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Existence results for a monophasic compressible
Darcy-Brinkman’s flow in porous media

Houssein NASSER EL DINE(1,2), Mazen SAAD(1), Raafat TALHOUK(2)

Abstract In this paper, we are interested in the displacement of a single compressible phase in Darcy-
Brinkman’s flow in porous media. The equations are obtained by the conservation of mass and by considering
the Brinkman regularization velocity of the standard Darcy infiltration velocity. This model is treated in its gen-
eral form with the whole nonlinear terms. In first part, we prove the existence in one dimensional space of a
solution for the Dracy-Brinkman system, and in the second one we treat this system with Bear hypothesis in
multidimensional spaces.

1 Introduction and the Darcy-Brinkman model

1.1 Introduction

Flow in porous media occurs in a range of engineering applications, e.g., geothermal systems, oil extraction,
ground water pollution, storage of nuclear waste, heat exchangers, catalytic convertors, and chemical reactors.
Among the important characteristics of such flows are the velocity profile and pressure drop [11]. For example,
these two directly influence convection heat transfer in porous media, and the required pumping power in heat
exchange processes. In convection heat transfer, the velocity profile is substituted into the energy equation to
obtain the temperature distribution. In reactors, the velocity profile strongly impacts the chemical reactions
(see [2, 4, 8, 20]).
Different empirical laws are used to describe the filtration of a fluid through porous media [19]. We mention the
Darcy law which states that the filtration velocity of the fluid is proportional to the pressure gradient. The Darcy
law cannot sustain the no-slip condition on an impermeable wall or a transmission condition on the contact
with free flow. That motivated H. Brinkmann in 1947 to modify the Darcy law in order to be able to impose
the no-slip boundary condition on an obstacle submerged in porous medium. He assumed large permeability to
compare his law with experimental data and assumed that the second viscosity µ equals the physical viscosity
of the fluid in the case of monophasic flow. Also, an up-scaling of the Stokes equations with non-slip boundary
condition describing the flow in a porous medium, leads to the Darcy-Brinkman equations [5].
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1.2 The Darcy-Brinkman model

We are interested in the displacement of compressible phase in a Darcy-Brinkman flow in an isotropic porous
media. The equation describing the displacement of compressible fluid is given by the following mass conser-
vation of the phase:

φ∂tρ(p)+div(ρ(p)V ) = 0, (1)

where ρ is the density of the fluid which is a given function depend on the pressure p and φ is the porosity. The
velocity V is given by the Brinkman-Darcy law [7, 19] :

−νk∆V + µ̃V =−k∇p, (2)

where k is the permeability of the porous media, µ̃ is the usual Darcy viscosity and ν is the Brinkman viscosity. It
is well known that solutions of hyperbolic conservation laws can develop discontinuities, even for smooth initial
data (see, e.g., [13]). The presence of these discontinuities or shock waves implies that solutions of conservation
laws are sought in a weak sense and are augmented with additional admissibility criteria or entropy conditions
in order to ensure uniqueness. As the phase flow equation (1) involves a conservation law, we need to define a
suitable concept of entropy solutions for these equations and show that these solutions are well posed. The main
challenge in showing existence is the fact that the velocity field V acts as a coefficient in this equation. Although
conservation laws with coefficients have been studied extensively in recent years (see [1, 3, 9, 10, 12, 16]) and
references therein, the state of the art results require that the coefficient is a function of bounded variation.
However, the fact that the coefficient ( the velocity) depends on p poses a big difficulty to treat our equation
as a conservation law equation. In order to obtain a system be resolved, first we develop equation (1), then we
divided by ρ(p) to get

φ∂tu+V ·∇u+divV = 0, (3)

where u = ln(ρ(p)), that give the pressure p = ρ−1 (eu). In what follows let us define the function h(z) =
ρ−1 (ez) and suppose h is regular enough (see paragraph 3.1 for some given examples of h) which leads us to
obtain the general form of Brinkman-Darcy system of a single phase :{

φ∂tu+V ·∇u+divV = 0,
−νk∆V + µ̃V =−k∇h(u).

(4)

The system (4) is a coupled transport-elliptic system (of Hyperbolic-elliptic type) strongly nonlinear (due to the
fact that V depends on u). The study of such system in PDE is not standard or trivial. To our knowledge, there
is not any results or study concerning this system. So our study of this system will be divided into two parts,
the first one concerns the system (4) in one-dimensional space and in whole R. The second part concerns the
system (4) under the Bear hypothesis in a bounded domain Ω ⊂ Rd .
First of all we will start by transforming the first equation of (4) into a dispersive nonlinear equation by using
the linear elliptic structure of the second equation which allows us to work in a fractional spaces with high
regularity. For that, apply formally the Helmholtz operator (−νk∆ + µ̃) to the first equation in (4) to get{

φ µ̃∂tu−φνk div(∇∂tu)− k∇h(u) ·∇u−2νk∇V : ∇∇u−νkV ·∇∆u− k div(∇h(u)) = 0,

−νk∇
2V + µ̃V =−k∇h(u).

(5)

We precise the notation that : ∇V = (∇V )i j = (∂ jVi)i j , ∇∇u = (∂ j∂iu)i j , ∇2V = ∇ ·∇V and A : B = ∑i j ai jbi j.

In whats follow, we will solve this system in one dimensional space R, and later we will pose Bear hypoth-
esis on the system (4) in order to solve this system in high dimensional bounded space Ω .
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1.3 Organization of the paper

We start by defining some notations in Section 2.1; next in Section 2.2 we show the well-posedness of the
Darcy-Brinkman equation in 1D by giving some preliminary result and make some linear analysis to state the
main theorem. Then in section 3 we rewrite the Darcy-Brinkman system with Bear hypothesis and state some
particular cases of state law. Finally in section 3.2 we prove the existence of a weak solution of a generalized
system covering those particular cases.

2 Study of Darcy-Brinkman model in one dimensional space

2.1 Notation

We denote by C(λ1,λ2, ...) a constant depending on the parameters λ1,λ2, .... The notation a . b means that
a ≤ Cb, for some nonnegative constant C whose exact expression is of no importance. Let p be any constant
with 1 ≤ p < ∞ and denote Lp = Lp(R) the space of all Lebesgue-measurable functions f with the standard
norm

| f |Lp =

(∫
R
| f (x)|p dx

) 1
p

< ∞.

