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DYNAMIC LAW OF PHYSICAL MOTION AND
POTENTIAL-DESCENDING PRINCIPLE

TIAN MA AND SHOUHONG WANG

Abstract. The main objectives of this paper are five-fold. The
first is to introduce a general dynamic law for all physical mo-
tion systems, based on a new variational principle with constraint-
infinitesimals. The second is to postulate the potential-descending
principle (PDP). We show that PDP is a more fundamental prin-
ciple than the first and second laws in thermodynamics, and gives
rise to dynamical equations for non-equilibrium systems. The
third is to demonstrate that the PDP is the first principle to
describe irreversibility of all thermodynamic systems, with ther-
modynamic potential as the basic physical quantity, rather than
entropy. The fourth objective is to examine the problems faced
by the Boltzmann equation. We show that the Boltzmann is not
a physical law, is created as a mathematical model to obey the
entropy-increasing principle (for dilute gases), and consequently is
unable to faithfully describe Nature. The fifth objective is to prove
an orthogonal-decomposition theorem and a theorem on variation
with constraint-infinitesimals, providing the needed mathematical
foundations of the dynamical law of physical motion.
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1. Introduction

The heart of physics is to seek experimentally verifiable, fundamental
laws and principles of Nature. In this process, physical concepts and
theories are transformed into mathematical models and the predictions
derived from these models can be verified experimentally and conform
to reality. In their mathematical form, the physical laws are often can
be expressed as mathematical equations:

physical laws = mathematical equations.

Among most important physical laws are 1) the laws for fundamental
interactions —- gravity, electromagnetism, weak and strong —- and 2)
the laws for motion dynamics. Modern theory of fundamental interac-
tions is based on the field theoretical point of view; see among many
others [4] and their references therein.

The focus of this paper is on dynamical laws of physical motion sys-
tems. According to their scales, the physical motion systems include
1) classical mechanical systems, describing planetary scale motion, 2)
quantum systems for particles in the micro level, 3) fluid mechanics sys-
tems, macroscopic description of fluid motion, 4) astrophysical systems
for astronomical objects, and 5) statistical systems, relating micro-
scopic properties of individual particles to the macroscopic properties.
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The main objectives of this paper are 1) to introduce a general dy-
namic law for all physical motion systems, 2) to postulate the potential-
descending principle (PDP), 3) to demonstrate that the potential-
descending principle is the fundamental principle to describe irreversibil-
ity of all thermodynamic systems, 4) to indicate the problems faced by
the Boltzmann equation, and 5) to prove an orthogonal-decomposition
theorem and a theorem on variation with constraint-infinitesimals. Here-
after we now give a brief description the main ingredients of this paper.

Dynamic law of physical motion

First, for each isolated physical motion system, there are a set of
state functions u = (u1, · · · , uN), describing the states of the system,
and a potential functional F (u), representing a certain form of energy
intrinsic to the underlying physical system. Then it is physically clear
that the rate of change of the state functions du/dt should equal to the
driving force derived from the potential functional F . More precisely,
we postulate the following dynamical law of physical motion:

(1.1)
du

dt
= −AδLF (u),

where A is the coefficient matrix, and −δLF (u) is the variation with
constraint infinitesimals, representing the driving force of the physi-
cal motion system, and L is a differential operator representing the
infinitesimal constraint.

Second, we shall demonstrate that proper constraints should be
imposed on the infinitesimals (variation elements) for the variation of
the energy functional F . These constraints can be considered as gener-
alized energy and/or momentum conservation laws for the infinitesimal
variation elements.

The variation under constraint infinitesimals is motivated in part by
the recent work of the authors on the principle of interaction dynamics
(PID) for the four fundamental interactions, which was required by
the dark energy and dark matter phenomena, the Higgs fields, and the
quark confinement; see [4]. Basically, PID takes the variation of the
Lagrangian actions for the four interactions, under energy-momentum
conservation constraints.

The precise mathematical description of this constraint variation is
one of the main objectives of this paper, and will be addressed in detail
near the end of the Introduction.

Third, there are two types of physical motion systems: the dissi-
pative systems and the conservation systems. The coefficient matrix A
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is symmetric and positive definite if and only if the system is a dissi-
pative system, and A is anti-symmetry if and only if the system is a
conservation system.

Fourth, symmetry plays a fundamental role in understanding Na-
ture. In [4], we have demonstrated that for the four fundamental inter-
actions, the Lagrangian actions are dictated by the general covariance
(principle of general relativity), the gauge symmetry and the Lorentz
symmetry; the field equations are then derived using PID as mentioned
earlier.

For isolated motion systems, all energy functionals F obey certain
symmetries such as SO(n) (n = 2, 3) symmetry. In searching for laws
of Nature, one inevitably encounters a system consisting of a number of
subsystems, each of which enjoys its own symmetry principle with its
own symmetry group. To derive the basic law of the coupled system,
we have demonstrated in [4] the principle of symmetry-breaking (PSB),
which is of fundamental importance for deriving physical laws for both
fundamental interactions and motion dynamics:

Physical systems in different levels obey different laws,
which are dictated by their corresponding symmetries.
For a system coupling different levels of physical laws,
part of these symmetries must be broken.

In view of this principle, for a system coupling different subsystems,
the motion equations become

(1.2)
du

dt
= −AδLF (u) +B(u),

where B(u) represents the symmetry-breaking. As we shall see in Sec-
tion 4, all physical motions systems coupling different subsystems are
governed by the above dynamical law (1.2).

Fifth, the dynamical law given by (1.1) and (1.2) is essentially
known for motion system in classical mechanics, quantum mechanics
and astrophysics; see among others [1, 4]. Thanks to the variation with
infinitesimal constraints, the law of fluid motion is now in the form of
(1.1) and (1.2). The potential-descending principle given below shows
that non-equilibrium thermodynamical systems are governed by the
dynamical law (1.1) and (1.2), as well.

