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Regularity and Stability for the Semigroup of Jump Diffusions with State-Dependent Intensity 1 Introduction

We propose a quantitative analysis of the regularity of semigroups of operators associated with hybrid piecewise-diffusive systems

(1) X t = x + ∞ l=1 t 0 σ l (s, X s )dB l s + t 0 b(s, X s )ds + [0,t]×E×R + c(s, z, X s-)1 {u≤γ(s,z,X s-)} N µ (ds, dz, du).

taking their values in some Euclidian space R d . Here,

• (E, E) is a measurable space,

• N µ (ds, dz, du) is a homogenous Poisson point measure on E × (0, ∞) with intensity measure µ(dz) × 1 (0,∞) (u)du,

• W t = (W l t ) l∈N is an infinite-dimensional Brownian motion (independent of N µ ) and

• the coefficients σ l , b : R + × R d → R d and c : R

+ × E × R d → R d , γ : R + × E × R d → [0, ∞)
are assumed to be smooth enough.

Whenever the jump intensity γ is constant, one deals with classical stochastic differential systems with jumps. Regularity of the associated flow is then immediate (see [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] or [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF]). However, if γ is non-constant, the position X s-of the solution plays an important part in the intensity of jumps. This latter framework occurs in a wide variety of applications and it will receive our attention throughout the paper.

Our first result (see Theorem 15), which is the core of the paper, consists in proving that, under natural assumptions, the semigroup P t f (x) = E(f (X t (x)) propagates regularity in finite time T > 0, i.e. [START_REF] Alfonsi | Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF] sup

t≤T P t f k,∞ ≤ Q k (T, P) f k,∞ , ∀f ∈ C k b (R d ).
Here, f k,∞ is the infinite norm of f and its first k derivatives. In the case k = 0, this means that P t is a Feller semigroup.

As we have already hinted, the main difficulty to overcome is due to the presence of the jump intensity γ(s, z, X s-). In classical jump equation, the indicator function 1 {u≤γ(s,z,X s-)} does not appear and one may construct a version of the solution such that x → X t (x) is k-times differentiable (see [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF]). Next one proceeds with differentiating the associated semigroup and using chain rule

∂ x i P t f (x) = d j=1 E [∂ j f (X t (x))] ∂ x i X j t (x)
and concludes that (2) holds for k = 1 with

Q 1 (T, P ) = sup t≤T sup x E [|∇X t (x)|] .
However, in our framework, the indicator function is present such that the stochastic differential representation of the solution in (1) is not appropriate. We will employ the alternative representation in [START_REF] He | Asymptotic analysis of the spatially homogeneous boltzmann equation: Grazing collisions limit[END_REF] (known in the engineering literature as "real shock" representation, whileas (1) is known as the "fictive shock" representation). The specificity of our framework is that the law of the jumps depends on the trajectory and this dependence is quantified by γ. As consequence, the constants Q k will depend on some quantities of type E |∂ α ln γ (t, z, x)| p γ (t, z, x) µ (dz) (for appropriate p ≤ k and index α; the presence of such terms is inspired by Malliavin calculus techniques).

A second result is a stability propety in the line of the Trotter -Kato theorem (cf. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 4.4]). We consider a sequence (P n t ) n∈N of semigroups of operators with generators L n and we assume that, for some q ∈ N,

(3) (L n -L)f ∞ ≤ ε × f q,∞ , for all f ∈ C q b (R d ).
Here, L stands for the infinitesimal operator associated with [START_REF] Alfonsi | Exact simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF]. In Theorem 16 we prove that, under suitable hypotheses, the previous inequality yields (4) (P n t -P t )f ∞ ≤ ε × Q q (T, P)× f q,∞ , for all f ∈ C q b (R d ).

In order to undersand the link betwen this result and the property (2), one writes

P t f (x) -P n t f (x) = t 0
∂ s P n t-s P s f (x)ds = t 0 P n t-s (L n -L)P s f (x)ds and notice that by (3) first and by [START_REF] Alfonsi | Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF] next

P n t-s (L n -L)P s f ∞ ≤ (L n -L)P s f ∞ ≤ ε × P s f q,∞ ≤ ε × Q q (T, P) f q,∞ .
We finally mention that in the paper we deal with non-homogenous semigroups and the inequalities are written with weighted norms (for simplicity we have chosen to present the results with usual inifinity norms in this introduction). If µ is a finite measure and σ is null, the solution of the above equation [START_REF] Alfonsi | Exact simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF] relates to the class of Piecewise Deterministic Markov Process (abridged PDMP). These equations have been introduced in [START_REF] Davis | Piecewise-deterministic Markov-processes -A general-class of non-diffusion stochastic-models[END_REF] and studied in detail in [START_REF] Davis | Markov models and optimization[END_REF]. A wide literature is available on the subject of PDMP as they present an increasing amount of applications: on/off systems (cf. [START_REF] Boxma | On/off storage systems with statedependent input, output, and switching rates[END_REF]), reliability (e.g. [START_REF] Dufour | Piecewise deterministic markov processes and dynamic reliability[END_REF]), simulations and approximations of reaction networks (e.g. [START_REF] Daniel | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF], [START_REF] Alfonsi | Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF], [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF], with some error bounds hinted at in [START_REF] Jahnke | Error bound for piecewise deterministic processes modeling stochastic reaction systems[END_REF] or [START_REF] Ganguly | Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms[END_REF]), neuron models (e.g. [START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF], [START_REF] Bressloff | Metastability in a stochastic neural network modeled as a velocity jump markov process[END_REF]), etc. The reader may equally take a look at the recent book [START_REF] Cocozza-Thievent | Renouvellement markovien et PDMP[END_REF] for an overview of some applications. In engineering community, these equations are also known as "transport equations" (see [START_REF] Lapeyre | Méthodes de Monte-Carlo pour les équations de transport et de diffusion[END_REF] or [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]).

To the best of our knowledge, in the general case (including a diffusion component and an infinite number of jumps), under suitable assumptions, the first proof of existence and uniqueness of the solution of equation ( 1) is given in [START_REF] Graham | McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF]. Now assume that, for one purpose or another, one aims at applying some kind of numerical algorithm in order to simulate the solution of equation [START_REF] Alfonsi | Exact simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF]. Furthermore, assume for the moment, that σ = b = 0 such that (5)

X t = x + t 0 E (0,∞)
c(s, z, X s-)1 {u≤γ(s,z,X s-)} N µ (ds, dz, du).

If µ(E) is finite, then one deals with a finite number of jumps in any interval of time, such that the solution X is given with respect to a compound Poisson process that can be explicitly simulated (leading, in particular chemistry-inspired settings, to what is commonly known as Gillespie's algorithm [START_REF] Daniel | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF]; for other general aspects on simulation, see also [START_REF] Lapeyre | Méthodes de Monte-Carlo pour les équations de transport et de diffusion[END_REF]). However, even in this rather smooth case, the presence of a trajectory-triggered jump (i.e. dependence on x in the jump intensity γ) can lead, in certain regions (as γ gets large) to the accumulation of many (possibly) small jumps. In this case, the algorithm becomes very slow. One way of dealing with the problem is to replace these small jumps with an averaged motion leading (piecewise) to an ordinary differential equation (e.g. in [START_REF] Alfonsi | Exact simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF]). Within the context of reaction networks, some intuitions on the partition of reactions and species to get the hybrid behavior as well as qualitative behavior (convergence to PDMP) are specified, for example, in [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF]. Further heuristics can be found in [START_REF] Angius | Approximate analysis of biological systems by hybrid switching jump diffusion[END_REF].

In the general framework of infinite µ(E), this direct approach may fail to provide fast solutions (except particular situations e.g. in [START_REF] Protter | The Euler scheme for Lévy driven stochastic differential equations[END_REF]). To provide an answer, the natural idea is to truncate the "small jumps" on some compatible family of sets (E n ) n∈N and simulating X n t solution of (6)

X n t = x + t 0 E c n (0,∞) c n (s, z, X n s-)1 {u≤γ(s,z,X n s-)} N µ (ds, dz, du).
This procedure leads to a large error. To improve it, one might want to further replace the "small jumps" from E n by a Brownian diffusion term leading to (7)

X n t = x + t 0 En σ n (s, z, X n s-)W µ (ds, dz) + t 0 b n (s, X n s )ds + t 0 E c n (0,∞) c n (s, z, X n s-)1 {u≤γn(s,z,X n s-)} N µ (ds, dz, du)
where W µ is a time-space Gaussian random measure (associated with L 2 (µ); standard procedure allows interpreting W µ as in equation ( 1)). The specific form of σ n and b n is obtained by using a second-order Taylor development in the infinitesimal operator of the initial equation. This idea goes back to [START_REF] Asmussen | Approximations of small jumps of Lévy processes with a view towards simulation[END_REF]. In the case of systems driven by a Lévy process (with γ fixed), [START_REF] Fournier | Simulation and approximation of lévy-driven stochastic differential equations[END_REF] gives a precise estimate of the error and compares the approximation obtained by truncation as in equation ( 6) with the one obtained by adding a Gaussian noise as in equation ( 7). An enlightening discussion on the complexity of the two methods is also provided. Similar results concerning Kac's equation are obtained in [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF] and for a Boltzmann-type equation in [START_REF] Godinho | Asymptotic of grazing collisions for the spatially homogeneous boltzmann equation for soft and coulomb potentials[END_REF]. For some recent developpement on asymptotics of Boltzmann-type equation, we also mention [START_REF] He | Asymptotic analysis of the spatially homogeneous boltzmann equation: Grazing collisions limit[END_REF]. Finally, it is worth mentioning that the converse approach (replacing Brownian with jump diffusions) may also be useful. The engineering literature is quite abundant in overviews of numerical methods for (continuous) diffusion processes using jump-type schemes. In this case the stochastic integral with respect to the Brownian motion is replaced by an integral with respect to a jump process.