When p = 2, we denote the norm | · |L2 simply by | · |2. The inner product of any functions f1 and f2 in the
Hilbert space L2(R) is denoted by

( f1, f2) =
∫
R

f1(x) f2(x)dx.

The space L∞ = L∞(R) consists of all essentially bounded, Lebesgue-measurable function f with the norm

| f |L∞ = esssup | f (x)|< ∞.

We denote by W 1,∞ =W 1,∞(R) = { f ∈ L∞, ∂x f ∈ L∞} endowed with its canonical norm.
For any real constant s, Hs = Hs(R) denotes the Sobolev space of all tempered distributions f with the norm
| f |Hs = |Λ s f |2 < ∞, where Λ is the pseudo-differential operator Λ = (1−∂ 2

x )
1
2 .

For any functions u = u(x, t) and v(x, t) defined on [0,T )×R with T > 0, we denote the inner product, the
Lp-norm and especially the L2-norm, as well as the Sobolev norm, with respect to the spatial variable x, by
(u,v) = (u(, t),v(, t)), |u|Lp = |u(t, .)|Lp , |u|L2 = |u(t, .)|L2 , and |u|Hs = |u(t, .)|Hs , respectively. BHs(0,R) is the
closed ball of center 0 and radius R in Hs.
Let Ck(R) denote the space of k-times continuously differentiable functions and C∞

0 (R) denote the space of
infinitely differentiable functions, with compact support in R.
For any closed operator T defined on a Banach space X of functions, the commutator [T, f ] is defined by
[T, f ]g = T ( f g)− f T (g) with f ,g and f g belonging to the domain of T .

2.2 Well-posedness of the Darcy-Brinkman equation in 1D

In one dimensional space, the Darcy-Brinkman equations (5) can be simplified, into{
∂tu−µ∂

2
x ∂tu−a∂xh(u)∂xu−2µ∂xV ∂

2
x u−µV ∂

3
x u−a∂

2
x h(u) = 0,

−µ∂
2
x V +V =−a∂xh(u),

(6)



4 Houssein NASSER EL DINE(1,2), Mazen SAAD(1), Raafat TALHOUK(2)

where h(u) = ρ−1 (eu) , a = k
µ̃

and µ = kν

µ̃
. By change the scale in time, we can consider φ = 1 which change

nothing in the study of this system. For the sake of simplicity, we write

T = 1−µ∂
2
x .

The following lemma gives an important invertibility result on T

Lemma 1. The operator T : H2(R)−→ L2(R) is well defined, one-to-one and onto. In particular we have

|T −1 f |Hs +
√

µ|T −1
∂x f |Hs . | f |Hs , ∀s > 0. (7)

Proof : The proof of this Lemma is classical but for the sake of completeness we reproduce the proof. In order
to prove the invertibility of T , let us first remark that the quantity |v|∗ defined as

|v|2∗ = |v|22 +µ|∂xv|22

is equivalent to the H1(R)-norm but not uniformly with respect to µ ∈ (0,1). We define by H1
∗ (R) the space

H1(R) endowed with this norm. The bilinear form:

a(u,v) = (T u,v) = (u,v)+µ(∂xu,∂xv) (8)

is obviously continuous on H1
∗ (R)×H1

∗ (R). Remarking that a(u,u) = |u|2∗, in particular, a is coercive on H1
∗ .

Using the Riesz Theorem, for all f ∈ L2(R), there exists a unique u ∈ H1
∗ (R) such that, for all v ∈ H1

∗ (R)

a(u,v) = ( f ,v);

equivalently, there is a unique solution to the equation

T u = f .

We then get from the definition of T that ∂ 2
x u = 1

µ
(u− f ). Since u∈H1(R) and f ∈ L2(R), we get ∂ 2

x u∈ L2(R)
and thus u∈H2(R). We prove here estimate (7). Indeed, from equation (8) by using Cauchy-Schwartz inequality
we have

a(u,u)≤ | f |2|u|2 ≤
1
2
| f |22 +

1
2
|u|22.

Then it is easy to get |u|2∗ . | f |22. We prove here that |T −1 f |Hs +
√

µ|T −1∂x f |Hs . | f |Hs . Indeed, if f ∈Hs and
u = T −1 f then T u = f . Applying Λ s to this identity, we get T Λ su = Λ s f . Since Λ s is commute with T and
T −1, one can use estimate |u|2∗ . | f |22 to get the result. �

2.3 Linear analysis

In order to rewrite the first equation of Darcy-Brinkman system (6)1 in a condensed form, let us define the
following operator

A[V,u] f =−a∂xh(u) f −2µ∂xV ∂x f −µV ∂
2
x f −a∂xh′(u) f −ah′(u)∂x f .

The Darcy-Brinkman system (5) can be written after applying T −1 to both sides of the first equation in (5) as{
−µ∂

2
x V +V =−a∂xh(u),

∂tu+B[V,u]∂xu = 0,
(9)
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where B[V,u] = T −1A[V,u]. This subsection is devoted to the proof of energy estimates for the following initial
value problem around some reference state ū:

−µ∂
2
x V +V =−a∂xh(ū),

∂tu+B[V, ū]∂xu = 0,
u(0,x) = u0(x).

(10)

A natural energy of the second equation of system (10) is given by

Es(u)2 = (Λ su,T Λ
su) = |v|2Hs +µ|∂xv|2Hs , .

Notice that Es(u)2 for a fixed µ is an equivalent norm of the norm of space Hs+1. We prove now the following
proposition:

Proposition 1. Let s0 > 1
2 , s ≥ s0 + 1 and ū ∈ C([0,T ];Hs+1). Then for all u0 ∈ Hs+1 there exists a unique

solution (u,V ) to (10), In particular we have for all 0 ≤ t ≤ T , u ∈ C([0,T ];Hs+1)∩C1(0,T ;Hs) and V ∈
C0([0,T ];Hs+2), with

Es(u(t,x))2 . eλ tEs(u0(x))2 exp
(

1
λ

(
eλ t −1

))
(11)

For some λ = λT = 2supt∈[0,T ] (|ū|Hs+1 +1). And also we have

|V |Hs+2 ≤C (|ū|L∞ , |h|C∞) |ū|Hs+1 . (12)

Proof : Before establish the proof let us recall here some product as well as commutator estimates in Sobolev
spaces.