Potential-Descending Principle
After a thorough examination of thermodynamics, we discover that

the Potential-Descending Principle (PDP), which we shall postulate
below, is a more fundamental principle in statistical principle.
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First, for a given thermodynamic system, the order parameters
(state functions) u = (u1, · · · , uN), the control parameters λ, and the
thermodynamic potential (or potential in short) F are well-defined
quantities, fully describing the system. The potential is a functional
of the order parameters, and is used to represent the thermodynamic
state of the system. There are four commonly used thermodynamic
potentials: the internal energy, the Helmholtz free energy, the Gibbs
free energy, and the enthalpy.

We postulate now the potential-descending principle (PDP) as fol-
lows; see Principle 3.1 a more complete statement of this principle: For
a non-equilibrium state u(t;u0) of a thermodynamic system with initial
state u(0, u0) = u0,

1) the potential F (u(t;u0);λ) is strictly decreasing as
time evolves;

2) the order parameters u(t;u0), as time evolves to in-
finity, tends to an equilibrium of the system, which
is a minimal point of the potential F .

Second, we show in Section 3.3 that PDP leads to both the first
and the second laws of thermodynamics. In the classical thermody-
namics theory (e.g. [6]), the perception is that potential-decreasing
property can be derived from the first and second laws. However, in
the derivations, there is a hidden assumption that at the equilibrium,
there is a free-variable in each of the conjugate pairs. For example,
in the internal energy system, the entropy S and the generalized dis-
placement X are free variables. This assumption is mathematically
equivalent to the potential-descending principle. In other words, the
potential-decreasing property cannot be derived if we treat the first
and second laws as the only fundamental principles of thermodynam-
ics. We refer Section 3.3 for details. Therefore we reach the following
conclusion:

the potential-descending principle leads to both the first
and second laws of thermodynamics, and the potential-
descending principle is a more fundamental principle
then the first and second laws.

Hereafter we shall also show that PDP provides the first principle
for describing irreversibility.

Third, PDP provides dynamic equations for a non-equilibrium ther-
modynamic system, which take exactly the form given by (1.1) or (1.2);
see also (3.9) and (3.10).

Irreversibility
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We know that the motion of all statistical physical system (collection
of large number of particles) possesses irreversibility. Classical thermo-
dynamics attributes this irreversibility to entropy-increasing principle.
We show in this paper, however, that the Potential-Descending Princi-
ple (PDP) is the first principle for irreversibility for all thermodynamic
systems. The main reasons are as follows.

First, PDP indeed offers a clear description of the irreversibility of
thermodynamical systems. Consider a non-equilibrium initial state u0

of the thermodynamic system with order parameters u, control param-
eters λ and potential F , the PDP amounts to saying that the potential
is decreasing:

d

dt
F (u(t;u0);λ) < 0 ∀t > 0.

This shows that the state of the system u(t;u0) will never return to its
initial state u0 in the future time. This is exactly the irreversibility.

Second, entropy S is a state function, which is the solution of basic
thermodynamic equations. Thermodynamic potential is a higher level
physical quantity than entropy, and consequently, is the correct phys-
ical quantity, rather than the entropy, for describing irreversibility for
all thermodynamic systems.

Problems in Boltzmann Equation
Historically, great effort has been put on establishing a mathematical

model that can faithfully describe irreversible processes. The Boltz-
mann equation is introduced mainly for this purpose with two specific
goals: 1) to derive the entropy-ascending principle, and 2) to make the
Maxwell-Boltzmann distribution a steady-state solution.

However, the Boltzmann equation faces many problems. After thor-
ough examination of the derivation and properties of the Boltzmann
equation, we show that the Boltzmann equation is not a physical law,
and consequently is not able to describe faithfully the Nature. Here-
after we list briefly the main problems it faced.

First, laws of physics (equations) should not use state functions,
which are themselves governed by physical laws, as independent vari-
ables. The Boltzmann equation violates this simple physical rule by
using the velocity field as an independent variable.

Second, irreversibility is a common characteristic of all dissipative
systems, and is not a property of entropy. The Boltzmann equation
was aimed to develop a mathematical model using entropy to describe
irreversibility. This is an incorrect starting point.
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Third, for a gaseous system with potential F (u, λ), order param-
eters u and control parameters λ, the potential-descending principle
gives rise to the following dynamic equation:

(1.3)
du

dt
= −δF (u, λ),

which offers a complete description of the irreversibility of the gaseous
system. Since irreversibility is a macroscopic property, the above phys-
ical law (1.3) is the replacement of the Boltzmann equation.

Variation with constraint infinitesimals

To establish the needed mathematical foundation for the dynami-
cal law of physical motion systems, we need to prove an orthogonal
decomposition theorem, Theorem 6.1. Basically, for a linear operator
L : H1 → H between two Hilbert spaces H and H1, with dual operator
L∗, any u ∈ H then can be decomposed as

u = Lϕ+ v, L∗v = 0,

where Lϕ and v are orthogonal in H.
The linear operator L in the dynamic law (1.1) takes the form of a

differential operator L or its dual L∗. The constraints can be imposed
either on the kernel N ∗ of the dual operator L∗ or on the range of the
operator L, given as follows:

〈δL∗F (u), v〉H =
d

dt

∣∣∣∣
t=0

F (u+ tv) ∀ L∗v = 0,(1.4)

〈δLF (u), ϕ〉H1 =
d

dt

∣∣∣∣
t=0

F (u+ tLϕ) ∀ ϕ ∈ H1.(1.5)

Then using the general orthogonal decomposition theorem, Theorem 6.1,
we show that the above variations with constraint infinitesimals take
the following form:

δL∗F (u) = δF (u) + Lp,(1.6)

δLF (u) = L∗δF (u),(1.7)

for some function p, which plays a similar role as the pressure in in-
compressible fluid flows. Here δF (u) is the usual derivative operator.

The paper is organized as follows. Section 2 introduces the dynamical
law of physical motion systems, and Section 3 postulates the potential-
descending principle. Section 4 identifies the physical quantity and
principle for irreversibility, and Section 5 points out problems in the
Boltzmann equation. Section 6 provides the mathematical foundations
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of the dynamical law of physical motion by proving the orthogonal-
decomposition theorem and a theorem on variation with constraint-
infinitesimals. Section 7 verifies the dynamical law of physical motions
by examining various important motion dynamical equations.