The aim of the present paper is to provide quantitative estimates of the weak approximation error when substituting the original system (1) with hybrid (piecewise diffusive Markov system [START_REF] Benaïm | Ergodicity of inhomogeneous Markov chains through asymptotic pseudotrajectories[END_REF]) in the general case when γ is trajectory-dependent (which constitutes the main difficulty to overcome). At intuitive level, Trotter-Kato-type results (cf. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 4.4]) give the qualitative behavior. If P n (resp. L n ) is the semigroup (resp. infinitesimal generator) associated with [START_REF] Benaïm | Ergodicity of inhomogeneous Markov chains through asymptotic pseudotrajectories[END_REF] and P (resp. L) is the semigroup (resp. infinitesimal generator) associated with [START_REF] Alfonsi | Exact simulation of hybrid stochastic and deterministic models for biochemical systems[END_REF], under Feller-type conditions, convergence of L n to L will imply the corresponding convergence of semigroups. This type of qualitative behavior can be found, for instance, in [START_REF] Kurtz | Limit theorems for sequences of jump Markov processes approximating ordinary differential processes[END_REF] (leading to drift), [START_REF] Ball | Asymptotic analysis of multiscale approximations to reaction networks[END_REF] (leading to piecewise diffusive processes). In order to get error bounds (leading to a quantitative estimate), one employes [START_REF] Asmussen | Approximations of small jumps of Lévy processes with a view towards simulation[END_REF].

A somewhat different motivation for our work comes from a method introduced in [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF] (see also [START_REF] Benaïm | Ergodicity of inhomogeneous Markov chains through asymptotic pseudotrajectories[END_REF]) to study convergence to equilibrium for Markov chains. Roughly speaking, instead of looking into the long-time behavior of the Markov chain Y n , n ∈ N, one replaces this chain by a Markov process X t sharing the same asymptotics (t → X t being an "asymptotic pseudotrajectory"). In [START_REF] Löcherbach | Convergence to equlibrium for Markov processes having three regimes[END_REF], the results of our paper are used in order to extend this method (of [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF]) to the piecewise deterministic Markov framework.

Finally, although many biological intuitions exist on the use of hybrid models for reaction systems (e.g. [START_REF] Angius | Approximate analysis of biological systems by hybrid switching jump diffusion[END_REF]), the quantitative estimates in our paper may turn out to provide a (purely mathematical) selection criterion for the components to be averaged and the contributions to be kept within the jump component. The use of diffusions punctuated by jumps (as mesoscopic approach) responds, on one hand, to the question of speeding up algorithms and, on the other, of keeping a high degree of stochasticity (needed, for example, to exhibit multistable regimes).

This paper is organized as follows. We begin with presenting the main notations used throughout the paper. We proceed, in Section 2.1 with the main elements leading to the processes involved. First, we recall some classical results on cylindrical diffusion-driven processes and the regularity of the induced flow (Section 2.1.1). Next, in Section 2.1.2, we introduce the jumping mechanism as well as the standing assumptions. We proceed with the construction of hybrid systems (piecewise diffusive with trajectory-triggered jumps) in Section 2.2. We begin with some localization estimates when the underlying measure is finite in Lemma 6. We also recall some elements on fictive and real shocks leading to some kind of Marked-point process representation of our system. These elements turn out to be of particular importance in providing the differentiability of the flow generated by our hybrid system. The norm notations and the L p -regularity of the solution (uniformly with respect to the initial data) are given in Section 3.

The differentiability of the associated semigroup is studied in Section 4 (with the main result being Theorem 14 whose uniform estimates extend to general underlying measures in Theorem 15).

Section 5 gives quantitative results on the distance between semigroups associated with such systems. The natural assumptions are presented in the first subsection. The main result Theorem 16 produces quantitative upper-bounds for the distance between semigroups starting from the distance between infinitesimal operators.

We present two classes of applications. In Section 6, we imagine a piecewise deterministic Markov process presenting three regimes and leading to a hybrid approximation with explicit distance on associated semigroups. First, we provide a theoretical framework describing the model, the regimes, the assumptions and the main qualitative behavior (in Theorem 19). Next, explicit measures make the object of a simple example to which our result is applied.

The second class of examples is given by a two-dimensional Boltzmann equation (following the approach in [START_REF] Bally | Regularization properties of the 2d homogeneous boltzmann equation without cutoff[END_REF]) in Section 7. We begin with describing the model, its probabilistic interpretation and the (cut off) approximation given in [START_REF] Bally | Regularization properties of the 2d homogeneous boltzmann equation without cutoff[END_REF] and leading to a pure-jump PDMP. In this approximated model, using our results, we replace small jumps with either a drift term (first-order approximation provided in Theorem 23) or a diffusion term (second-order approximation provided in Theorem 24).

Notations

Let (E, E) be a measurable space and µ be a (fixed) non negative σ-finite measure on (E, E).

• Given a standard Euclidian state-space R m , the spaces L p (µ) (for 1 ≤ p ≤ ∞) will denote the usual space of p-power integrable, R m -valued functions defined on E. This space is endowed with the usual norm • The space C q b (R m ) is the space of real-valued functions on R m whose partial derivatives up to order q are bounded and continuous.

φ L p (µ) = E |φ(z)| p µ(dz)
Given a (fixed) probability space (Ω, F, P) and a (fixed) time horizon T > 0,

• If ξ is an R m -valued random variable on Ω, we denote, as usual,

ξ p = (E [|ξ| p ]) 1 p .
• If Y is an adapted real-valued process and Z is an L 2 (µ)-valued process, then we denote by

Y T,p = E sup t≤T |Y t | p 1 p and Z T,p = E sup t≤T Z t p L 2 (µ) 1 p 
.

• We use M T to denote the space of the measurable functions f : [0, T ] × E × R d → R (where metric space are endowed with usual Borel fields). For f ∈ M T , we consider the norm

(8) f (µ,∞) = sup t≤T sup x∈R d f (t, •, x) L 2 (µ) .
• Similar norm can be induced on M d T by replacing L 2 (µ; R) with L 2 (µ; R d ) norms.

• For a multi-index α = (α 1 , ..., α q ) ∈ {1, ..., d} q we denote |α| = q the length of α and ∂ α x = ∂ xα 1 ....∂ xα q the corresponding derivative. To simplify notation, the variable x may be suppressed and we will use ∂ α .

• For k ∈ N * , we denote by R [k] the family of real-valued vectors indexed by multi-indexes of at most

k length i.e. R [k] = {y [k] = (y β ) 1≤|β|≤k : y β ∈ R} and, for y [k] ∈ R [k] we denote (9) y [k] R [k] = 1≤|β|≤k |y β | k+1 |β| . By convention, y [0] R [0] = 0. Similarly, R d [k]
is defined for vectors whose components belong to R d and |y β | is then computed with respect to the usual Euclidian norm on R d .

• If x → f (t, z, x) is a real-valued, q times differentiable function for every (t, z) ∈ [0, T ] × E then, for every 1 ≤ l ≤ q we denote (10)

f l,q,(µ,∞) = l≤|α|≤q ∂ α x f (µ,∞) and f q,(µ,∞) = f (µ,∞) + f 1,q,(µ,∞)
Remark 1 We emphasize that in f l,q,(µ,∞) , for l ≥ 1, only derivatives are involved ( f (µ,∞) itself does not appear).

• For a measurable function g : [0, T ] × R d → R we denote by g ∞ = sup

(t,x)∈[0,T ]×R d |g(t, x)| and, if x → g(t,
x) is q times differentiable for every t ∈ [0, T ], then

g l,q,∞ = l≤|α|≤q ∂ α x g ∞ and g q,∞ = g ∞ + g 1,q,∞ .

Preliminary results

Continuous Diffusion

We assume the fixed probability space (Ω, F, P) to be endowed with a Gaussian noise W µ based on µ, as introduced by Walsh in [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]. We recall that W µ is a family of centred Gaussian random variables

W µ (t, h) indexed by (t, h) ∈ R + × L 2 (µ) with covariances E [W µ (t, h)W µ (s, g)] = (t ∧ s) h, g L 2 (µ) .
Note that whenever (e l ) l∈N ∈ L 2 (µ) is an orthonormal basis, the family (W µ (t, e l )) l∈N is a sequence of independent standard Brownian motions. We briefly recall the stochastic integral with respect to W µ . One considers the natural filtration

F W t = σ(W µ (s, h) : s ≤ t, h ∈ L 2 (µ))
, for all t ≥ 0. For a process φ :

R + × Ω → L 2 (µ) which is adapted (i.e φ t , h L 2 (µ) is F W t measurable for every h ∈ L 2 (µ)) and for which E T 0 φ t 2 L 2 (µ) dt < ∞, for every T > 0, one defines (11) t 0 E φ s (z)W µ (ds, dz) := ∞ l=1 t 0 φ s , e l L 2 (µ) W µ (ds, e l ).
Let 0 ≤ s ≤ T be fixed. A non-homogeneous continuous diffusion process Φ s,t (x), s ≤ t ≤ T driven by W µ with (regular) coefficients σ and b is the solution of the stochastic equation

(12) Φ s,t (x) = x + t s E σ (u, z, Φ s,u (x)) W µ (du, dz) + t s b (u, Φ s,u (x)) du = x + ∞ l=1 t 0 σ l (u, Φ s,u (x)) dB l u + t s b (u, Φ s,u (x)) du,
with B l s = W µ (s, e l ) and σ l (u, x) = σ(u, •, x), e l L 2 (µ) . The following result is standard for finite-dimensional Brownian motions (e.g. [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF]) and its generalization to this setting is quite forward.

Proposition 2 Let us assume the following norm condition to hold true

(13) ∇σ (µ,∞) + ∇b ∞ < ∞.
Then, for every initial datum x ∈ R d , the equation ( 12) has a unique strong solution. Moreover, if σ 1,q+1,(µ,∞) + b 1,q,∞ < ∞, then there exists a version of this solution such that x → X s,t (x) is q times differentiable.