Lemma 2 (product estimates). Let s≥ 0; one has for all f ,g ∈ Hs(R)∩L∞(R),

| f g|Hs . | f |L∞ |g|Hs + | f |Hs |g|L∞ .

If s≥ s0 >
1
2 , one deduces thanks to continuous embedding of Sobolev spaces,

| f g|Hs . | f |Hs |g|Hs .

Let F ∈C∞(R) such that F(0) = 0. If g ∈ Hs(R)∩L∞(R) with s≥ 0, one has F(g) ∈ Hs(R) and

|F(g)|Hs ≤C (|g|L∞ , |F |C∞) |g|Hs .

Proof : The proof is classical (see [15, 18, 22]). �

Lemma 3 (commutator estimates). For any s≥ 0, and ∂x f ,g ∈ Hs0(R)∩Hs−1(R), one has

|[Λ s, f ]g|L2 . |∂x f |Hs−1 |g|L∞ + |∂x f |L∞ |g|Hs−1 .

Thanks to continuous embedding of Sobolev spaces, one has for s≥ s0 +1,s0 >
1
2 ,

|[Λ s, f ]g|L2 . |∂x f |Hs−1 |g|Hs−1 .

Proof : The proof can be found in Kato and Ponce [15]. �

Proof of proposition 1:Existence of V is classical and we can easily proof the following estimate on V

|V |Hs+2 ≤C (|ū|L∞ , |h|C∞) |ū|Hs+1 ,
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indeed,

Es(V )2 = (T Λ
sV,Λ sV ) =−k(Λ s

∂x(h(ū)),Λ sV ) =−k(Λ s
∂x(h(ū)−h(0)),Λ sV )

= k(Λ s(h(ū)−h(0)),Λ s
∂xV ),

furthermore, for all γ > 0 we have

Es(V )2 = k(Λ s(h(ū)−h(0)),Λ s
∂xV ).

1
γ
|h(ū)−h(0)|Hs + γ|∂xV |Hs ,

this yields, for γ small enough and by Lemma 2 to

Es(V )2 ≤C (|ū|L∞ , |h|C∞) |ū|Hs .

Replace now s by s+ 1, we get the estimate. Furthermore, in order to prove V ∈C([0,T ];Hs+2) we have that
for all u,v ∈ BHs(0,R), s > s0 +1

|h(u)−h(v)|Hs ≤C(R, |h|C∞)|u− v|Hs , (13)

then from the first equation of (10) and the continuity of ū one can deduce that V ∈C([0,T ];Hs+2).

On the other hand, under the regularity of ū and V , the existence and uniqueness of a solution u of the sec-
ond equation of (10) can be achieved like in Appendix A [14] if we have estimate (11). We thus focus our
attention on the proof of the energy estimate which is also primordial to the solve the non-linear system. For
any λ ∈ R we compute

eλ t
∂t

(
e−λ tEs(u)2

)
=−λEs(u)2−∂t

(
Es(u)2)

since

Es(u)2 = (Λ su,T Λ
su).

we have

∂t
(
Es(u)2)= 2(T Λ

s
∂tu,Λ su)

One gets using the equation (10) that :

1
2

eλ t
∂t

(
e−λ tEs(u)2

)
=−λ

2
Es(u)2 +a(Λ s (∂xh(ū)∂xu) ,Λ su)+2µ

(
Λ

s (
∂xV ∂

2
x u
)
,Λ su

)
+µ

(
Λ

s (V ∂
3
x u
)
,Λ su

)
+a
(
Λ

s (
∂xh′(ū)∂xu

)
,Λ su

)
+a
(
Λ

s (h′(ū)∂ 2
x u
)
,Λ su

)
. (14)

For all skew-operator T (That is T ∗ =−T ), and for all b smooth enough, one has

(Λ s (bTu) ,Λ su) = ([Λ s,b]Tu,Λ su)− 1
2
([T,b]Λ su,Λ su) ,

we deduce applying this identity with (T = ∂x and T = ∂ 3
x ) and integrating by parts,
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1
2

eλ t
∂t

(
e−λ tEs(u)2

)
=−λ

2
Es(u)2+a([Λ s,∂xh(ū)]∂xu,Λ su)− a

2
(
∂

2
x h(ū)Λ su,Λ su

)
+2µ

(
Λ

s (
∂xV ∂

2
x u
)
,Λ su

)
+µ

(
[Λ s,V ]∂ 3

x u,Λ su
)
− µ

2
(
∂

3
x VΛ

su,Λ su
)
− 3µ

2
(
∂

2
x V ∂xΛ

su,Λ su
)
− 3µ

2
(
∂xV ∂

2
x Λ

su,Λ su
)

+a
(
[Λ s,∂xh′(ū)]∂xu,Λ su

)
− a

2
(
∂

2
x h′(ū)Λ su,Λ su

)
+a
(
Λ

s (h′(ū)∂ 2
x u
)
,Λ su

)
(15)

We now turn to bounding from above the different components of the r.h.s. of (15).

− By using the commutator estimate one gets for all s > 3
2

a([Λ s,∂xh(ū)]∂xu,Λ su)≤ a|[Λ s,∂xh(ū)]∂xu|2|u|Hs . |∂ 2
x h(ū)|Hs−1 |∂xu|Hs−1 |u|Hs . |∂ 2

x h(ū)|Hs−1 |u|2Hs ,

then, If we apply Lemma 2 on F(ū) = h(ū)−h(0) we get

a([Λ s,∂xh(ū)]∂xu,Λ su). |∂ 2
x h(ū)|Hs−1 |u|2Hs . |ū|Hs+1 |u|2Hs .

− Thanks to continuous embedding of Hs0(R) in L∞(R) for all s0 >
1
2 we have

a
2
(
∂

2
x h(ū)Λ su,Λ su

)
. |∂ 2

x h(ū)|L∞ |u|2Hs . |∂ 2
x h(ū)|Hs0 |u|2Hs . |ū|Hs0+2 |u|2Hs .