2. Dynamic Law of Physical Motion

2.1. General guiding principles. For theoretical physics, the follow-
ing general guiding principle was introduced in [4]:

All physical systems obey laws and principles of Nature,
and possess the following three properties:

1) For each system, there is a group of functions u =
(u1, · · · , uN) describing its states, and the laws and
principles obeyed by the system can be expressed as:

physical laws = mathematical equations,
with the state functions u as solutions;

2) For each system, there is a functional F (u), which
dictates mathematical equations;

3) All physical systems obey certain symmetries, which
essentially determine the mathematical forms of the
functionals F .

2.2. Principle of symmetry-breaking. Symmetry plays a funda-
mental role in understanding Nature. In mathematical terms, each
symmetry, associated with particular physical laws, consists of three
main ingredients: 1) the underlying space, 2) the symmetry group,
and 3) tensors, describing the objects which possess the symmetry [4].

One important point to make is that different physical systems en-
joy different symmetries. For example, gravitational interaction enjoys
the symmetry of general relativity, which, amazingly, dictates the La-
grangian action for the law of gravity. Also, the other three funda-
mental interactions obey the gauge and the Lorentz symmetries, which
dictate also the corresponding actions. The Newtonian motion systems
obey the Galileo symmetry, and all motion systems satisfy the SO(n)
symmetry.

In searching for laws of Nature, one inevitably encounters a system
consisting of a number of subsystems, each of which enjoys its own
symmetry principle with its own symmetry group. To derive the basic
law of the system, we have demonstrated in [4] the following principle
of symmetry-breaking (PSB), which is of fundamental importance for
deriving physical laws for both fundamental interactions and motion
dynamics. We recapitulate this principle as follows.
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Principle 2.1 (PSB). Physical systems in different levels obey different
laws, which are dictated by corresponding symmetries. For a system
coupling different levels of physical laws, part of these symmetries must
be broken:

1) There are several main symmetries- - the SO(n) invariance, the
Galileo invariance, the Lorentz invariance, the SU(N) gauge
invariance, and the general relativistic invariance– which are
mutually independent and dictate in part the physical laws in
different levels of Nature; and

2) for a system coupling several different physical laws, part of
these symmetries must be broken.

2.3. Dynamic Law of Physical Motion. Theoretical physics stud-
ies 1) the laws for the four fundamental interactions (gravity, electro-
magnetism, the weak and the strong interactions), and 2) the laws for
motion dynamics of physical systems.

According to their scales, physical systems are classified into

(1) classical mechanical systems (planetary scale),
(2) quantum systems (micro level),
(3) fluid mechanics systems,
(4) astrophysical systems, and
(5) statistical systems (relating microscopic properties of individual

particles to the macroscopic properties).

The basic laws for describing classical mechanical systems, quantum
systems and astrophysical systems are given in terms of Newtonian
laws, the principle of Lagrangian dynamics and the principle of Hamil-
tonian dynamics. We shall see in Section 3 below that statistical phys-
ical systems are described by the potential-descending principle. In
Section 7, we show that fluid motion satisfies the dynamical law of
physical motion introduced in the following.

By a careful examination of basic motion laws of different physical
systems and by the mathematical study in Section 6 below, we discover
a general dynamic law, suitable for all physical motion systems in (1)-
(5) mentioned above.

To state this general dynamic law, we start with the definition of
constraint variation. Let H,H1 be two Hilbert spaces, and

(2.1) L : H1 → H, L∗ : H → H∗1

be a pair of dual linear bounded operators. Consider a functional
defined on H:

(2.2) F : H → R1.
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Let

(2.3) N ∗ = {v ∈ H | L∗v = 0} 6= {0}.

Definition 2.1. Let (2.3) hold.

1) For any u ∈ H, the derivative operator of F at u with L∗−constraint,
denoted by δL∗F (u), is defined as follows

(2.4) 〈δL∗F (u), v〉H =
d

dt

∣∣∣∣
t=0

F (u+ tv) ∀v ∈ N ∗.

2) The derivative operator of F at u with L−constraint, denoted
by δLF (u), is defined as follows

(2.5) 〈δLF (u), ϕ〉H1 =
d

dt

∣∣∣∣
t=0

F (u+ tLϕ) ∀ϕ ∈ H1.

Further properties of constrained variations and the general orthog-
onal decomposition theorem will be introduced in Section 6. We are
now ready to state the dynamical law of physical motion.

Dynamical Law 2.2. There are two types of physical motion systems:
dissipative systems and conservation systems. For each physical motion
system, there are a set of state functions u = (u1, · · · , uN), a functional
F (u), and an operator L, which is either L = L or L = L∗ for some
differential operator L, such that the following statements hold true:

1) −δLF (u) is the deriving force of the system;
2) F is SO(n) (n = 2, 3) invariant;
3) for an isolated system, the dynamic equation can be expressed

in the form

(2.6)
du

dt
= −AδLF (u),

where A is the coefficient matrix, A is symmetric and positive
definite if and only if the system is a dissipative system, and
A is anti-symmetry if and only if the system is a conservation
system;

4) for a system coupling different subsystems, the motion equations
of (2.6) become

(2.7)
du

dt
= −AδLF (u) +B(u),

where B(u) represents the symmetry-breaking.

A few remarks are in-order.
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First, in (2.6) and (2.7), the derivative d/dt is physical, namely

d

dt
=

∂

∂t
+ igA0 for gauge fields ,

d

dt
=

∂

∂t
+ (u · ∇) for fluid fields.

Second, the operator L (= L or L∗) in physical systems is an opera-
tor, and when L = id is the identity operator, δL is the usual derivative
operator. Typical form of the operator L is the gradient operator with
L∗ being the corresponding divergence-operator.

Third, −δLF (u) represents the generalized force, and (2.6) is the
generalized Newtonian Law. For example, consider the classical New-
tonian Second Law:

(2.8)
d2x

dt2
= −∇ϕ,

where ϕ is an interaction potential. The equation (2.8) is equivalent to

(2.9)
dx

dt
= y,

dy

dt
= −∇ϕ.