Remark 3 Let us note that the following (more usual) alternative representation for this diffusion holds: let a i,j (t, x) = E σ i σ j (t, z, x)µ(dz), 1 ≤ i, j ≤ d and set σ = a 1 2 . Then the law of Φ s,t coincides with the law of Φ s,t solution of

Φ s,t (x) = x + d j=1 t s σ j u, Φ s,u (x) dB j u + t s b u, Φ s,u (x) du,
where B = (B 1 , ..., B d ) is a standard Brownian motion. We prefer working with the representation Φ s,t (and not with Φ s,t ) for two reasons. First, the stochastic integral with respect to W µ (du, dz) naturally appears in our problem. Moreover, if one liked to work with Φ s,t , then one would have to compute σ = a 1 2 and to derive regularity properties for σ from regularity properties for a, and this is more delicate (one needs some ellipticity property for a). In contrast, if one starts with the equation [START_REF] Cocozza-Thievent | Renouvellement markovien et PDMP[END_REF], then the proof of the previous proposition is a straightforward extension of the classical results.

Jump Mechanism and Further Notations

We assume the space Ω to be large enough to contain an independent Poisson point measure on E × R + denoted by N µ and having a compensator N µ (ds, dz, du) = dsµ(dz)du. (For further constructions and properties, the reader is referred to [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]). We just mention that, whenever A l × I l ∈ E × B(R + ), l = 1, ..., m are disjoint sets, then t → N µ (t, A l × I l ) are independent Poisson processes with parameters µ(A l ) × Leb(I l ). Here, B(R + ) stands for the family of Borel subsets of R + .

We consider now the coefficients c ∈ M d T and γ ∈ M T and we assume that there exist some functions l c , l γ :

E → R + such that (14) C µ (γ, c) := sup t≤T sup x∈R d E (l γ (z) |c(t, z, x)| + l c (z)γ(t, z, x))µ(dz) < ∞
and such that, for every x, y ∈ R d , every t ≥ 0 and z ∈ E,

(t, z, x) -c(t, z, y)| ≤ l c (z) |x -y| , |γ(t, z, x) -γ(t, z, y)| ≤ l γ (z) |x -y| . (15) |c 
Moreover, we assume that γ takes non-negative values and We also set, for any Borel set G ⊂ E,

(17) α(G) := sup t≤T sup x∈R d G |c(t, z, x)| γ(t, z, x)µ(dz)
and assume that α(E) < ∞.

The Hybrid System

We are interested in the (hybrid) stochastic differential equation

(18) X s,t (x) = x + t s E σ(r, z, X s,r (x))W µ (dr, dz) + t s b(r, X s,r (x)dr + t s E×[0,2Γ] c(r, z, X s,r-(x))1 {u≤γ(r,z,X s,r-(x))} N µ (dr, dz, du).

Remark 4

The stochastic components W µ and N µ are assumed to be associated with the same measurable space (E, E, µ). This assumption is made in order to avoid heavy notation. Alternatively, one may consider W µ on (E, E, µ) and N ν on some (independent) space (F, F, ν). For most examples, the space E = {1, ..., d} and the uniform measure µ(i) = 1 d , for all i ∈ E play an important role. In this setting, W µ (dr, dz) = 1 d d i=1 dW i r , such that one comes back to a usual diffusion process driven by a finite-dimensional Brownian motion.

The following result gives the existence and uniqueness of the solution to our hybrid system in the class of càdlàg processes in L 1 .

Theorem 5 Suppose that ( 14),( 15),( 16),( 17) and ( 13) hold. Then the equation ( 18) has a unique L 1 solution (that is a cadlag process X s,t (x), t ≥ s with E(|X s,t (x)|) < ∞ which verifies ( 18)).

The above theorem has been first proven in [START_REF] Graham | McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF]. The main idea is that, in contrast with the standard approach to SDEs relying on L 2 norms, one has to work here with L 1 norms. This is due to the indicator function appearing in the Poisson noise. We shortly recall this argument in the following.

Localization Estimates for µ

For a set G ⊂ E we denote by X G s,t the solution of the equation ( 18) in which the measure µ is restricted to G i.e. substituted by 1 G (z)dµ(z). The first step gives the behavior of such solutions for different sets G.

Lemma 6 We suppose that ( 14),( 15),( 16),( 17) and ( 13

) hold. Let G 1 ⊂ G 2 ⊂ E be two measurable sets (the case G 1 = G 2 = E is included) and let ∆X s,t = X G 1 s,t -X G 2 s,t .
There exists a universal constant C such that for every T ≥ 0 one has

(19) E sup s≤t≤T |∆X t | ≤ (|∆X s,s | + T α(G 2 G 1 )) exp CT ∇σ (µ,∞) + ∇b ∞ + C µ (γ, c) 2 + 1 .
The proof is quite straightforward. For our readers' sake, the elements of proof are gathered in Section 8.1.

Let us now discuss the construction of a solution of the equation ( 18) and present two alternative representations of this solution.

Fictive Shocks on Increasing Support Sets

We fix G ⊂ E with µ(G) < ∞ and we recall that γ is upper-bounded by Γ (see [START_REF] Dufour | Piecewise deterministic markov processes and dynamic reliability[END_REF]). We also fix s > 0 and we will construct X G s,t solution of the equation ( 18) associated with 1 G (z)µ(dz) using a compound Poisson process as follows.

One takes J t to be a (usual) Poisson process of parameter 2Γµ(G) and denotes by T k , k ∈ N the jump times of J t . Moreover, one considers two sequences of independent random variables Z k and U k , k ∈ N ( independent of J t as well and supported by the set Ω assumed to be large enough). These random variables are distributed ( 20)

P(Z k ∈ dz) = 1 µ(G) µ(dz), P(U k ∈ du) = 1 2Γ 1 [0,2Γ] (u)du.
Finally, one defines the continuous stochastic flow Φ s,t (x), 0 ≤ s ≤ t to be the solution of the SDE [START_REF] Cocozza-Thievent | Renouvellement markovien et PDMP[END_REF]. Then the solution X G s,t of the equation ( 18) associated with 1

G (z)µ(dz) is constructed by setting X G s,s (x) = x and X G s,t (x) = Φ T k ,t (X G s,T k (x)), on T k ≤ t < T k+1 and X G s,T k+1 (x) = X G s,T k+1 -(x) + c(T k+1 , Z k+1 , X G s,T k+1 -(x))1 {U k ≤γ(T k+1 ,Z k+1 ,X G s,T k+1 -(x))} , where X G s,T k+1 -(x) = Φ T k ,T k+1 (X s,T k (x)
). This gives the solution of the equation

(21) X G s,t = x + t s E σ(r, z, X G s,r )W µ (dr, dz) + t s b(r, X G s,r )dr + Jt k=Js+1 c(T k , Z k , X G s,T k -(x))1 {U k ≤γ(T k ,Z k ,X G s,T k -(x))}
that is (18) associated with 1 G (z)µ(dz). This is the so-called "fictive shock" representation (see [START_REF] Lapeyre | Méthodes de Monte-Carlo pour les équations de transport et de diffusion[END_REF]).

Remark 7

To construct the global solution, one begins with considering a sequence E n ↑ E with µ(E n ) < ∞. Then, one constructs X En s,t as before and then, using [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF], checks that this is a Cauchy sequence. Passing to the limit, one obtains X s,t solution of the general equation [START_REF] Fournier | Simulation and approximation of lévy-driven stochastic differential equations[END_REF]. Uniqueness follows directly from [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF].

For the simplicity of the notation, in the following we will work with s = 0. The estimates for s > 0 are quite similar. As usual, we will denote X G 0,t (x) by X G t (x).

Real Shocks

We construct now the "real shock" representation X G t in the following way. We define E * = E∪{z * }, where z * is a point which does not belong to E and we extend µ to E * by setting µ(z * ) = 1. We also extend c(t, z, x) to E * by c(t, z * , x) = 0, for every (t,

x) ∈ R + × R d . Given a sequence (z k ) k∈N ⊂ E * , one denotes z k = (z 1 , ..., z k ) and constructs x t (x, z Jt ) as follows. (22) x t (x, z k ) = Φ T k ,t (x T k (x, z k )), on T k ≤ t < T k+1 , x T k+1 (x, z k+1 ) = x T k+1 -(x, z k ) + c(T k+1 , z k+1 , x T k+1 -(x, z k ))1 G (z k+1 ).
Next, we define, for every (t, z, x

) ∈ R + × E * × R d , (23) q 
G (t, z, x) = Θ G (t, x)1 {z * } (z) + 1 2Γµ(G) 1 G (z)γ(t, z, x), where Θ G (t, x) = 1 -1 2Γµ(G) G γ(t, z, x)dµ(z).
We consider a sequence of random variables Z k k∈N with the laws constructed recursively by ( 24)

E(Z k ∈ dz | x T k -(x, Z k-1 ) = y) = q G (T k , z, y)µ(dz),
where Z k-1 = (Z 1 , ..., Z k-1 ). Finally, we define X G t (x) = x t (x, Z Jt ). This amounts to saying that

(25) X G t (x) = x + t 0 E σ(s, z, X G s )dW µ (ds, dz) + t 0 b(s, X G s )ds + Jt k=1 c(T k , Z k , X G T k -)1 G (Z k ).
The equation ( 25) is similar to the equation ( 21) but now 1

{U k ≤γ(T k ,Z k ,X T k -(x))} no longer appears. Remark 8 If σ and b are smooth functions, one can choose a variant of x → Φ s,t (x) that is almost surely differentiable. Moreover, if x → c(t, z, x) is also smooth, then x → x t (x, z Jt ) is smooth as well. So x → X G t (x)
will be also differentiable. This is less obvious for x → X G t (x) because of the indicator function appearing in the equation [START_REF] Ganguly | Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms[END_REF].

Moreover, we have the following well known identity of laws result.

Lemma 9

The law of X G t (x) t≥0 coincides with the law of X G t (x) t≥0 solution to [START_REF] Ganguly | Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms[END_REF]. In

particular, P G t f (x) := E f (X G t (x) = E f (X G t (x) .