− The product estimate give as for all s≥ s0, such that s0 >
1
2

2µ
(
Λ

s (
∂xV ∂

2
x u
)
,Λ su

)
= 2µ

(
[Λ s,∂xV ]∂ 2

x u,Λ su
)
+2µ

(
∂xVΛ

s
∂

2
x u,Λ su

)
= 2µ

(
[Λ s,∂xV ]∂ 2

x u,Λ su
)
−2µ (∂xVΛ

s
∂xu,Λ s

∂xu)−2µ
(
∂

2
x VΛ

su,Λ s
∂xu
)

. µ
(
|∂ 2

x V |Hs−1 |∂ 2
x u|Hs−1 |u|Hs + |∂xV |Hs0 |∂xu|2Hs + |∂ 2

x V |Hs0 |∂xu|Hs |u|Hs
)
.

− Similarly we have for all s≥ s0, and s0 >
1
2

a
(
Λ

s (h′(ū)∂ 2
x u
)
,Λ su

)
= a

(
[Λ s,h′(ū)]∂ 2

x u,Λ su
)
+ k
(
h′(ū)Λ s

∂xu,Λ s
∂xu
)
+ k
(
∂xh′(ū)Λ su,Λ s

∂xu
)

= a
(
[Λ s,h′(ū)]∂ 2

x u,Λ su
)
+ k
((

h′(ū)−h′(0)+h′(0)
)

Λ
s
∂xu,Λ s

∂xu
)
+ k
(
∂xh′(ū)Λ su,Λ s

∂xu
)

. |∂xh′(ū)|Hs−1 |∂ 2
x u|Hs−1 |u|Hs + |h′(ū)−h′(0)|Hs0 |∂xu|2Hs + |∂xu|2Hs + |∂xh′(ū)|Hs0 |∂xu|Hs |u|Hs

. |ū|Hs |∂ 2
x u|Hs−1 |u|Hs +(|ū|Hs0 +1) |∂xu|2Hs + |ū|Hs0+1 |∂xu|Hs |u|Hs

− Using the identity [Λ s,V ]∂ 3
x u = ∂x

(
[Λ s,V ]∂ 2

x u
)
− [Λ s,∂xV ]∂ 2

x u leads to

µ
(
[Λ s,V ]∂ 3

x u,Λ su
)
= µ

(
∂x
(
[Λ s,V ]∂ 2

x u
)
,Λ su

)
−µ

(
[Λ s,∂xV ]∂ 2

x u,Λ su
)

=−µ
(
[Λ s,V ]∂ 2

x u,Λ s
∂xu
)
−µ

(
[Λ s,∂xV ]∂ 2

x u,Λ su
)

. µ
(
|∂xV |Hs−1 |∂ 2

x u|Hs−1 |∂xu|Hs + |∂ 2
x V |Hs−1 |∂ 2

x u|Hs−1 |u|Hs
)
.

− An integrating by parts give us for all s≥ s0, and s0 >
1
2

µ

2
(
∂

3
x VΛ

su,Λ su
)
=−µ

(
∂

2
x VΛ

s
∂xu,Λ su

)
. µ|∂ 2

x V |Hs0 |u|Hs |∂xu|Hs

− Similarly we have for all s≥ s0, and s0 >
1
2

3µ

2
(
∂

2
x VΛ

s
∂xu,Λ su

)
. µ|∂ 2

x V |Hs0 |u|Hs |∂xu|Hs

− As before, we integrate by parts and using the product estimate to have for all s≥ s0, and s0 >
1
2
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3µ

2
(
∂xV ∂

2
x Λ

su,Λ su
)
=−3µ

2
(∂xV ∂xΛ

su,Λ s
∂xu)− 3µ

2
(
∂

2
x V ∂

2
x Λ

su,Λ su
)

. µ
(
|∂xV |Hs0 |u|Hs |∂xu|Hs + |∂ 2

x V |Hs0 |u|Hs |∂xu|Hs
)
.

− Furthermore we have for all s≥ s0, and s0 >
1
2

a
(
[Λ s,∂xh′(ū)]∂xu,Λ su

)
. |∂ 2

x h′(ū)|Hs−1 |u|Hs |∂xu|Hs−1 . |ū|Hs+1 |u|Hs |∂xu|Hs−1 .

− Also we have for all s≥ s0, and s0 >
1
2

a
2
(
∂

2
x h′(ū)Λ su,Λ su

)
. |∂ 2

x h′(ū)|Hs0 |u|2Hs . |ū|Hs0+2 |u|2Hs

Finally if we take s0 = s−1 we obtain

1
2

eλ t
∂t

(
e−λ tEs(u)2

)
. |ū|Hs+1 |u|2Hs +(|ū|Hs +1) |u|2Hs+1 +µ|V |Hs+1 |u|2Hs+1 −

λ

2
Es(u)2

. (|ū|Hs+1 +1) |u|2Hs+1 +µ|V |Hs+1 |u|2Hs+1 −
λ

2
Es(u)2.

Thanks to the above inequality, one can choose

λ = λT = 2 sup
t∈[0,T ]

(|ū|Hs+1 +1) ,

one deduces

eλ t
∂t

(
e−λ tEs(u)2

)
. |V |Hs+1Es(u)2.

Integrating this differential inequality yields

∀t ∈ [0,T ], Es(u(t,x))2 . eλ tEs(u0(x))2 +
∫ t

0
eλ (t−ζ )|V (ζ ,x)|Hs+1Es(u(ζ ,x))2dζ

. eλT Es(u0(x))2 +
∫ t

0
eλ (t−ζ )|V (ζ ,x)|Hs+1Es(u(ζ ,x))2dζ . (16)

Then by estimate , one can deduce from estimate (16) that

∀t ∈ [0,T ], Es(u(t,x))2 . eλT Es(u0(x))2 +
∫ t

0
eλ (t−ζ )|ū(ζ ,x)|Hs Es(u(ζ ,x))2dζ

. eλT Es(u0(x))2 +
∫ t

0
eλ (t−ζ )Es(u(ζ ,x))2dζ ,

next by using Gronwall Lemma we obtain

Es(u(t,x))2 . eλ tEs(u0(x))2e(
∫ t

0 eλ (t−η)dη) = eλ tEs(u0(x))2 exp
(

1
λ

(
eλ t −1

))
. (17)