Now let

Φ =
y2

2
+ ϕ, u = (x, y)T .

Let

J =

(
0 −I
I 0

)
be the symplectic matrix. Then we have

J∇Φ = (−y,∇ϕ)T ,

and the Newtonian Second Law can be rewritten in the form of (2.6)
as follows:

(2.10)
du

dt
= −J∇Φ.

Here there is no constraint; namely, the operator L = L is the identity
operator.

Fourth, the B(u) term in (2.7) represents the symmetry-breaking.
For example, consider the damped wave equation

utt = ∆u− kut + f(u).

Let v = ut and ψ = (u, v)T , then the wave equation can be written as

d

dt
ψ = −JδF (ψ) +Bψ,
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F (ψ) =

∫ [
1

2
v2 + |∇u|2 +G(u)

]
,

Bψ =

(
0
−kv

)
.

Here the functional F inherits the symmetry of the wave equation with-
out damping term kut. But the damping term cannot be included in
the functional F , and breaks the symmetry of the non-damped wave
equation.

As mentioned earlier, symmetry-breaking is the essence for modeling
a physical system coupling subsystems obeying different symmetries.

3. Potential-Descending Principle in Statistical Physics

In this section, we postulate the potential-descending principle (PDP)
in statistical physics, which is more fundamental than the first and the
second laws of thermodynamics. This principle also supports the dy-
namic law of physical motion introduced in the last section.

3.1. Thermodynamic potentials. A thermodynamic system is de-
scribed by order parameters (state functions), control parameters, and
thermodynamic potential, which is a functional of the order parame-
ters. There are four commonly used thermodynamic potentials: the
internal energy, the Helmholtz free energy, the Gibbs free energy, and
the enthalpy. The basic thermodynamic potential is the internal en-
ergy, and the other three are derived using the Legendre transforms;
see among others [6].

Conjugate pairs of state variables and internal energy. First, we note
that all thermodynamic potentials are expressed in terms of conjugate
pairs. The most commonly considered conjugate thermodynamic vari-
ables are

1) the temperature T and the entropy S, and
2) f the generalized force and X the generalized displacement.

Typical examples of (f,X) include (the pressure p, the volume
V ), (applied magnetic field H, magnetization M), (applied elec-
tric field E, electric polarization P ).

Let U be the internal energy. Then for a completely closed thermo-
dynamic system, the first law states:

dU = TdS + fdX.(3.1)

Here (T, f) are the order parameters and (S,X) are the control param-
eters.



MOTION LAW & POTENTIAL-DESCENDING PRINCIPLE 13

Helmholtz energy. For an isothermal process, we need to use the
Helmholtz free energy, denoted by

(3.2) F = U − TS.
In fact, (3.2) is the Legendre transformation such that the Helmholtz
free energy F is a functional of S and f . In other words, (S, f) are
order parameters, and (T,X) are control parameters. Consequently,

F = F (S, f ;λ), λ = (T,X),

and the equilibrium state enjoys

(3.3)
δF

δS
= 0,

δF

δf
= 0.

Gibbs free energy. When the system has the thermal and mechanical
exchanges with the external, i.e., the thermal process is in the constant
temperature T and generalized force f , the corresponding potential is
the Gibbs free energy, which is defined by

(3.4) G = F − fX, F the Helmholtz free energy,

which is the Legendre transformation regarding (T, f) as its indepen-
dent variables. Namely, for the Gibbs potential, the order parameters
are (S,X), and the control parameters are λ = (T, f),

G = G(S,X;λ),

and the equilibrium state satisfies

(3.5)
δG

δS
= 0,

δG

δX
= 0.

3.2. Potential-Descending Principle in Statistical Physics. We
postulate the following potential descending principle (PDP), and demon-
strate in the remaining part of this paper that this principle serves as
a fundamental principle in statistical physics.

Principle 3.1 (Potential-Descending Principle). For each thermody-
namic system, there are order parameters u = (u1, · · · , uN), control pa-
rameters λ, and the thermodynamic potential functional F (u;λ). For a
non-equilibrium state u(t;u0) of the system with initial state u(0, u0) =
u0, we have the following properties:

1) the potential F (u(t;u0);λ) is decreasing:

d

dt
F (u(t;u0);λ) < 0 ∀t > 0;

2) the order parameters u(t;u0) have a limit

lim
t→∞

u(t;u0) = ū;
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3) there is an open and dense set O of initial data in the space
of state functions, such that for any u0 ∈ O, the corresponding
ū is a minimum of F , which is called an equilibrium of the
thermodynamic system:

δF (ū;λ) = 0,

where δF represents the generalized force given in (2.6) and
(2.7). Namely,

δF (ū;λ) = −AδLF (ū;λ).

3.3. Minimum potential principle. For an equilibrium state ū of a
thermodynamic system, the potential-descending principle implies that

δ

δu
F (ū;λ) = 0,(3.6)

dF (ū, λ) =
∂F (ū, λ)

∂λ
dλ.(3.7)

These are equilibrium equations of the system.
For the equilibrium state, it is then easy to see that

dF (ū, λ) =
δ

δu
F (ū;λ)δu+

∂F

∂λ
dλ =

∂F (ū;λ)

∂λ
dλ,

which is the first law of thermodynamics.
For a given non-equilibrium thermodynamic state u(t), we have

dF (u(t), λ) =
δ

δu
F (u(t);λ)du+

∂F

∂λ
dλ.

The potential-descending principle tells us that

dF

dt
=

δ

δu
F (u(t);λ)

du

dt
< 0.