Differentiability of the Flow

We will now study the differentiability of the application x → X G t (x) when assuming µ(G) < ∞. Let us begin with introducing some further notations. Given a regular function g : R + ×E ×R d → R that is differentiable with respect to the space variable x ∈ R d we denote by

|g| G,p = sup 0≤t≤T sup x∈R d G |g(t, z, x)| p γ(t, z, x)µ(dz) 1 p , (26) [g] G,p = sup 1≤p ′ ≤p |g| G,p ′ . (27) θ q,p (G) = 1 + σ 2,q,(µ,∞) + b 2,q,∞ + 2≤|α|≤q [∂ α x c] G,p , (28) 
a p (G) = ∇σ 2 (µ,∞) + ∇b ∞ + [∇c] p G,p , (29) 
α q,p (C, G) = Cθ q 1≤n≤q 1 n q,pq (G) exp CT q 1≤n≤q 1 n a pq (G) . ( 30 
) Note that if q 1 ≤ q 2 and p 1 ≤ p 2 then θ q 1 ,p 1 (G) ≤ θ q 2 ,p 2 (G) and a p 1 (G) ≤ a p 2 (G) (this is the reason of being of sup 1≤p ′ ≤p in [g] G,p ).
In the following we suppose that µ(G) < ∞ and θ q,p (G) < ∞ and consider X G t (x) and X G t (x), solutions of the equations ( 21) and ( 25) constructed in the previous section. Under these hypothesis one may choose a variant of x → X G t (x) which is q times differentiable. Our aim is to estimate the

L p norm of ∂ α X G t (x) :
Lemma 10 Let α be a multi-index with |α| = k. For every p ≥ 2, the following inequality holds true. [START_REF] Kurtz | Limit theorems for sequences of jump Markov processes approximating ordinary differential processes[END_REF] sup

x∈R d E sup t≤T ∂ α X G t (x) p 1 p ≤ α k,p (C, G).
The proof is postponed to Section 8.2.2. The main idea consists in providing estimates for the chain rule distinguishing first order and higher order derivatives. Subsequently, these estimates will be applied for the different components in the differential formula of ∂ α X G t (x). Next, one provides estimates for generic equations of this type (having a linear form) and uses a recurrence argument over |α| .

We give now some consequences of [START_REF] Kurtz | Limit theorems for sequences of jump Markov processes approximating ordinary differential processes[END_REF].

Corollary 11 A. Let α be a multi-index with |α| = q ≥ 1 and let p ≥ 2 and η > 0 be given. For every g : R + × R d → R that is smooth with respect to x ∈ R d , the following inequality holds true.

(

) Jt k=1 ∂ α g T k , X G T k -(x) p ≤ C g 1,q,∞ Γµ(G) (t ∨ 1) α q q,(1+η)pq (C, G). B Let g : R + × R d → R be a function that is smooth with respect to x ∈ R d . Then, 32 
Jt k=1 1 G (Z k ) ∂ α g T k , Z k , X G T k -(x) p ≤ C   1≤|β|≤|α| [∂ β g] G,(1+η)p α q q, (1+η) η pq (C, G)   . (33) 
For our readers' sake, the proof is provided in Section 8.2.3.

Differentiability of the Semigroup

Before giving the main result on the semigroup of operators, we recall that the law of Z Jt = (Z 1 , ..., Z Jt ) has, as density, p Jt (x, z Jt )µ(dz 1 ), ..., µ(dz Jt ) with

p Jt (x, z Jt ) = Jt k=1 q G (T k , z k , x T k -(x, z k-1 )).
This explicit formulation allows one to obtain a very important step in proving regularity of the semigroup.

Lemma 12 Let us assume that Γµ(G) ≥ 1 and α q,2qp (C, G) < ∞ for some given q ∈ N and p ≥ 2.

Let α be a multi-index with |α| = q ≥ 1. Then, there exists a universal constant C (depending on p and q but not on G) such that

(34) ∂ α ln p Jt (x, Z Jt ) p ≤ C (t ∨ 1) × α q q,2pq (C, G)) × (Γ G,q (γ) + 1≤|β|≤q [∂ β ln γ] G,2p )
with [ln γ] G,2p defined in ( 27) and

(35) Γ G,q (γ) = sup t≤T sup x∈R d q h=1 1≤|ρ|≤h G |∂ ρ ln γ(t, z, x)| h |ρ| γ(t, z, x)µ(dz) q h
. Before going any further, we make the following elementary remark.

Remark 13 For every smooth function φ : R d → R * + and any multi-index ρ with |ρ| = q, one gets the existence of some function P φ ρ : R d → R * + such that

(36) ∂ ρ φ(x) = φ(x)P φ ρ (x) and P φ ρ (x) ≤ C 1≤|β|≤q ∂ β ln φ(x) q |β| ,
for all x ∈ R d . In order to prove this one first writes φ = exp(ln φ)) and then takes derivatives. One obtains φ multiplied with a polynomial applied to terms of type ∂ β ln φ i.e. some linear combination of products of type r i=1 ∂ β(i) ln φ with r i=1 |β(i)| = q. Using Young's inequality with

p i = q |β(i)| , we obtain r i=1 ∂ β(i) ln φ ≤ r i=1 |β(i)| q ∂ β(i) ln φ q |β(i)| .
And this proves the upper bound for P φ ρ (x) given in [START_REF] Protter | The Euler scheme for Lévy driven stochastic differential equations[END_REF].

We are now able to proceed with the proof of Lemma 12. Proof. We have

∂ α ln p Jt (x, z Jt ) = Jt k=1 1 {z * } (z k )∂ α (ln Θ G (T k , x T k -(x, z k-1 ))) + Jt k=1 1 G (z k )∂ α (ln γ(T k , z k , x T k -(x, z k-1 ))) =: s 1 (x, z Jt ) + s 2 (x, z Jt ).
In order to estimate s 1 (x, z Jt ) we will use [START_REF] Thomas | Strong approximation theorems for density dependent Markov chains[END_REF] for g = ln Θ G . Recalling that γ is upper-bounded by Γ, we have Θ G (t, x) ≥ 1 2 . Then, for every multi-index α with |α| = q one has

|∂ α ln Θ G (t, x)| ≤ q r=1 |β(1)|+...+|β(r)|=q r i=1 ∂ β(i) Θ G (t, x) ≤ q r=1 C (Γµ(G)) r |β(1)|+...+|β(r)|=q r i=1 G ∂ β(i) γ(t, z, x) µ(dz).
Using Young's inequality and (36) (recall that Γµ(G) ≥ 1), one proves

r i=1 G ∂ β(i) γ(t, z, x) µ(dz) ≤ C r i=1 G ∂ β(i) γ(t, z, x) dµ(z) q |β(i)| = C r i=1 G P γ β(i) (t, z, x) γ(t, z, x)µ(dz) q |β(i)| ≤ C 1≤|ρ|≤h≤q G |∂ ρ ln γ(t, z, x)| h |ρ| γ(t, z, x)µ(dz) q h ≤ CΓ G,q (γ). We conclude that |∂ α ln Θ G (t, x)| ≤ C Γµ(G) Γ G,q (γ).
As a consequence of (32) (with η = 1), one gets

E s 1 x, Z Jt p 1 p ≤ C (t ∨ 1) Γ G,q (γ)α q q,2pq (C, G).
To estimate the second term, we use [START_REF] Lapeyre | Méthodes de Monte-Carlo pour les équations de transport et de diffusion[END_REF] with g(t, z, x) = ln γ(t, z, x) and for η = 1 to get an upper bound given by

E Jt k=1 1 G (Z k )∂ α ln γ T k , z k , X T k -(x) p ≤ Cα q q,2pq (C, G) 1≤|β|≤q [∂ β ln γ] G,2p .
The proof is now complete. We now discuss the differentiability of the semigroup associated with our process. To this purpose, we let, for f regular enough,

P G t f (x) = E f X G t (x) = E f X G t (x) = E E J t f (x t (x, z Jt ))p Jt (x, z Jt )µ(dz 1 )...µ(dz Jt ) .
Theorem 14 We assume ( 14),( 15),( 16),( 17) and ( 13) to hold true. Then, for every q ∈ N, there exists a constant C > 0 independent of G such that (37)

P G t f q,∞ ≤ C f q,∞ × (t ∨ 1) q × α 2q q,4q (C, G) ×   1 + Γ G,q (γ) + 1≤|β|≤q [∂ β ln γ] G,4q   q .
Proof. We want to estimate, for a multi-index α such that |α| ≤ q, the partial derivative

∂ α E f X G t (x) = (β,ρ)=α E E J t ∂ β f x t x, z Jt × ∂ ρ p Jt (x, z Jt )µ(dz 1 )...µ(dz Jt ) = (β,ρ)=α E E J t ∂ β f x t x, z Jt P p J t (•,z J t ) ρ (x, z Jt )p Jt (x, z Jt )µ(dz 1 )...µ(dz Jt ) with P p J t (•,z J t ) ρ (x, z Jt )
given by [START_REF] Protter | The Euler scheme for Lévy driven stochastic differential equations[END_REF]. Using Cauchy-Schwartz inequality, we have

∂ α E f X G t (x) ≤ (β,ρ)=α A 1 2 β × B 1 2 ρ , with A β = E ∂ β f X G t (x) 2 and B ρ = E E J t P p J t (•,z J t ) ρ (x, z Jt ) 2 × p Jt (x, z Jt )µ(dz 1 )...µ(dz Jt ) .
We have (recalling that 0 ≤ |β| ≤ |α| ≤ q),

|A β | ≤ C f 2 q,∞   1 + 1≤|ρ|≤q E ∂ ρ X t (x) 2q   ≤ C f 2 q,∞ α 2q q,2q (C, G).
If |ρ| = 0 then B ρ = 1. Moreover, using the estimates from ( 36) and ( 34) respectively (with p = 2|ρ| |β| ≥ 2), one gets

1≤|ρ|≤q B 1 2 ρ ≤ C 1≤|ρ|≤q 1≤|β|≤|ρ| E E J t ∂ β ln p Jt x, z Jt 2|ρ| |β| × p Jt (x, z Jt )dµ(z 1 )...dµ(z Jt ) 1 2 ≤ C 1≤|β|≤|ρ|≤q E ∂ β ln p Jt x, Z Jt 2|ρ| |β| 1 2 ≤ C × (t ∨ 1) q × α q q,4q (C, G)   1 + Γ G,q (γ) + 1≤|β|≤q [∂ β ln γ] G,4q   q
The assertion follows from these estimates.