Now, for the last estimate we have

Es−1(∂tu)2 = (Λ s−1
∂tu,T Λ

s−1
∂tu) = (Λ s−1

∂tu,Λ s−1T ∂tu)

= a
(
Λ

s−1 (∂xh(ū)∂xu) ,Λ s−1
∂tu
)
+2µ

(
Λ

s−1 (
∂xV ∂

2
x u
)
,Λ s−1

∂tu
)
+µ

(
Λ

s−1 (V ∂
3
x u
)
,Λ s−1

∂tu
)

+a
(
Λ

s−1 (
∂xh′(ū)∂xu

)
,Λ s−1

∂tu
)
+a
(
Λ

s−1 (h′(ū)∂ 2
x u
)
,Λ s−1

∂tu
)
,

similarly, as in the estimate of Es(u(t,x))2 we apply a similar estimate in order to obtain
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Es−1(∂tu)2 . (|ū|Hs+1 +1) |u|Hs+1 |∂tu|Hs +µ|V |Hs+1 |u|Hs+1 |∂tu|Hs

next, by using estimates (1) and Cauchy-schwarz inequalities we get

Es−1(∂tu)2 . ((1+µ) |ū|Hs+1 +1) |u|Hs+1 |∂tu|Hs .
1
γ
((1+µ) |ū|Hs+1 +1) |u|2Hs+1 + γ ((1+µ) |ū|Hs+1 +1) |∂tu|2Hs ,

since (Es)2 is an equivalent norm of the norm of space Hs+1 and by choosing γ small enough we obtain

Es−1(∂tu)2 ≤C(|u0|Hs+1 ,µ,λ ), ∀t ∈ [0,T ].

�

Theorem 1. Let s0 > 1
2 , s ≥ s0 + 1 and u0 ∈ Hs+1. Then there exist a positive T such that for all 0 ≤ t ≤ T,

there exists a unique solution (u,V ) to (6), in particular we have u ∈C([0,T ];Hs+1)∩C1([0,T ];Hs) and V ∈
C(0,T ;Hs+2).

Proof : We want to construct a sequence of approximate solution (un,Vn)n≥0 by the iterative scheme

u0(t,x) = u0(x), and ∀n ∈ N,


−µ∂

2
x Vn+1 +Vn+1 =−a∂xh(un) ,

∂tun+1 +B[Vn+1,un]∂xun+1 = 0,
un+1(0,x) = u0(x),

(18)

where B[Vn+1,un] = T −1A[Vn+1,un] and A is defined as follows

A[Vn+1,un] f =−a∂xh(un) f −2µ∂xVn+1∂x f −µVn+1∂
2
x f −a∂xh′(un) f −ah′(un)∂x f .

In order to prove the existence of a unique solution of system (6), we will prove that the iterative scheme (18) is
convergent and the sequence (un,Vn)n≥0 converges to (u,V ) where (u,V ) is the unique solution of system (6).
By Proposition 1, we know that there is a unique solution (un+1,Vn+1) ∈ C([0,T ];Hs+1)× L∞(0,T ;Hs+2) to
(18) if un ∈ C([0,T ];Hs+1). Let R > 0 be such that Es(u0)

2 ≤ R
2 , it follows from proposition 1, equation (16)

that un+1 satisfies the following inequality

∀t ∈ [0,T ], Es(un+1(t,x))2 ≤ eλT Es(u0(x))2 +
∫ t

0
eλ (t−ζ )|Vn+1(ζ ,x)|Hs+1Es(un+1(ζ ,x))2dζ ,

we suppose now that

Es(un(t,x))2 ≤ R,

then, using the fact that |Vn+1|Hs+1 ≤ Es(un) yields to

Es(un+1(t,x))2 ≤ R
2

eλT +
∫ t

0
Reλ (t−ζ )Es(un+1(ζ ,x))2dζ ,

next by using Gronwall Lemma we get

Es(un+1(t,x))2 ≤ R
2

eλT exp
(∫ t

0
Reλ (t−ζ )dζ

)
=

R
2

eλT exp
(

R
λ

(
eλ t −1

))
.

Hence, there is T > 0 small enough such that

sup
[0,T ]

Es(un+1(t,x))2 ≤ R. (19)

On the other hand, we will show that (un)n≥0 is convergent, and to do this let us estimate un+1−un
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∂t
(
E0(un+1−un)

2)= 2(T ∂t (un+1−un) ,un+1−un)

=−2(A[[Vn+1,un]∂x (un+1−un) ,un+1−un)−2((A[Vn+1,un]−A[Vn,un−1])∂xun,un+1−un) .

(20)

For the first term in the r.h.s of (20) it can be easily estimated for all s0 >
1
2 as follow

−2(A[Vn+1,un]∂x (un+1−un) ,un+1−un).
(
|un|Hs0+1 +1

)
|un+1−un|2H1 +µ|Vn+1|Hs0+2 |un+1−un|2H1

.
(
(1+µ) |un|Hs0+1 +1

)
|un+1−un|2H1 .

Also for the second term in the r.h.s of (20) it can be estimated by

− ((A[Vn+1,un]−A[Vn,un−1])∂xun,un+1−un).
(
|un|Hs0+2 +1

)
|un−un−1|H1 |un+1−un|H1

+µ|un|Hs0+1 |Vn+1−Vn|H1 |un+1−un|H1

and so on by the first equation of (18) and by estimate (13) we can obtain the following estimate

|Vn+1−Vn|Hs+1 . |un−un−1|Hs . (21)

Next using estimate (19), we obtain

∂t
(
E0(un+1−un)

2)≤C(|u0|Hs+1 ,µ,R)|un+1−un|2H1 +C1(|u0|Hs+1 ,µ,R), |un−un−1|H1 |un+1−un|H1

≤C(|u0|Hs+1 ,µ,R)|un+1−un|2H1 +C1(|u0|Hs+1 ,µ,R), |un−un−1|2H1

≤C(|u0|Hs+1 ,µ,R)E0(un+1−un)
2 +C1(|u0|Hs+1 ,µ,R)E0(un−un−1)

2

≤C(|u0|Hs+1 ,µ,R)E0(un+1−un)
2 +C1(|u0|Hs+1 ,µ,R) sup

[0,T ]
E0(un−un−1)

2.