As dt > 0, we then derive that

dF (u, λ) <
∂F

∂λ
dλ,

which is the second law of thermodynamics.
Also, as an example, we consider an internal energy of a thermody-

namic system, classical theory asserts that the first and second laws
are given by

(3.8) dU ≤ ∂U

∂S
dS +

∂U

∂X
dX,

where the equality represents the first laws, describing the equilibrium
state, and inequality presents second law for non-equilibrium state.
However, there is a hidden assumption in (3.8) that at the equilibrium,
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there is a free-variable in each of the conjugate pairs (T, S) and (f,X).
In the internal energy system, S and X are free variables. Namely,

∂U

∂T
≤ 0,

∂U

∂f
≤ 0,

where, again, the equality is for equilibrium state and the strict inequal-
ity is for non-equilibrium state. This assumption is mathematically
equivalent to the minimal-potential principle (or potential-descending
principle).

In a nutshell, based on the above discussions, we have the following
important conclusion:

the potential-descending principle leads to both the first
and second law of thermodynamics, and the potential-
descending principle is a more fundamental principle
then the first and second laws.

3.4. PDP-based mathematical models. Based on the principle,
the dynamic equations of a thermodynamic system in non-equilibrium
state take the form

du

dt
= −AδLF (u) for isolated systems,(3.9) 
du

dt
= −AδLF (u) +B(u),∫
AδLF (u) ·B(u) = 0

for coupled systems,(3.10)

where δL is the derivative operator with L− constraint for some op-
erator L, B represents coupling operators, and A is a symmetric and
positive definite matrix of coefficients.

Consider a thermodynamic system involving a conserved order pa-
rameter u:

(3.11)

∫
Ω

u(x, t)dx = constant.

The potential is given by

(3.12) F = F1 − µ
∫

Ω

udx,

where µ is the chemical potential, which plays the role of Lagrangian
multiplier, and F1 is the classical thermodynamical potential of the sys-
tem. The key point here is that chemical potential cannot be regarded
either as an order parameter or as a control parameter for the ther-
modynamic system. Consequently, the model based on the potential-
descending principle is still given by (3.9) and (3.10).
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It is important to remark that in [3] we used

∂uj
∂t

= −∇ · Jj(u, λ),(3.13)

J = −k∇µ,(3.14)

µ =
δF

δu
,(3.15)

to derive the following dynamical equation; see [3, (3.1.21)]:

(3.16)
∂u

∂t
= ∆

δ

δu
F (u, λ).

However, we realized in this article that the dynamical equation (3.16)
(the model (3.1.21) in [3]), as well as the classical Cahn-Hilliard equa-
tion, are incorrect. In fact, based on the Lagrangian multiplier theorem
and by (3.11) and (3.15), we deduce that µ is the Lagrangian multiplier,
which is a constant. Therefore, the relation (3.14) is invalid.

3.5. Diffusion and heat conductivity equation. Diffusion and heat
conduction are properties of thermal systems. Their potential func-
tional is written as

F =

∫
Ω

[κ
2
|∇T |2 −QT

]
dx,

where u represents the density for diffusion systems and the tempera-
ture for heat conduction systems. Consequently, the dynamic equation

(3.17)
dT

dt
= −δF (T ).

is in the form:

(3.18)
∂T

∂t
= κ∆T +Q.

4. Irreversibility in Thermodynamic Systems

Natural phenomena show that the motion of all statistical physical
system (collection of large number of particles) possesses irreversibility.
Namely, when the system evolves from one initial state to another, the
system will not spontaneously return to its initial state without external
interference. This phenomena is called (temporal) irreversibility.

Classical thermodynamics attributes this irreversibility to entropy-
ascending principle. Based on the discussions in the previous sections,
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the physical quantity depicting irreversibility is thermodynamical po-
tential. The Potential-Descending Principle (PDP), Principle 3.1, of-
fers a clear description of the irreversibility of thermodynamical sys-
tems.

More precisely, consider a thermodynamic system with potential
F (u, λ), order parameters u, control parameters λ and a non-equilibrium
initial state u0. Then the PDP amounts to saying that the potential is
decreasing:

d

dt
F (u(t;u0);λ) < 0 ∀t > 0.

This shows that the state of the system u(t;u0) will never return to
its initial state u0 in the future time. This is exactly the (temporal)
irreversibility.

From the PDP-based mathematical model:

(4.1)

du

dt
= −δF (u;λ),

u|t=0 = u0,

we also have a clear understanding of irreversibility. For example, given
a non-homogeneous system, its thermodynamic potential is

F =

∫
Ω

[κ
2
|∇u|2 + g(u)

]
dx,

and the corresponding equation (4.1) is given by

(4.2)

du

dt
= κ∆u− f(u),

u|t=0 = u0,

where f(z) = g′(z). If we take time reversal transformation t → −t,
then (4.2) can be written as

(4.3)

du

dt
= −κ∆u− f(u),

u|t=0 = u0.

Basic theory of partial differential equations shows that for general
initial data u0, (4.3) has no solution for t > 0. This is another mathe-
matical description for irreversibility. This description is also suitable
for all dissipative systems, including fluid motion. In other words, ir-
reversibility is a fundamental feature of dissipative systems.

It is worth emphasizing here that for isolated simple gas system, the
thermodynamic potential is

(4.4) F = U0 − ST − µ1N − µ2E,



18 MA AND WANG

where U0 is the internal energy, which is a constant, N is the number
of particles, µ1 and µ2 are Lagrangian multipliers, and E is the total
energy. For this system, the entropy S is an order parameter, and
temperature T is a control parameter.

By (4.4), we see that potential-descending is equivalent to entropy
ascending:

d

dt
F (S(t)) < 0 ⇐⇒ d

dt
S(t) > 0.

In addition, according to the entropy formula:

S = k lnW,

and by the minimum potential principle:

δF = 0,

we can derive, with similar procedures as in [5, Section 6.1], all three
distributions: the Maxwell-Boltzmann distribution, the Fermi-Dirac
distribution and the Bose-Einstein distribution. This shows that

the potential-descending principle is also the first prin-
ciple of statistical mechanics.

5. Problems in Boltzmann Equation

5.1. Boltzmann equation. In statistical physics, a classical problem
is how to establish a mathematical model that can faithfully describe
irreversible processes. The Boltzmann equation is introduced mainly
for this purpose. We start with a brief introduction on the derivation
of the Boltzmann equation.