In the proof of the previous theorem we need µ(G) < ∞ having to argue on X G t and X G t . We take an increasing sequence E n ↑ E such that µ(E n ) < ∞ and we use [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF] and [START_REF] Fournier | Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff[END_REF], to extend the result to (possibly) infinite total measure µ (E) . For simplicity, we will write P t instead of P E t .

Theorem 15 We assume that the jump rate γ is bounded [START_REF] Dufour | Piecewise deterministic markov processes and dynamic reliability[END_REF], the jump coefficients are Lipschitz regular [START_REF] Davis | Markov models and optimization[END_REF] resp. the diffusion coefficients are smooth [START_REF] Crudu | Convergence of stochastic gene networks to hybrid piecewise deterministic processes[END_REF]. Moreover, we assume the integrability conditions on the jump mechanism ( 14) and [START_REF] Stewart | Markov processes[END_REF].

Then P t maps C q b (R d ) in C q b (R d
) and there exists C > 0 (independent of E) such that (38)

P t f q,∞ ≤ C f q,∞ (t ∨ 1) q × α 2q q,4q (C, E) ×   1 + Γ E,q (γ) + 1≤|β|≤q [∂ β ln γ] E,4q   q .
with α q,p (C, E), Γ E,q (γ) and [∂ β ln γ] E,p defined in [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF], [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and [START_REF] Jacod | Grundlehren der Mathematischen Wissenschaften[END_REF].

The Distance Between Two Semigroups

In this section we consider two sets of coefficients σ, b, c, γ and σ, b, c, γ on measurable space (E, E, µ) respectively ( E, E, µ) and we associate the stochastic equations in [START_REF] Fournier | Simulation and approximation of lévy-driven stochastic differential equations[END_REF]. The space (Ω, F, P) is assumed to be large enough to support the (possibly mutually independent) Poisson random measures N µ and N µ as well as the cylindrical Brownian processes W µ and W µ .

We denote by X t 0 ,t (x) respectively by X t 0 ,t (x) the solutions of the corresponding equations and we consider the non homogeneous semigroups P t 0 ,t f (x) = E [f (X t 0 ,t (x))] and P t 0 ,t f (x) = E f X t 0 ,t (x) . Our aim is to estimate the weak distance between these two semigroups. To begin, we give the standing assumptions.

Standing Assumptions

Assumption H 1 (q). Given the coefficients σ, b, c, γ, we denote by

(39) Q q (T, P) := C(T ∨ 1) q × α 2q q,4q (C, E)) ×   1 + Γ E,q (γ) + 1≤|β|≤q [∂ β ln γ] E,4q )   q ,
with α q,p (C, E), Γ E,q (γ) and [∂ β ln γ] E,p defined in [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF], [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] and ( 27) and the constant C appearing in [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF]. We assume that all these quantities are well defined and finite, so that Q q (T, P) < ∞.

Whenever this assumption holds true, Theorem 15 yields (40) sup

t 0 ≤t≤T P t 0 ,t f q,∞ ≤ Q q (T, P) f q,∞
We will also need a condition on the behavior of particular (polynomial) test functions. Assumption H 2 (k). For k ∈ N, we denote by ψ k (x) = (1 + |x| 2 ) k 2 and we assume that one finds a constant C k (T, P) such that (41) sup

t 0 ≤t≤T 1 ψ k P t 0 ,t ψ k ∞ ≤ C k (T, P) < ∞.
Finally, we will make an assumption on the gradient of the infinitesimal operators

(42) L t f (x) = 1 2 T r a(t, x)∂ 2 f (x) + b(t, x)∂f (x) + E (f (x + c(t, z, x)) -f (x))γ(t, z, x)µ(dz), with a i,j (t, x) = E σ i (t, z, x)σ j (t, z, x)µ(dz), for all x ∈ R d , t ∈ [0, T ] and all 1 ≤ i, j ≤ d.
Assumption H 3 (k, q). We assume that there exists

C ≥ 1 such that, for all f ∈ C q b R d (43) sup t≤T 1 ψ k ∇L t f ∞ ≤ C f q,∞ .
When σ = 0, one can ask this condition for q ≥ 2. Otherwise, one usually takes q ≥ 3.

Upper Bounds on the Distance Between Semigroups

We consider two sets of coefficients σ, b, c, γ and σ, b, c, γ and the corresponding semigroups P t and P t . We fix k, q ∈ N.

Theorem 16

We assume that P t satisfies H 2 (k) and H 3 (k, q) and that P t verifies H 1 (q) and H 3 (k, q). Moreover, we assume ( 16),( 15),( 14) and ( 13) to hold true for σ, b, c, γ. Finally, we assume that there exists a function ε(•) : R + -→ R + such that, for every

0 ≤ t ≤ T (44) 1 ψ k (L t -L t )f ∞ ≤ ε(t) f q,∞ .
Then, the following inequality holds true

(45) 1 ψ k (P t 0 ,t -P t 0 ,t )f ∞ ≤ C k (T, P)Q q (T, P) f q,∞ × t t 0 ε(s)ds,
with C k (P) the constant in (41) (with respect to σ, b, c, γ) and Q q (T, P) is given in (39) (with respect to the coefficients σ, b, c, γ).

Proof. For n ∈ N, we set δ := t-t 0 n and t i = t 0 + iδ, for all 0 ≤ i ≤ n. With these notations,

1 ψ k (P t 0 ,t -P t 0 ,t )f = n-1 i=0 1 ψ k P t i+1 ,t ψ k 1 ψ k (P t i ,t i+1 -P t i ,t i+1 ) P t 0 ,t i f.
We make the notation(s) g i = P t 0 ,t i f. Using (41) for P t i+1 ,t

1 ψ k (P t 0 ,t -P t 0 ,t )f ∞ ≤ C k (T, P) n-1 i=0 1 ψ k (P t i ,t i+1 -P t i ,t i+1 )g i ∞ .
By Itô's formula,

P t i ,t i+1 g i (x) = g i (x) + E t i+1 t i L s g i (X t i ,s (x))ds = g i (x) + t i+1 t i L s g i (x)ds + ε i , with ε i (x) := E t i+1 t i (L s g i (X t i ,s (x)) -L s g i (x)) ds .
We write the same type of formulae for P t i ,t i+1 g i , take the difference between the two and use (44) in order to get

1 ψ k (P t i ,t i+1 -P t i ,t i+1 )g i ∞ ≤ t i+1 t i 1 ψ k (L s -L s )g i ∞ ds + 1 ψ k ε i ∞ + 1 ψ k ε i ∞ ≤ g i q,∞ t i+1 t i ε(s)ds + 1 ψ k ε i ∞ + 1 ψ k ε i ∞ .
By (40), g i q,∞ ≤ Q q (T, P) f q,∞ so that, finally,

1 ψ k (P t 0 ,t -P t 0 ,t )f ∞ ≤ C k (T, P) Q q (T, P) f q,∞ t t 0 ε(s)ds + n-1 i=0 1 ψ k ε i ∞ + 1 ψ k ε i ∞ .
To conclude, one still needs to estimate the terms ε i and prove that these errors vanish as n increases.

The assumption (43) yields

|L s g i (X t i ,s (x)) -L s g i (x)| ≤ 1 0 | ∇L s g i (λx + (1 -λ)X t i ,s (x)), X t i ,s (x) -x | dλ ≤ C g i q,∞ |X t i ,s (x) -x| 1 0 ψ k (λx + (1 -λ)X t i ,s (x))dλ.
It follows

|ε i (x)| ≤ CQ q (T, P) f q,∞ t i+1 t i 1 0 E [ψ k (λx + (1 -λ)X t i ,s (x)) |X t i ,s (x) -x|] dλds.
Using the standard estimates on the trajectory,

E |X t i ,s (x)| k ≤ C 1 + |x| k . Hence, E ψ 2 k (λx + (1 -λ)X t i ,s (x)) ≤ Cψ 2 k (x).
Using Cauchy-Schwartz inequality, we get

1 ψ k (x) |ε i (x)| ≤ CQ q (T, P) f q,∞ t i+1 t i E |X t i ,s (x) -x| 2 1 2 ds.
By setting τ n (s) := t i for t i ≤ s < t i+1 , we finally get

1 ψ k (x) n i=1 |ε i (x)| ≤ CQ q (T, P) f q,∞ t 0 E X τn(s),s (x) -x 2 1 2 ds
and the right-hand term vanishes as n → ∞. Similar estimates are valid for ε which concludes our proof.

Remark 17 1. This assertion is to be interpreted in connection to Trotter-Kato-type results (e.g. [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 4.4]) stating that, given P t and (P n t ) n∈N homogeneous Feller semigroups of infinitesimal operators L respectively L n , if L n converges to L, then P n t → P t (in an appropriate sense). The inequality (45) gives not only qualitative behavior, but a quantitative one by providing estimate of the error within our framework.

2. The main difficulty and novelty in our approach is to provide (40). Whenever γ is constant, one deals with a usual SDE with jumps and the proof of (40) follows from the regularity of the flow x → X t (x). However, since γ(t, z, x) depends on x (which is the case for P DM P ), the effort developed in the previous sections is necessary. Note however that (40) is needed only on one of P t and P t . Hence, in a framework in which either γ or γ does not depend on x, the proofs simplify considerably.

PDMP With Three Regimes

In this section we discus piecewise diffusive Markov processes in which three regimes are at work depending on the speed of the jumps. The intermediate regime will be purely deterministic and replaced by a drift term (corresponding to an application of the Law of Large Numbers). The fast regime will provide a diffusive term (associated with an application of the Central Limit Theorem). Finally, the slow regime is kept as jump-type contribution. We do not aim at treating a completely general framework but only at presenting an example in order to illustrate our approach.