Integrating with respect to t give us

E0(un+1−un)
2 ≤C(u0|Hs+1 ,µ,λ )

∫ t

0
E0(un+1−un)

2 +C1(u0|Hs+1 ,µ,λ ) sup
[0,T ]
{E0(un−un−1)

2}t

≤C(u0|Hs+1 ,µ,λ )
∫ t

0
E0(un+1−un)

2 +C1(u0|Hs+1 ,µ,λ ) sup
[0,T ]
{E0(un−un−1)

2}T.

Furthermore, by using Gronwall Lemma we get

E0(un+1−un)
2 ≤C1(|u0|Hs+1 ,µ,λ ) sup

[0,T ]
{E0(un−un−1)

2}T exp(C(|u0|Hs+1 ,µ,λ )t)

≤C1(|u0|Hs+1 ,µ,λ )exp(C(|u0|Hs+1 ,µ,λ )T )T sup
[0,T ]
{E0(un−un−1)

2}.

This yield to

sup
[0,T ]
{E0(un+1−un)

2} ≤
(

C1(|u0|Hs+1 ,µ,λ )exp
(

C(|u0|Hs+1 ,µ,λ )T
)

T
)n

sup
[0,T ]
{E0(u1−u0)

2}.

Finally, for T > 0 small enough we have

C1(|u0|Hs+1 ,µ,λ )exp
(

C(|u0|Hs+1 ,µ,λ )T
)

T < 1.

Consequently, we conclude the existence of a time T = T (|u0|Hs+1) and a function u such that un con-
verge strongly to u in L∞(0,T ;H1). On the other hand, we conclude from this convergence and by esti-
mate (21) that there exist a function V such that Vn converges also strongly to V in L∞(0,T ;H2). Since
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(un,Vn) are bounded in Hs+1×Hs+2 and according to the previous convergence we conclude that (u,V ) ∈
L∞(0,T ;Hs+1)×L∞(0,T ;Hs+2). Then we can pass to the limit in system (18) when n→∞ to deduce that (u,V )
is a solution of system (6). Furthermore by interpolation results we obtain |(un−u)(t, ·)|Hs′ → 0 for all s′ < s+1
which gives us a strong convergence for un and Vn in higher space. Now we can prove V ∈C([0,T ],Hs+2) and
by classical argument see [23] we have that u ∈C([0,T ],Hs+1). Finally the continuity of ∂tu can be obtained
from first equation of (6). �

3 Study of Darcy-Brinkman’s flow in Rd, d ≥ 1 with Bear hypothesis.

In this section, we are interested in studying the system of Darcy-Brinkman with Bear hypothesis (see [6]) in a
bounded domain multidimensional, which consists in neglecting the variation in density ∇ρ ·V in the direction
of the flow and from this assumption one obtains our model.
First of all, let us recall that the system of Darcy-Brinkman with a source term is given by{

φ∂tρ +V ·∇ρ +ρ divV = ρ f ,

−µ∆V +V =−a∇p.
(22)

where a = k
µ̃

µ = νk
µ̃

, with k is the permeability coefficient, µ̃ is the Darcy viscosity and ν is the Brinkman
viscosity. Then by using Bear hypothesis V ·∇ρ≪ 1 and after applying the Helmholtz operator (−µ∆ + I) on
the first equation of (22), we get

φ∂tu−µφ∆∂tu−div(a∇p) = g, (23)

with u = ln(ρ(p)) and p = ρ−1(eu). In the following section we are interested in some particular case of fluid
in order to have a relationship between the pressure and the density.

3.1 Some particular cases of state law

Case 1: Ideal gas. In this case the relationship between the density and the pressure is given by

p = p0ρ
γ = p0eγu

hence

∇p = γ p0eγu
∇u,

with γ is the polytropic exponent, its value in the two main cases covered by this state when applied to gas
are: γ = 1 for isothermal process, and γ bigger than 1 for adiabatic process, as example, the air with normal
temperature, γ = 1.405 this value is obtained by the experimental data). In all cases we have γ ≥ 1.
So for this state, equation (23) becomes

φ∂tu−µφ∆∂tu− γap0 div(eγu
∇u) = g.

Case 2: Slightly compressible gas. The state law is given by

ρ(p) = ρ0 exp(ζ (p− p0)),

thus,
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p =
1
ζ

(
p0 + ln

ρ

ρ0

)
hence

∇p =
1
ζ

∇ρ

ρ
=

1
ζ

∇u,

equation (23) becomes linear and reads to :

φ∂tu−µφ∆∂tu−
a
ζ

div(∇u) = g.

Cas 3: Another form of slightly compressible gas. The equation of this form is given by

ρ(p) = ρ0
(
1+ γ(p− p0)

)
,

which leads to p =
ρ−ρ0

γρ0
+ p0, consequently ∇p =

1
γρ0

eu
∇u. Furthermore, equation (23) becomes :

φ∂tu−µφ∆∂tu−
a

γρ0
div(eu

∇u) = g.

In the next section, we prove the existence of a solution of a generalized system covering these 3 cases and
specify the regularity of this solution.

3.2 A generalized system of the Darcy-Brinkman equation

Let Ω be a bounded domain in Rd , with Lipschitz boundary ∂Ω and we denote by η the outward normal vector.
We set QT := [0,T ]×Ω where T > 0 is a fixed time. Our system is given by

∂tu−µ∆∂tu−div
(

f (u)∇u
)
= g, (t,x) ∈ QT ,

µ∇∂tu ·η +∇u ·η = 0, (t,x) ∈ [0,T ]×∂Ω ,

u(0,x) = u0(x), x ∈Ω

(24)

where g is a function in L2(0,T ;H−1(Ω)), and f is a continuous positive function. The medium is considered
isotropic and homogeneous, then, as before we can change the scale in time to consider φ = 1. Furthermore, we
introduce the notion of weak solutions of (24) as below.

