v̇.

3.3 Application to soft robots

Starting from the linear state-space representation (5), the
following relationship models the transformation between
the full state x of dimension n and the reduced state xr.
This new state will be made of the reduced velocity vector
and reduced displacement vector, both of dimension r

2 .
The reduced state xr will consequently be made of r values.
This state reduction is made through the reduction matrix
T :

Txr = x (9)



where T is a rectangular matrix defined as :

T =

(
Φr 0
0 Φr

)
(10)

with TTT = Ir, where Ir is the identity matrix of reduced
dimension and Φr a matrix made of the r

2 -first columns of
the matrix Φ.

Thus, we have the reduced linear state-space representa-
tion : {

ẋr = TTATxr + TTBu

y = CTxr

⇔{
ẋr = Arxr +Bru

y = Crxr

(11)

with Ar ∈ Rr×r, Br ∈ Rr×m and Cr ∈ Rp×r. From
this reduced-order model, we can define a linear feedback
u = −Kxr. We also obtain the closed-loop state space
model : {

ẋr = (Ar −BrK)xr
y = Crxr

(12)

We use the pole placement method to compute the matrix
K. We want to assign the closed-loop poles (denoted by
polesCL) to desired locations. In order to keep the natural
frequencies of the system, we simply delete the imaginary
part of the open-loop poles (polesOL) :

polesCL = Re(polesOL) (13)

where Re(z) is the real part of a complex number z.

3.4 Simulation results

The singular values of the model of the 2D robot are shown
in Fig. 2. We can easily see that these singular values
decrease very fast. For simulation experiments, we keep
the first four singular values, which lead to a matrix T
of dimension (628 × 8) and to a reduced-order system of
order 8. We get the full state x of the soft robot from a
Luenberger observer, which is also based on the reduced
linear model. Let x̂r be the observed state, we thus define
a state-feedback control law u = −Kx̂r.

Fig. 2. 20 firsts singular values of the model of the soft
robot.

Figures 3 and 4 show the trajectory of the effector of the
robot. It is clear that, with actuation, the system converges
faster to the desired position. One of the objectives is
to design a matrix T that provides controllability and
observability properties for the reduced-order system. The
challenge is to find the optimal reduced order base. One
of the problems is also to find the good excitation signal.

Fig. 3. Abscissa of the effector-node of the mesh in open-
loop (blue) and closed-loop (red).

Fig. 4. Ordinate of the effector-node of the mesh in open-
loop (blue) and closed-loop (red).

If the matrix Φ is computed with a bad snapshot matrix,
the reduced model will not be consistent. The snapshot
matrix must be saved while the robot is deformed in the
same way as during the control experiment.

For instance, the control law based on the linear model
(11), shows limitations in some cases. When the initial
geometry of the robot is highly deformed, in a way that
has not been taken into account in the snapshot matrix,
the control input can destabilize the system. Moreover, as
contacts are not handled in this model, when the initial
state of the robot presents self-collisions or when the
control law leads to self-collision, the robot does not get
to the desired position.

4. CONCLUSION AND FUTURE WORK

The control law based on a LTI reduced order model is
easy to design. With this method, we can use the classical
tools of control theory, such as pole placement, which can
be efficiently implemented. One of the challenging parts
is to find a suitable reduction matrix to keep interesting
properties for the reduced order system. This can be
achieved using POD. However, this method only works
well while the trajectory of the robot remains in a set
around the equilibrium.

The next step of this work is to increase the working
area of the robot. To achieve this objective, we first
need to bound the uncertainties brought by the order
reduction. This work is still under development and several
leads are investigated. We will compare the results of
the POD to the one brought by the mixed SVD-Krylov
approaches, which are implemented in Matlab within the



MORE toolbox (see Poussot-Vassal and Vuillemin (2012)
for details).

Once this is achieved, we will design a robust control
law (see for instance Zhou and Doyle (1998)), to specify
performances while taking into account order reduction
uncertainties.

To represent non-linearities more faithfully than with the
LTI model, we could use a Linear Parameter-Varying
(LPV) model (see Briat (2008)). In the future, we will
also compute the linearization of the compliance matrix
around different points of interest. We will thus have the
possibility to control the robot in a larger working area.
To go further, this LPV representation could also help
to take into account contacts between the robot and the
environment.
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