Theoretical Framework

The Model

Let us begin with fixing ε > 0 and a measurable space (E, E, µ ε ) where µ ε is a non negative finite measure. The space decomposes as follows E = A ε ∪ B ε ∪ C ε , where A ε , B ε , C ε are mutually disjoint Borel measurable sets. Moreover, given Γ ε > 0, to some (smooth, time-homogeneous) coefficients c ε , γ ε : E × R → R, b ε : R → R, we associate the stochastic equation ( 46)

X ε t = x + t 0 b ε (X ε s )ds + t 0 Aε×[0,2Γε] c ε (z, X ε s-)1 {u≤γε(z,X ε s-)} N µε (ds, dz, du) + t 0 (Bε∪Cε)×[0,2Γε] c ε (z, X ε s-)1 {u≤γε(z,X ε s-)} N µε (ds, dz, du)
where N µε is a Poisson point measure on E × R + associated with Γ ε and µ ε and N µε = N µε -N µε is the associated martingale measure.

The Regimes

The jumps in A ε are assumed to occur at high frequency. They lead to a Brownian motion. The jumps in B ε represent an intermediary regime which will be modeled by a drift term while the jumps in C ε are rather rare and remain in the same regime. This model is expressed by the following setting. We consider a finite measure µ and the coefficients σ, b : R → R and c, γ : E × R → R. We associate the equation (47)

X t = x+ t 0 b(X s )ds+ t 0 σ(X s )dW s + t 0 E×[0,2Γ] c(z, X s-)1 {u≤γ(z,X s-)} N µ (ds, dz, du), 0 ≤ t ≤ T.
Our aim is to give sufficient conditions in order to obtain the convergence of the family X ε to X and to estimate the error.

Standing (Sufficient) Assumptions

Throughout the section, unless stated otherwise, we assume the following. Assumption H ε 0 . We assume that c ε and γ ε satisfy integrability condition ( 14), the Lipschitz regularity assumption [START_REF] Davis | Markov models and optimization[END_REF] and the uniform upper-bound of γ ε assumption (16) (written for Γ ε substituting Γ).

Remark 18 Note that the constants which appear in these conditions depend on ε (so they are not uniform with respect to ε). Under these hypothesis, the equation ( 46) has a unique solution (which may alternatively be constructed using a compound Poisson process).

We also need an assumption on the limit coefficients. Assumption H 0 . We assume that σ, b ∈ C 3 b (R) and, for every z ∈ E, the functions x → c(z, x) and x → ln γ(z, x) are three times differentiable and (48)

0≤|α|≤3 sup x∈R |∂ α σ(x)| + |∂ α b(x)| + sup z∈E |∂ α c(z, x)| + sup z∈E |∂ α ln γ(z, x)| =: C * < ∞.
Under this hypothesis, the equation (47) has a unique solution (see Remark 7). Finally, we need some further assumptions in order to obtain convergence. We denote by ν ε (x, dz) := γ ε (z, x)µ ε (dz) and set

σ ε (x) := Aε c 2 ε (z, x)ν ε (x, dz) 1 2 , b ε (x) := b ε (x) + Bε c ε (z, x)ν ε (x, dz), δ σ (ε) := σ 2 ε -σ 2 ∞ , δ b (ε) = b ε -b ∞ , δ c,γ (ε) = sup x∈R Cε |(c -c ε )(z, x)| γ(z, x) + |(γ -γ ε )(z, x)| dµ(z).

Moreover we denote the convenient moments by

δ A (ε) = sup x∈R Aε |c ε (z, x)| 3 ν ε (x, dz), δ B (ε) = sup x∈R Bε |c ε (z, x)| 2 ν ε (x, dz), δ C (ε) = sup x∈R E-Cε |c(z, x)| γ(z, x)µ(dz) Assumption H 1 . We assume that δ(ε) := δ σ (ε) + δ b (ε) + δ c,γ (ε) + δ A (ε) + δ B (ε) + δ C (ε) → ε→0 0.
Assumption H 2 . Finally, we assume that the restrictions of µ ε and µ to C ε coincide, i.e. 1 Cε (z)µ ε (dz) = 1 Cε (z)µ(dz).

The Theoretical Result

Under these assumptions, one can state and prove the following.

Theorem 19

We assume that H ε 0 , H 0 , H 1 and H 2 hold true. We let P ε t and P t be the semigroups associated with X ε t respectively with X t . Then, there exists a universal constant C such that, for every f ∈ C 3 b (R), (49)

P ε t f -P t f ∞ ≤ (t ∨ 1) 3 CC 42 * exp((t ∨ 1)CC 36 * ) × δ(ε) f 3,∞ .
The proof follows from Theorem 16 and, for our readers' convenience a sketch is presented in Section 8.3.

Remark 20

The notation used in the previous theorem suggests that P ε t is an approximation of P t . However, sometimes, the point of view is the exact opposite: the physical phenomenon is modeled by X ε t and X t represents an approximation which is easier to handle. Having this in mind one may also consider the following optimization problem: given the dynamics of X ε t , which is the best dynamics (coefficients) of type X t which approximates X ε t ? In order to formulate this problem in a clean way one has to give a criterion in order to precise the sense of "best". This would be another problem that escapes the aim of the present paper.

A Simple Example

Let us now give an explicit example.

Example 21 To this purpose, we consider c, γ ∈ C 3 b (R) and

µ ε (dz) = 1 (ε,3ε] (z) dz z 2 + 1 (3ε,4ε] (z) dz z 3/2 + 1 (4ε,1] (z) dz z , c ε (z, x) = c(x) √ z 1 (2ε,1] (z) -α1 (ε,2ε] (z) with α = √ 3 - √ 2 √ 6 - √ 3 .
and we associate the equation

X ε t = x + t 0 1 0 1 0 c ε (z, X ε s-)1 {u≤γ(X ε s-)} N µε (ds, dz, du).
Note that, in contrast with the equation ( 46), the measure N µε is not compensated. But, in fact, the activity of the small jumps in 1 (ε,2ε] (z) compensate the activity of the small jumps in 1 (2ε,3ε] (z).

The limit equation is

X t = x + t 0 σ(X s )dW s + t 0 b(X s )ds + t 0 1 0 1 0 c(X s-) √ z1 {u≤γ(X ε s-)} N µ (ds, dz, du) with µ(dz) = z -1 dz and σ(x) = β 1 c(x) √ γ(x), b(x) = Bε c ε (z, x)ν ε (x, dz) = β 2 c(x)γ(x).
Here,

β 1 = (α 2 -1) ln 2 + ln 3 1 2 and β 2 = ln 4 3 .
Then, by applying Theorem 19, it follows that

P t f -P ε t f ∞ ≤ C √ ε f 3,∞
with C depending on c 3,∞ and ln γ 3,∞ . To this purpose, one only needs to check the assumption H 1 (see Section 8.3 for details on this step) and apply Theorem 19.

7 Boltzmann's equation 7.1 The Equation

The Model

In this section we use the previous results to construct an approximation scheme for the solution of the two-dimensional Boltzmann equation taking the following form (50)

∂ t f t (v) = R 2 dv * π/2 -π/2 dθ |v -v * | κ θ -(1+ν) (f t (v ′ )f t (v ′ * ) -f t (v)f t (v * )).
Here,

• f t (v) is a non negative measure on R 2 representing the density of particles with velocity v in a model for a gas in dimension two.

• R θ is the rotation of angle θ and the new speeds after collision are v

′ = v+v * 2 + R θ v-v * 2 respectively v ′ * = v+v * 2 -R θ v-v * 2 .
• the parameters ν ∈ (0, 1) and κ ∈ (0, 1] are chosen for the cross section to model the interaction in the spirit of the assumption A(γ, ν) in [START_REF] Bally | Regularization properties of the 2d homogeneous boltzmann equation without cutoff[END_REF].

The rigorous sense of this equation is given by integrating it against a test function (hence leading to weak solutions of (50)). In [20, Corollary 2.3 and Lemma 4.1], the authors have proven that, for every ν ∈ (0, 1) and κ ∈ (0, 1], the above equation admits a unique weak solution as follows. One assumes that there exists s ∈ (κ, 2) such that e |v| s f 0 (dv) < ∞. Then, there exists a unique solution f t of (50) which starts from f 0 . Moreover, the solution satisfies sup t≤T e |v| s ′ f t (dv) < ∞ for every s ′ < s.

Using Skorohod representation theorem, we find a measurable function v t : [0, 1] → R 2 such that for every ψ : R 2 → R + (51)

1 0 ψ(v t (ρ))dρ = R 2 ψ(v)f t (dv).
Throughout the section, unless stated otherwise, we fix ν, κ and s ∈ (κ, 2) and the corresponding solution f t (v) (and, in particular, v t (ρ)).

Probabilistic Interpretation. Approximations

In [START_REF] Tanaka | Probabilistic treatment of the Boltzmann equation of Maxwellian molecules[END_REF], the author gives a probabilistic interpretation for the solutions of the classical Bolzmann equation (in dimension 3). A variant of this result in dimension two (so for the equation ( 50)), as well as an approximation result for it, is given in [6, Section 2]. We briefly recall these elements.