Definition 1 We say that u : QT → R, is a weak solution of system (24) if u0 ∈ H1(Ω)∩ L∞(Ω) and for all
T > 0, u ∈W 1,∞

(
0,T ;H1(Ω)

)
, such that for all ϕ ∈ L2(0,T ;H1(Ω)) we have∫ T

0

∫
Ω

∂tuϕ dt dx+µ

∫ T

0

∫
Ω

∇∂tu ·∇ϕ dt dx+
∫ T

0

∫
Ω

f (u)∇u ·∇ϕ dt dx =
∫ T

0

∫
Ω

gϕ dt dx, (25)

and u(0,x) = u0(x) in H1(Ω).

We state the existence theorem of weak solutions of the system (24) as follow.

Theorem 2. Under assumption u0 ∈ H1(Ω)∩ L∞(Ω), the initial value problem (24) has a solution u in the
sense of the definition 1.

In additional, we establish the maximum principle first, then we prove theorem 2.
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Proposition 2. (Maximum principle) Let u the solution of system (24), if g in L∞(QT ), and if u0 ∈ H1(Ω)∩
L∞(Ω) then

−max
(
|g|L∞(QT ), |u0|L∞(Ω)

)
≤ u≤max

(
|g|L∞(QT ), |u0|L∞(Ω)

)
eT .

Let us start by proving Proposition 2.
Proof : We multiply the first equation of (24) by eαt and α real to be chosen later

∂t(eαt) = eαt
∂tu+αeαtu

we obtain

∂t(eαtu)−αeαtu−µ∆
(
∂t(eαtu)−αeαtu

)
−div

(
f (u)∇

(
eαtu

))
= eαtg

let w = eαtu, the above equation is rewritten as

∂tw−αw−µ∆∂tw+αµ∆w−div
(

f (u)∇w
)
= eαtg.

Let α < 0, then we write α =−|α| and let β a constant to be determined,

∂t(w − β ) + |α|(w − β ) − µ∆∂t(w − β ) − |α|µ∆(w − β ) − div
(

f (u)∇(w − β )
)
= e−|α|tg − |α|β .

Multiply the above equation by (w−β )+ and integrate on Ω

∫
Ω

d
dt
|(w−β )+|2dx+ |α|

∫
Ω

|(w−β )+|2dx+µ

∫
Ω

d
dt
|∇(w−β )+|2dx+ |α|µ

∫
Ω

|∇(w−β )+|2dx

+
∫

Ω

f (u)|∇(w−β )+|2dx =
∫

Ω

(
e−|α|tg−|α|β

)
(w−β )+dx

we choose the parameter β ≥max
QT

( e−|α|t
|α| |g|

)
to impose that the left hand side is negative. Precisely,

e−|α|tg−|α|β ≤ 0⇐⇒ β ≥ e−|α|t

|α|
g, ∀(t,x) ∈ QT .

then, by integrating over ]0, t[ and choosing α =−1 we get∫
Ω

|(w−β )+|2dx+µ

∫
Ω

|∇(w−β )+|2dx≤
∫

Ω

|(u0−β )+|2dx+µ

∫
Ω

|∇(u0−β )+|2dx,

Finally, by choosing β = max
(
|g|L∞(QT ), |u0|L∞(Ω)

)
we get (u0−β )+ = 0, consequently w≤ β .

Similarly, to show that the solution is bounded below, we take −(w− β )− as test function and we choose
β =−max

(
|g|L∞(QT ), |u0|L∞(Ω)

)
.

�
Proof of theorem 2: The proof of theorem 2 is done in two steps. The first step consists to study a regularized
problem, next for second step consists to pass to the limit as ε → 0.
Step 1: Let ε > 0 fixed. We introduce the regularization fε instead of f in the system (24) which is given by

fε(u) =
f (u)

1+ ε f (u)
. Then, we obtain the following regularized system :


∂tuε −µ∆∂tuε −div

(
fε(uε)∇uε

)
= g, (t,x) ∈ QT ,

µ∇∂tuε ·η +∇uε ·η = 0, (t,x) ∈ [0,T ]×∂Ω ,

uε(0,x) = u0(x), x ∈Ω .

(26)
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The proof of the existence of solution u of system (26) is based on Schauder fixed point theorem, for that we
build the following application F given by :

F : L2(0,T ;L2(Ω))−→ L2(0,T ;L2(Ω))

ūε −→ F(ūε) = uε ,

where uε is the solution of the following linear problem∫
Ω

∂tuε ϕ dx+µ

∫
Ω

∇∂tuε ·∇ϕ dx+
∫

Ω

fε(ūε)∇uε ·∇ϕ dx =
∫

Ω

gϕ dx. (27)

for all ϕ ∈ L2(0,T ;H1(Ω)). The existence and uniqueness of this solution is obtained by using of the Faedo-
Galerkin method, which give uε ∈ H1(0,T ;H1(Ω)), see for example [17].

Lemma 1 F is a continuous map from L2(0,T ;L2(Ω)) to L2(0,T ;L2(Ω)).

Proof : Let ūn
ε be a sequence in L2(0,T ;L2(Ω)) and ūε ∈ L2(0,T ;L2(Ω)) such that

ūn
ε −→ ūε in L2(0,T ;L2(Ω)) when n−→ ∞.

Let un
ε = F(ūn

ε) and uε = F(ūε), the aim is to show

un
ε −→ uε in L2(0,T ;L2(Ω)) when n−→ ∞.

First of all, for all n ∈ N, we have un
ε and uε are solution of (27), then take the difference between the two

corresponding equations of un
ε and uε , in addition if we take ϕ = un

ε −uε as a test function in (27) and integrate
in time we get:

1
2

∫ t

0

∫
Ω

d
dt
|un

ε −uε |2 dsdx+
µ

2

∫ t

0

∫
Ω

d
dt
|∇(un

ε −uε)|2 dsdx+
∫ t

0

∫
Ω

fε(ūn
ε) |∇(un

ε −uε)|2 dsdx

+
∫ t

0

∫
Ω

( fε(ūn
ε)− fε(ūε))∇uε ·∇(un

ε −uε) dsdx = 0. (28)

Next, we estimate each term of (28). The first one of the left hand side is writing as follows, since the two
sequence have the same initial condition

1
2

∫ t

0

∫
Ω

d
dt

(un
ε −uε)

2 dsdx =
1
2
||un

ε −uε ||2L2(Ω).

Similarly, the second term is equivalent to

µ

2

∫ t

0

∫
Ω

d
dt

(∇(un
ε −uε))

2 dsdx =
1
2
||∇(un

ε −uε) ||2L2(Ω).