Consider a system of ideal gases that is in a non-equilibrium state,
and assume its dynamical equation takes the form:

(5.1)
dρ

dt
= G(ρ),

where ρ stands for the probability density function of the gas molecules.
By the general guiding principle of physics, (5.1) should be estab-

lished based on some fundamental laws and/or principles. Classical
theories lack of such principles and laws. Therefore the Boltzmann
equation is based on fulfilling the following two goals:

(1) Entropy-ascending principle: equation (5.1) should yield entropy-
ascending property:

(5.2)
d

dt
S(ρ(t)) > 0,
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where S(ρ) is the entropy functional in terms of ρ. Physically,
we know that

(5.3) S = −
∫
ρ ln ρdxdv + S0,

where S0 is a constant, and v is the velocity of molecules.
(2) Since the Maxwell distribution

(5.4) ρ0 = Ae−v
2/2mkT

is the equilibrium state of ideal gases. This requires that ρ0 is
a steady state solution of (5.1):

(5.5) G(ρ0) = 0.

The requirement (2) above shows that the probability density func-
tion ρ must be a function using both the space time coordinate (t, x)
and velocity v as independent variables:

ρ = ρ(x, t, v).

Consequently the total derivative on the left-hand side of (5.1) becomes

dρ

dt
=
∂ρ

∂t
+
∂ρ

∂x

dx

dt
+
∂ρ

∂v

dv

dt
.

Since
dx

dt
= v,

dv

dt
=
F

m
(Newtonian Second Law),

we derive that

(5.6)
dρ

dt
=
∂ρ

∂t
+ v · ∇ρ+

F

m
· ∂ρ
∂v
.

Next in order to obtain the expression G in the right-hand-side of
(5.1), one needs to use phenomenological approach to come up with a
formulation for G satisfying the above two requirements. Boltzmann
obtained the following formula for G; see [2]:

(5.7) G(ρ) =

∫
[ρ′ρ′1 − ρρ1]ω′dΓ1dΓ′dΓ′1,

which is used to explain the change due to collisions.
Then (5.1) can be written as

(5.8)
∂ρ

∂t
+ v · ∇ρ+

F

m
· ∂ρ
∂v

=

∫
[ρ′ρ′1 − ρρ1]ω′dΓ1dΓ′dΓ′1,

which is the famous Boltzmann equation.
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5.2. Problems in Boltzmann equation. As indicated by [6, S11.A.
Beyond the Boltzmann equation], computer experiments and a study
of correlation functions have shown that the picture of transport phe-
nomena given by Boltzmann is not completely correct. Based on PDP
presented earlier in this paper, we are now able to demonstrate more
precisely the mathematical and physical problems faced by the Boltz-
mann equation.

1. Boltzmann equation is not a physical law. The Boltzmann equa-
tion is not established on fundamental principles and laws. The phys-
ical meaning of (5.8) is simply

(5.9) the rate of change of ρ = rate of change due to collisions.

The equality here is the outcome of pure imagination. In fact,

(5.10) collision = very close distance interaction between particles.

On the other hand, by Principle 2.2, the real physical law should be

the rate of change of ρ(5.11)

= the driving force induced by

the total interaction potential between particles.

Comparing (5.9)-(5.10) and (5.11), we see that there is a large deviation
between the Boltzmann equation and the real physical law.

2. The Boltzmann equation uses the velocity field v as an indepen-
dent variable, but v itself is a state function. This inevitably induces
large deviation between the Boltzmann equation and the reality. There
is a force field in the Boltzmann equation (5.8):

(5.12) F = F (t, x, v),

where v is velocity field of particles. Here F should be a function of
v, since the velocity field v is treated as an independent variable. This
force field is the sum of the external force and the force generated by the
total interaction potential of all particles in the system, which includes
the force due to collision. Hence F is a new unknown function, and

the Boltzmann equation (5.8) is incomplete,(5.13)

with another unknown function F.

3. In order to ensure that the Maxwell distribution ρ0 given by (5.4)
is a steady state solution of the Boltzmann equation (5.8), one has to
assume that dρ0/dt = 0, which implies that

(5.14)
F

m
· ∂ρ0

∂v
= 0 ⇐⇒ F · v = 0.
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This requires that

(5.15) F = 0.

This assumption (5.15) is non-physical, since under (5.15), all particles
in the system, with zero force, will make uniform rectilinear motion.
This is in contradiction with the reality, and leads to the following
inconsistency of the Boltzmann equation with the real phenomena:

(5.16)

the Maxwell distribution (5.4) is a steady state solution

of the Boltzmann equation (5.8) under

the non-physical assumption (5.15).

4. In deriving the H-Theorem (i.e. the entropy-ascending principle),
the following must be assumed:

(5.17) F = F (t, x) is independent of v.

However, the Boltzmann equation (5.8) treats the velocity v as an
independent variable. In this case, the force field F must be treated
as a function of v as well. Consequently the above assumption (5.17)
is rather arbitrary, and any model using velocity v as an independent
variable is inconsistent with the assumption (5.17). In other words, the
H-Theorem is not a natural consequence of the Boltzmann equation
(5.8).

Remark 5.1. In statistical physics, one often regards the Boltzmann
equation as a model only suitable for dilute ideal gas. The misperception
is that the mutual interaction between particles in a dilute gas system
is negligible, leading to the assumption F = 0 in (5.15). However, the
force field generated by the total interaction potential Φ of all particles:

(5.18) F = −∇Φ

is not small, and is not simply measured by r−2 between particles. The
motion of particles in any dilute gas system is chaotic, and the ve-
locities of the particles are not small even when there is no external
force present. Consequently, the interaction force field is not small,
and cannot simply be ignored.

5. Ignoring the non-physical nature of assumption (5.15), the space
of all steady state solutions of the Boltzmann equation (5.8) have 5-
dimension. Namely, the general form of the steady state solutions is

ρ̄ = eα0+α1v1+α2v2+α3v3+α4v2 ,
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where αi (i = 0, · · · , 4) are constants, and v = (v1, v2, v3). This shows
that each steady-state is not stable, and this does not fit the reality.