We let (Ω, F, P) be a probability space, the space E := -π 2 , π 2 × [0, 1] and let N (dt, dθ, dρ, du) be a Poisson point measure on E × R + with intensity measure θ -(1+ν) dθ × dρ × du. We also consider the matrix

A(θ) := 1 2 cos θ -1 -sin θ sin θ cos θ -1 = 1 2 (R θ -I).
Then we are interested in the equation (52)

V t = V 0 + t 0 E×R + A(θ)(V s--v s (ρ))1 {u≤|V s--vs(ρ)| κ } N (ds, dθ, dρ, du) with P(V 0 ∈ dv) = f 0 (dv).
In the spirit of [6, Section 2], one also constructs the following approximation. One considers a C ∞ even non-negative function χ supported by [-1, 1] and such that R χ(x)dx = 1. We fix η 0 ∈1 s , 1 κ∨ν . Given ε ∈ (0, 1], we denote by Γ ε = ln 1 ε η 0 and define

(53) ϕ ε (x) = R ((y ∨ 2ε) ∧ Γ ε ) χ( x-y ε ) ε dy.
The reader is invited to note that 2ε

≤ ϕ ε (x) ≤ Γ ε , for every x ∈ R, ϕ ε (x) = x, for x ∈ (3ε, Γ ε - 1), ϕ ε (x) = 2ε for x ∈ (0, ε) and ϕ ε (x) = Γ ε for x ∈ (Γ ε , ∞).
To the cut off function ϕ ε , one associates the equation (54)

V ε t = V 0 + t 0 E×R + A(θ)(V ε s--v s (ρ))1 {u≤ϕ κ ε (|V ε s--vs(ρ)|)} N (ds, dθ, dρ, du).
Proposition 2.1 in [START_REF] Bally | Regularization properties of the 2d homogeneous boltzmann equation without cutoff[END_REF] provides the following probabilistic interpretation as well as an approximation result.

Proposition 22 ([6, Proposition 2.1]) 1. The equation ( 52) has a unique càdlàg adapted solution (V t ) t≥0 and its law P(V t ∈ dv) = f t (dv) 1 . 54) has a unique càdlàg solution V ε and

The equation (

(55) sup t≤T E [|V t -V ε t |] ≤ Ce CΓ κ ε × ε 1+κ .
Moreover, there exists ε 0 > 0 such that, for every 0 < s ′ < s, (56) sup

ε≤ε 0 E sup t≤T e |Vt| s ′ + e |V ε t | s ′ < ∞.
In the following, we assume that (57)

e |v| s f 0 (dv) < ∞ ∀s < 2.
In particular this gives the restriction 1 2 < η 0 < 1 κ∨ν . Then, if p ≥ 1 is such that κp < 2, we may choose η 0 such that η 0 κp < 1. This guarantees that for every a > 0 there exists ε a (small enough) such that, with a(ε

) = ln 1 ε -1+η 0 κp , (58) e Γ κp ε = ε -a(ε) ≤ ε -a ∀0 < ε < ε a .

First Order Approximation

The aim of this section is to construct an approximation of the solution V t of the equation ( 52) in which the small jumps, corresponding to |θ| ≤ δ, are replaced by a drift term. First, let us fix δ > 0, r = 2-3ν 3+κ ≤ 1-ν 1-κ , set ε = δ r and consider the solution V ε t of the truncated equation ( 54) associated with this ε. The inequality (55) provides a control of the distance between V t and V ε t . Second, for this solution V ε t of (54) we apply Lemma 16 in order to replace the small jumps by a convenient drift term.

To fall in the framework given in the first part of our paper, we will denote by V ε t 0 ,t (v) the solution of the equation (54) which starts from v ∈ R 2 at time t 0 ∈ [0, T ] and we set P ε t 0 ,t f (v) = E f V ε t 0 ,t (v) . We also denote (for ε > 0 fixed above),

µ(dθ, dρ) = θ -(1+ν) dθ × dρ, c(t, θ, ρ, v) = A(θ)(v -v t (ρ)), γ ε (t, ρ, v) = ϕ κ ε (|v -v t (ρ)|).
The infinitesimal operator of P ε t 0 ,t is simply given by

L ε t f (v) = E µ(dθ, dρ)γ(t, ρ, v)(f (v + c(t, θ, ρ, v)) -f (v)).
We will replace the activity of small jumps (such that θ is close to 0) with a drift term. To this purpose, we denote by E δ = {(θ, ρ) : |θ| > δ} and we define

(59) b δ (t, v) = {|θ|≤δ} γ(t, ρ, v)c(t, θ, ρ, v)µ(dθ, dρ) and L δ t f (v) = b δ (t, v)∂f (v) + E δ µ(dθ, dρ)γ(t, ρ, v)(f (v + c(t, θ, ρ, v)) -f (v))
. The approximating equation is

U δ t 0 ,t (v) = v+ t t 0 b δ (s, U δ t 0 ,s (v))ds+ t t 0 E δ ×R + c(s, θ, ρ, U δ t 0 ,s-(v))1 {u≤γ(s,ρ,U δ t 0 ,s-(v))} N (ds, dθ, dρ, du).
We denote by P δ t 0 ,t the semigroup associated with L δ t , that is

P δ t 0 ,t f (v) := E f U δ t 0 ,s (v) .
Theorem 23 Suppose that κ < 1 8 and ν < 1 2 . For every η < (2-3ν)(1+κ) 3+κ there exists C η ≥ 1 and δ η > 0 such that for 0 < δ ≤ δ η we have

(60) E [f (V t )] -E f U δ (V 0 ) ≤ C η f 2,∞ × δ η .
The proof essentially consists in the use of Theorem 16 combined with (55). For our readers' sake, the complete proof is given in Section 8.4.

Second Order Approximation

We define

σ(t, θ, ρ, v) = c(t, θ, ρ, v) γ ε (t, ρ, v), a i,j δ (t, v) = {|θ|≤δ} µ(dθ, dρ)σ i σ j (t, θ, ρ, v), L δ t f (v) = b δ (t, v), ∇f (v) + 1 2 d i,j=1 a i,j δ (t, v)∂ 2 ji f (v) + E δ µ(dθ, dρ)γ ε (t, ρ, v)(f (v + c(t, θ, ρ, v)) -f (v)).
where b δ is given by (59). This is the infinitesimal operator corresponding to the semigroup

P δ t 0 ,t f (v) = E f (U δ t 0 ,t (v)) with U δ t 0 ,t (v) solution to U δ t 0 ,t (v) = v + t t 0 b δ s, U δ t 0 ,s (v) ds + t 0 E δ σ δ (s, θ, ρ, U δ t 0 ,s-(v))W µ (ds, dθ, dρ) + t 0 E δ ×R + c(s, θ, ρ, U δ t 0 ,s-(v))1 {u≤γ(s,ρ,U δ t 0 ,s-(v))} N (ds, dθ, dρ, du).
The approach is quite similar to the first order. The main result is the following.

Theorem 24 Let us assume that κ ≤ 1 18 and let

(61) r < 1 -ν 2 -κ ∧ 1 -ν 2 2 -κ 2 ∧ 3 -4ν 4 + κ . Then (62) 1 ψ 3 (P t 0 ,t f -P δ t 0 ,t )f ∞ ≤ Cδ r(1+κ) × f 3,∞ .
Remark 25 It turns out that the second order error is larger then the first order error. This is somewhat counterintuitive. This is due to the fact that we mix two different errors: P t 0 ,t f -P ε t 0 ,t ∼ ε 1+κ and P ε t 0 ,t f -P δ t 0 ,t ∼ δ 3-ν ε -3 . If ε is fixed then the second order error is δ 3-ν and the first order error is δ 2-ν and this seems coherent. But if we mix the two errors things become less obvious.

Proof of the Results

Proof of the Results in Section 2.2

We begin with the estimates given in Lemma 6. Proof of Lemma 6. We follow the ideas in [START_REF] Graham | McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets[END_REF] so we just sketch the proof. Let us fix the initial time s < T. For every t ∈ [s, T ] , one has

|∆X s,t | ≤ |∆X s,s |+ t s E h(r, z)dW µ (dr, dz) + t s g(r)dr + t s E×[0,2Γ] H(r-, z, u)N µ (dr, dz, du) where h(r, z) = σ(r, z, X G 1 s,r ) -σ(r, z, X G 2 s,r ), g(r) = b(r, X G 1 s,r ) -b(r, X G 2 s,r
) and

H(r, z, u) = 1 G 1 (z)c(r, z, X G 1 s,r-)1 {u≤γ(r,z,X G 1 s,r-)} -1 G 2 (z)c(r, z, X G 2 s,r-)1 {u≤γ(r,z,X G 2 s,r-)} , for all (r, z, u) ∈ [s, t] × E × R + . Using the inequality |h(r, z)| ≤ |∆X s,r | × 1 0 ∇σ(r, z, λX G 1 s,r-+ (1 -λ)X G 2 s,r-) dλ,
we obtain

E |h(r, z)| 2 µ(dz) 1 2 ≤ ∇σ (µ,∞) |∆X s,r | .
Burkholder's inequality yields

E sup s≤t ′ ≤t t ′ s E h(r, z)dW µ (dr, dz) ≤ CE t s E |h(r, z)| 2 µ(dz)dr 1 2 ≤ C ∇σ (µ,∞) E t s |∆X s,r | 2 dr 1 2 ≤ C ∇σ (µ,∞) (t -s) 1 2 E sup s≤r≤t |∆X s,r | .
And the same inequality holds for g. Finally, since N µ is a positive measure, one has

E sup s≤t ′ ≤t t ′ s E×[0,2Γ] H(r-, z, u)N µ (drdzdu) ≤ E T s dr E×[0,2Γ] |H(r, z, u)| µ(dz)du .
A careful analysis of the term |H(r, z, u)| shows that the above term is upper bounded by (t -

s)α(G 2 G 1 ) + C(c, γ) t s E [|∆X s,r |] dr.
Going back to the initial inequality in our proof, one gets

E sup s≤r≤t |∆X s,r | ≤ |∆X s,s | + (t -s)α(G 2 G 1 ) + C( ∇σ (µ,∞) + ∇b ∞ + C(γ, c))) (t -s) 1 2 E sup s≤r≤t |∆X s,r | . Hence, whenever t -s ≤ δ := 2C( ∇σ (µ,∞) + ∇b ∞ + C(γ, c))) -2
, one gets

E sup s≤r≤t |∆X s,r | ≤ 2 (|∆X s,s | + (t -s)α(G 2 G 1 )) .

The argument follows by partitioning

[s, T ] in n ≤ 4T C( ∇σ (µ,∞) + ∇b ∞ + C(γ, c)))
2 + 1 subintervals of length δ and iterating.