Furthermore, the third term is nonnegative∫ t

0

∫
Ω

fε(ūn
ε)(∇(un

ε −uε))
2 dsdx≥ 0.

Finally, for the last term by using Cauchy-Schwartz and Young inequalities

∫ t

0

∫
Ω

( fε(ūn
ε)− fε(ūε))∇uε ·∇(un

ε −uε) dsdx≤

1
2

∫ t

0

∫
Ω

|( fε(ūn
ε)− fε(ūε))∇uε |2 dsdx+

1
2

∫ t

0
||∇(un

ε −uε) ||2L2(Ω)ds,
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but fε(ūn
ε)− fε(ūε)→ 0 almost everywhere in QT , also we have |( fε(ūn

ε)− fε(ūε))∇uε |2 ≤ 2
ε
|∇uε |2 ∈ L1(QT ),

then by Lebesgue dominated convergence theorem, then there exists a positive integer n0 such that for all n≥ n0
we have ∫ T

0

∫
Ω

|( fε(ūn
ε)− fε(ūε))∇uε |2 ≤Cn

where Cn is positive constant tend to zero when n→+∞. Finally, by using Gronwall Lemma for n≥ n0 we have

||un
ε −uε ||2H1(Ω) ≤C1(µ,T )Cn

Consequently, we have un
ε −→ uε strongly in C0(0,T ;L2(Ω)), and particularly in L2(0,T ;L2(Ω)). �

Lemma 2 F is an application from L2(0,T ;L2(Ω)) to W 1,∞(0,T ;H1(Ω))

Proof : Since uε ∈ L2(0,T ;H1(Ω)), one takes the solution uε as a test function in the weak formulation (27),
and gets that

1
2

d
dt

∫
Ω

|uε |2 dx+
µ

2
d
dt

∫
Ω

|∇uε |2 dx+
∫

Ω

fε(ūε) |∇uε |2 dx =
∫

Ω

guε dx.

From the positivity of function fε , and thanks to Cauchy-Schwartz and Young inequalities, one can deduce by
Gronwall Lemma that

||uε ||H1 ≤C(µ, ||u0||H1 , ||g||L2). (29)

Similarly, if we take ∂tuε as a test function in (27) we get∫
Ω

|uε |2 dx+µ

∫
Ω

|∇∂tuε |2 dx+
∫

Ω

fε(ūε)∇uε ·∇∂tuε dx =
∫

Ω

g∂tuε dx,

by construction of fε we have that | fε | ≤ 1
ε

, then∫
Ω

fε(ūε)∇uε ·∇∂tuε dx≤ 1
2µε

∫
Ω

|∇uε |+
µ

2

∫
Ω

|∇∂tuε |2 dx.

Finally, by estimate (29) one cane deduce that

||∂tuε ||H1 ≤C(µ,ε, ||u0||H1 , ||g||L2),

�
We return to the proof of the theorem (2), since F(L2(0,T ;L2(Ω))

)
) ⊂W 1,∞

(
0,T ;H1(Ω)

)
which is com-

pact embedding in L2(0,T ;L2(Ω)). Then by Schauder’s fixed point theorem there exist a solution uε ∈
W 1,∞

(
0,T ;H1(Ω)

)
of problem (26) such that∫

Ω

∂tuε ϕ dx+µ

∫
Ω

∇∂tuε ·∇ϕ dx+
∫

Ω

fε(uε)∇uε ·∇ϕ dx =
∫

Ω

gϕ dx, ∀ϕ ∈ L2(0,T ;H1(Ω)). (30)

Step 2: In this step we derive energy estimates on the sequence (uε)ε independently of ε in order to pass to the
limit. As uε is a solution of (30), we take ϕ = uε in (30), using the fact that fε is nonnegative, and by Gronwall’s
Lemma we have:

||uε ||2H1(Ω) ≤C(µ,g,u0), (31)

where C is a positive constant independent of ε . Similarly, we take ϕ = ∂tuε in (27) we get:
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||∂tuε ||2L2(Ω)+µ||∇∂tuε ||2L2(Ω)+
∫

Ω

fε(uε)∇uε ·∇∂tuε dt dx =
∫

Ω

g∂tuε dt dx. (32)

Maximum principle in Proposition 2 depending only to the positiveness of fε , one can deduce

−max
(
|g|L∞(QT ), |u0|L∞(Ω)

)
≤ uε ≤max

(
|g|L∞(QT ), |u0|L∞(Ω)

)
eT (33)

because we only need to have f is positive to apply this principle in Proposition 2. Then by using this inequality
we have ∫

Ω

fε(uε)∇uε ·∇∂tuε dt dx≤ 1
4ζ
|| f (uε)||L∞(Ω)||∇uε ||2L2(Ω)+ζ ||∇∂tuε ||2L2(Ω)

≤ M
4ζ
||∇uε ||2L2(Ω)+ζ ||∇∂tuε ||2L2(Ω)

where ζ is a positive constant to be chosen later and M = max f (uε) where uε satisfy inequality (33). Similarly
using Cauchy-Schwartz and Young inequalities we obtain∫

Ω

g∂tuε dt dx≤ 1
4ζ
||g||2L2Ω

+ζ ||∂tuε ||2L2(Ω).

Using estimate (31) and after choosing ζ small enough, we deduce from (32)

||∂tuε(t, .)||L2(Ω)+µ||∇∂tuε(t, .)||L2(Ω) ≤C(µ,g,u0), for almost everywhere t ∈ (0,T ),

where C is a positive constant independent of ε . Consequently, the sequence (uε)ε is bounded in W 1,∞(0,T ;H1(Ω)),
hence there exists a subsequence denoted (uε)ε converges strongly to u in C0(0,T ;L2(Ω)) by using Aubin-
Simon Theorem [21]. Finally, as f is continuous, then we can pass to the limit in (27) to obtain for all
ϕ ∈ L2(0,T ;H1(Ω)):∫

Ω

∂tuϕ dt dx+µ

∫
Ω

∇∂tu ·∇ϕ dt dx+
∫

Ω

f (u)∇u ·∇ϕ dt dx=
∫

Ω

gϕ dt dx. (34)

and u is the weak solution of system (24).
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