6. Entropy-increasing principle shows that a gaseous system in the
equilibrium has the maximum entropy, i.e. the Maxwell distribution
(5.4) should be the maximum of (5.3). However, the maximum of (5.3)
is given by

ρ0 = e−1.

Again, this is non-physical.

5.3. Conclusions. In a nutshell, the above discussions clearly demon-
strate the following conclusions:

1. Laws of physics (equations) should not use state functions as in-
dependent variables, which are themselves governed by physical laws.
The Boltzmann equation violates this simple physical rule, and there-
fore is not able to faithfully reflect the true nature of the underlying
physical phenomena.

2. Irreversibility is a common characteristic of all dissipative systems,
and is not an entropy property. The Potential-Descending Principle
introduced in this paper is the basic mathematical model/description
of irreversibility.

3. The Boltzmann equation was aimed to develop a mathematical
model for entropy-increasing principle. This is an incorrect starting
point, since thermodynamic potential is the right physical quantity
for the mathematical characterization of irreversibility, rather than en-
tropy.

4. Let F (u, λ) be the thermodynamic potential of a gaseous system
with order parameters u and control parameters λ. Then PDP gives
rise to the following dynamic equation:

(5.19)
du

dt
= −δF (u, λ).

This equation offers a complete description of the irreversibility of the
gaseous system.

6. Mathematical Foundations of Dynamic Law

6.1. General orthogonal Decomposition Theorem. The follow-
ing is a general orthogonal decomposition theorem. Let X be a linear
space, H be a Hilbert space, and

L : X → H be a linear map.
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Let

N = {ϕ ∈ X | Lϕ = 0},
be the kernel of L, and let H1 be the completion of X/N with the
following norm

(6.1) ||ϕ||2H1
= 〈Lϕ,Lϕ〉H , ϕ ∈ X/N .

It is clear that H1 is a Hilbert space, and

(6.2)
L : H1 → H is bounded,

L∗ : H → H∗1 is the dual operator of L.

Then we have the L−orthogonal decomposition theorem as follows.

Theorem 6.1 (L-Orthogonal Decomposition Theorem). For the linear
operators L and L∗ in (6.2) and any u ∈ H, there exists a ϕ ∈ H1 and
v ∈ H, such that u can be decomposed as

(6.3) u = Lϕ+ v, L∗v = 0, 〈Lϕ, v〉H = 0.

Proof. For a given u ∈ H, consider the existence of the equation

(6.4) L∗Lϕ = L∗u,

for solution ϕ ∈ H1. By (6.1) we can see that the operator

A = L∗L : H1 → H∗1 ,

is positive definition, i.e., for any ψ ∈ H1 we have

〈Aψ,ψ〉H1 = 〈Lψ,Lψ〉H = ||ψ||2H1
.

Therefore, by the Lax-Milgram theorem, the equation (6.4) has a unique
solution ϕ ∈ H1. Then we take

(6.5) v = u− Lϕ ∈ H.

By (6.4) we see that

(6.6) L∗v = 0.

Thus, (6.5) is the decomposition of (6.4), and by (6.6) we have

〈Lϕ, v〉H = 〈ϕ,L∗v〉H1 = 0,

i.e., Lϕ and v are orthogonal in H. The proof is complete. �

We demonstrate the applications of the above theorem with two
examples.



24 MA AND WANG

Example 6.1. Let H = L2(Ω,Rn) be the space of all n-dimensional
vector fields defined on an open set Ω ⊂ Rn, and

H1 = H1(Ω)/R =

{
ϕ ∈ H1(Ω) |

∫
Ω

ϕdx = 0

}
.

Let

(6.7) L = ∇ : H1 → H be the gradient operator,

and the duality L∗ : H → H∗1 is as follows

(6.8) 〈L∗v, ϕ〉H1 =

∫
Ω

(−divv)ϕdx+

∫
∂Ω

ϕv · nds

∀ϕ ∈ H1. By (6.8) we can see that

(6.9) L∗v = 0⇐⇒ divv = 0, v · n|∂Ω = 0.

Therefore, for the operators (6.7) and (6.9) the vector fields u in H =
L2(Ω,Rn) can be decomposed as

(6.10) u = ∇ϕ+ v, div v = 0, v · n|∂Ω = 0.

This is the Leray decomposition.

Example 6.2. The decomposition of the tensor in Riemannian man-
ifolds. Let M be a n−dimensional manifold without boundary, and
H = L2(T krM) be the space consisting of square integrable (k, r)-tensor
on M , and

H1 = H1(T k−1
r M) (or H1(T kr−1M)).

For the gradient operator

L = ∇ : H1 → H,

the dual operator is the divergent operator

L∗ = div : H → H∗1 .

By Theorem 6.1, for u ∈ H = L2(T krM) we have

(6.11) u = ∇ϕ+ v, divv = 0, ϕ ∈ H1.

6.2. Variations with constrained-infinitesimals. LetH,H1 be two
Hilbert spaces, and

(6.12) L : H1 → H, L∗ : H → H∗1

be a pair of dual linear bounded operators. Consider the functionals
defined on H, i.e.,

(6.13) F : H → R1.

Then we introduce the following definitions. Let

(6.14) N ∗ = {v ∈ H | L∗v = 0} 6= {0},
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i.e., dim N ∗ > 0.
We now recall the notion of constraint variations given in Defini-

tion 2.1:

1) For any u ∈ H, the derivative operator of F at u with L∗−constraint,
denoted by δL∗F (u), is defined as follows

(6.15) 〈δL∗F (u), v〉H =
d

dt

∣∣∣∣
t=0

F (u+ tv) ∀v ∈ N ∗.

2) The derivative operator of F at u with L−constraint, denoted
by δLF (u), is defined as follows

(6.16) 〈δLF (u), ϕ〉H1 =
d

dt

∣∣∣∣
t=0

F (u+ tLϕ) ∀ϕ ∈ H1.

The following theorem is based on Theorem 6.1.

Theorem 6.2 (Variation with L−constraints). For the variational
derivatives with L∗ and L constraints defined in (6.15) and (6.16) we
have the following conclusions.

1) For δL∗F (u), there is a ϕ ∈ H1 such that

(6.17) δL∗F (u) = δF (u) + Lϕ.

2) For δLF (u), we have

(6.18) δLF (u) = L∗δF (u).

Here δF (u) is the normal derivative operator.

Proof. The theorem follows from Definition 2.1 and Theorem 6.1. In
fact, by definition, we have

〈δL∗F (u), v〉H = 〈δF (u), v〉 ∀L∗v = 0,

which, by Theorem 6.1, implies (6.17).
Also, by definition, we have

〈δLF (u), ϕ〉H1 = 〈δF (u), Lϕ〉H = 〈L∗δLF (u), ϕ〉H1 ,

which leads to (6.18). �

By Theorem 6.2, we shall show that all physical motion systems,
without coupling to other systems, have a functional

F : H → R1

such that the dynamical equations of the systems can be expressed as

(6.19)
du

dt
= −AδLF (u),



26 MA AND WANG

where A is a coefficient matrix, δLF (u) is the derivative operator of
F at u with L−constraint. Note that the normal derivative operator
δF (u) correspond to δLF (u) with L = id the identity.

7. Dynamics of Other Physical Motion Systems

7.1. Newtonian laws. A group of bodies with masses (m1, · · · ,mN)
motion in a potential field V (x), the motion equations are

(7.1)
dpi
dt

= −miδiV (x) (1 ≤ i ≤ N),

where δi = ∂/∂xi. In (2.8), we have shown that (7.1) has the form of
(2.6).

Consider the electron motion equation given by

(7.2) m
dv

dt
= eE +

e

c
v ×H.

Based on the electromagnetic theory,

momentum of electron p = mv +
e

c
A,

electromagnetic potential Φ = ϕ− 1

c
A · v.

Then (7.2) is equivalent to the equation (see Landau and Lifshitz [1]):

(7.3)
dp

dt
= −e∇Φ,

which can be equivalently written as

du

dt
= −JδΨ,

where u = (x, p)T , and

Ψ =
1

2m
p2 − e

mc
A · p+

e

c
A2 + eϕ,

J =

(
0 −I
I 0

)
.

7.2. Fluid Dynamics. We consider here two examples–the compress-
ible Navier-Stokes equations and the Boussinesq equations.
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We start with the compressible Navier-Stokes equations:

(7.4)

∂u

∂t
+ (u · ∇)u =

1

ρ
[µ∆u−∇p+ f ] ,

∂ρ

∂t
= −div (ρu)

u|∂Ω = 0.

Let the constraint operator L = −∇ be the gradient operator, with
dual operator L∗ = div. Also, let

Φ(u, ρ) =

∫
Ω

[
µ

2
|∇u|2 − fu+

1

2
ρ2divu

]
dx.

Then the equations of (7.4) are written as

(7.5)

du

dt
= −1

ρ

δL∗

δu
Φ(u, ρ),

dρ

dt
= − δ

δρ
Φ(u, ρ),

which is in the form of (2.6) with coefficient matrix A = diag(1/ρ, 1).
Also, the pressure is given by

p = p0 − λdivu− 1

2
ρ2.

Here

du

dt
=
∂u

∂t
+
∂u

∂xi

dxi
dt

=
∂u

∂t
+ (u · ∇)u,

dρ

dt
=
∂ρ

∂t
+ u · ∇ρ.

The Boussinesq equations are written as

(7.6)

∂u

∂t
+ (u · ∇)u− ρ−1

0 [ν∆u+∇p] = −gkρ(T ),

∂T

∂t
+ (u · ∇)T − κ∆T = 0,

divu = 0,

where ν, κ, g are constants, u = (u1, u2, u3) is the velocity field, p is
the pressure function, T is the temperature function, T̄0 is a constant
representing the lower surface temperature at x3 = 0, and k = (0, 0, 1)
is the unit vector in the x3-direction.

As before, we take the linear constraint operator L = −∇ with dual
L∗ = div. Let

Φ(u, T ) =

∫
Ω

[µ
2
|∇u|2 +

κ

2
|∇T |2

]
dx.
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Then the Boussinesq equations of (7.6) are written as

(7.7)

du

dt
= − 1

ρ0

δL∗

δu
Φ(u, T ) +B(u, T ),

dT

dt
= − δ

δT
Φ(u, T ),

which is in the form of (2.6) with coefficient matrix A = diag(1/ρ0, 1).
The term B(u, T ) is given by

B(u, T ) = gρ0kρ(T ),

which breaks the symmetry of the functional Φ(u, T ), caused by the
coupling between momentum equations and the temperature equation.
Also, the incompressibility condition div u = 0 is built into the con-
struction of the basic function space, which we omit the details.

7.3. Hamiltonian dynamics. The principe of Hamiltonian dynamics
(PHD) is a universal principle, which governs all energy conservative
systems, including the astronomic mechanics, wave motion equations,
quantum mechanics, and the Maxwell equations.

PHD amounts to saying that for a conservative system, there are
two sets of conjugate functions u = (u1, · · · , uN), v = (v1, · · · , vN)
and a Hamiltonian energy H = H(u, v), such that u and v satisfy the
equations; see among others Ma and Wang [4]:

∂u

∂t
= k

δ

δv
H(u, v),

∂v

∂t
= −k δ

δu
H(u, v),

which can be expressed in form of (2.6) as

(7.8)
dv

dt
= −AδH(u, v),

where

A = k

(
0 −I
I 0

)
is an anti-symmetric matrix.

7.4. Lagrangian Dynamics. The principle of Lagrangian dynamics
(PLD) is also a universal principle in physics, which governs the phys-
ical motion systems such as Newtonian mechanics, quantum physical
system, elastic waves, classical electrodynamics etc; see among others
[1, 4].
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PLD amounts to saying that for an isolated motion system, there
are state functions u = (u1, · · · , uN) and a functional F (u) called the
Lagrangian action, such that u satisfies

(7.9) δF (u) = 0,

which can be equivalently referred to the Hamiltonian system (7.8)
with conjugates u and v = ut.
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