Proof of the Results in Section 3

The proof of Lemma 10 makes extensive use of moment estimates of some kind of linear-type stochastic system. To this purpose, we begin with briefly explaining the type of system and the estimates we have in mind.

Preliminary Arguments for Lemma 10: Moment Estimates for Linear SDE

In this section we consider the d-dimensional linear equation

V t = V 0 + t 0 E (h(s) + ∇b(s, X s ), V s )ds (63) + t 0 E (H(s, z) + ∇σ(s, z, X s ), V s )W µ (ds, dz) + t 0 G×(0,2Γ) (Q(s-, z) + ∇ x c(s, z, X s-), V s-)1 {u≤γ(s,z,X s-)} N µ (ds, du, dz)
Here X s is the solution of the equation ( 1) and H, h and Q are predictable processes which verify

E T 0 H(s, •) 2 L 2 (µ) + |h(s)| ds + sup s≤T sup x∈R d G |Q(s, z)| γ(s, z, x)µ(dz)) < ∞.
This type of condition is needed in order for the corresponding stochastic (respectively Lebesgue) integrals in (63) to make sense.

Proposition 26

We assume that there exists some predictable process R and some measurable function ρ :

R + × E × R d → R + such that (64) |Q(s, z)| ≤ ρ(s, z, X s ) |R s | ,
P-almost everywhere on Ω, for all (s, z) ∈ R + × E. Then, for every p ≥ 2 there exists a universal constant C (depending on p but not on the coefficients) such that2 

(65)

V T,p ≤ C exp CT ( ∇σ 2 (µ,∞) + ∇b ∞ + [∇c] p G,p × × |V 0 | + H T,p + h T,p + [ρ] G,p R T,p .
Proof. Let us begin with writing V t = V 0 + I t + M t + J t , where I t designates the integral with respect to ds and so on. Using Burkholder's inequality

E sup t≤T |M t | p ≤ CE T 0 G |H(s, z)| 2 + | ∇σ(s, z, X s ), V s | 2 µ(dz)ds p 2 ≤ CE T 0 H(s, •) 2 L 2 (µ) + ∇σ 2 (µ,∞) |V s | 2 ds p 2 .
Hölder's inequality then yields

M T,p ≤ C √ T ( H T,p + ∇σ (µ,∞) V T,p ).
A similar estimate holds true for I t . Let us now give the estimates on the jump term J t . To shorten notations, we write dN µ instead of N µ (dsdudz) and drop the dependency of the coefficients on these variables. Moreover, we consider the standard decomposition of dN µ = d N µ + d N µ (martingale part and compensator). Corresponding to this decomposition, we write J t = J t + J t . In order to estimate J t , we will use Burkholder's inequality for jump processes (e.g. [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF]Theorem 2.11]) to get

E sup t≤T J t p ≤ CE   T 0 G×[0,2Γ] |Q + ∇c, V | 2 1 {u≤γ} d N µ p 2   + CE T 0 G×[0,2Γ] |Q + ∇c, V | p 1 {u≤γ} d N µ .
By assumption, one has |Q + ∇c, V | ≤ |ρ| |R| + |∇c| |V | . Hence (for every fixed time parameter),

G×[0,2Γ] |Q + ∇c, V | 2 1 {u≤γ} d N µ ≤ 2 G |ρ| 2 |R| 2 γdµ + 2 G |∇c| 2 |V | 2 γdµ ≤ 2 |R| 2 |ρ| 2 G,2 + 2 |V | 2 |∇c| 2 G,2 .
This leads to the following inequality.

E   T 0 G×[0,2Γ] |Q + ∇c, V | 2 1 {u≤γ} d N µ p 2   ≤ CT p 2 |ρ| p G,2 R p T,p + |∇c| p G,2 V p T,p .
In a similar way,

E T 0 G×[0,2Γ] |Q + ∇c, V | p 1 {u≤γ} d N µ ≤ CT (|ρ| p G,p R p T,p + |∇c| p G,p V p T,p ).
For the term J t , similar arguments yield

E sup t≤T J t p ≤ E T 0 G×[0,2Γ] |Q + ∇c, V | 1 {u≤γ} d N µ p ≤ CT p |ρ| p G,1 R p T,p + |∇c| p G,1 V p T,p .
Summing up these estimates we conclude that, if T ≤ 1, then

J T,p ≤ CT 1 p ([ρ] G,p R T,p + [∇c] G,p V T,p ).
It follows that

V T,p ≤ V 0 p + C([ρ] G,p ( R T,p + H T,p + h T,p ) (66) + C(T 1 2 ∇σ (µ,∞) + T ∇b ∞ + T 1 p [∇c] G,p ) V T,p .
We will use this inequality on the successive intervals (kT, (k + 1)T ) , k ∈ N for some convenient T (see after) in order to obtain (65). We take

T = min 1 6C ∇b ∞ , 1 (6C ∇σ (µ,∞) ) 2 , 1 (6C[∇c] G,p ) p , 1 which implies C(T 1 2 ∇σ (µ,∞) + T ∇b ∞ + T 1 p [∇c] G,p ) ≤ 1 2 .
Then, the inequality (66) yields

V T,p ≤ 2( V 0 p + C([ρ] G,p ( R T,p + H T,p + h T,p )).
We denote Q k = C([ρ] G,p R kT,p + H kT,p + h kT,p ) and v k = V kT,p and we obtain

v k+1 ≤ 2v k + Q k ≤ 2v k + Q n ∀k ≤ n and as a consequence v n ≤ 2 n (|V | 0 + Q n )
. Now, let S be fixed and let n = [S/T ] + 1. Then we get

V S,p ≤ v n ≤ 2 n (|V | 0 + O n ) = e ([S/T ]+1) ln 2 (|V | 0 + C([ρ] G,p R S,p + H S,p + h S,p )).
We have

[S/T ] ≤ S × max{6C ∇b ∞ , (6C ∇σ (µ,∞) ) 2 , (6C[∇c] G,p ) p } so we conclude.
The same reasoning based on Burkholder's inequality for jump processes as in the previous proof leads to the following.

Remark 27 For every p ≥ 2 there exists a universal constant C (depending on p) such that for every f

(67) E t 0 G×(0,2Γ) |f (s, z, X s-)| 1 {u≤γ Γ (s,z,X s-)} N µ (ds, du, dz) p 1 p ≤ C max {t, 1} [f ] G,p .

Proof of Lemma 10

Proof of Lemma 10. We will prove, by recurrence that, for all p ≥ 2k, (68) sup

x∈R d E sup t≤T ∂ α X G t (x) p k k p ≤ α k,p (C, G) = Cθ k 1≤n≤k 1 n k,p (G) exp CT k 1≤n≤k 1 n a p (G) .
Step 1. (Chain Estimates) Let f : R d → R and g : R d → R d be smooth functions. If

|α| = k ≥ 1, then |∂ α (f (g(x)))| ≤ C   d i=1 |(∂ i f )(g(x))| × ∂ α g i (x) + 2≤|α ′ |≤k (∂ α ′ f ) (g(x)) × 1≤|β|≤k-1 ∂ β g(x) k |β|   .
The above inequality is obtained by taking first derivatives and then by using Young's inequality in order to separate the different derivatives of g. As an immediate consequence, one gets (69)

|∂ α f (g (x))| ≤ C   ∇f ∞ |∂ α g(x)| + f 2,k,∞ 1≤|β|≤k-1 ∂ β g(x) k |β|   .
Similar reasoning for F : R + × E × R d → R that is globally measurable and differentiable with respect to x ∈ R d yields (70)

E |∂ α x (F (t, z, g(x))| 2 µ(dz) 1 2 ≤ C   ∇F (µ,∞) |∂ α g(x)| + F 2,k,(µ,∞) 1≤|β|≤k-1 ∂ β g(x) k |β|   .
Having this inequality in mind (and the notation ( 9)), we introduce the following notations (71)

y α = ∂ α g(x), y [k-1] = (∂ β g(x)) 1≤|β|≤k-1 .
Using this notation the estimate (69) (resp.(70)) reads

|∂ α (f (g(x))| ≤ C( ∇f ∞ |y α | + f 2,k,∞ y [k-1] R [k-1]
), (72)

E |∂ α x (F (t, z, g(x))| 2 µ(dz) 1 2 ≤ C( ∇F (µ,∞) |y α | + F 2,k,(µ,∞) y [k-1] R [k-1] . ( 73 
)
Step 2. (Deriving the Differential Equation for ∂ α X G t (x) and Estimates) We denote by

Y α (t, x) = ∂ α X G t (x) and by Y [k] (t, x) = (Y α (t, x)) 1≤|α|≤k ∈ R d [k]
, for all initial data x. We claim that, for every multi-index α with |α| = k ≥ 1, (74)

Y α (t, x) = ∂ α X G 0 (x) + t 0 g α s, X G s , Y [k-1] (s, x) + ∇b s, X G s , Y α (s, x) ds + t 0 E h α s, z, X G s , Y [k-1] (s, x) + ∇σ l s, z, X G s , Y α (s, x) W µ (ds, dz) + Jt j=1 Q α T j , Z j , X G T j -(x), Y [k-1] (T j -, x) + ∇c T j , Z j , X G T j -, Y α T j -(x) 1 G (Z j )
where g α , h α and Q α satisfy

E h α (t, z, x, y [k-1] ) 2 µ(dz) 1 2 ≤ C σ 2,k,(µ,∞) y [k-1] R d [k-1]
(75)

|g α (t, x, y)| ≤ C b 2,k,∞ y [k-1] R d [k-1] (76) and 
(77)

|Q α (t, z, x, y)| ≤ C y [k-1] R d [k-1] 2≤|α|≤k |∂ α x c(t, z, x)| .
The equation ( 74) is obtained by taking formal derivatives in [START_REF] He | Asymptotic analysis of the spatially homogeneous boltzmann equation: Grazing collisions limit[END_REF] and then, (75),( 76) and (77) are obtained by using (72) and (73).

Step 3. Now we prove (68) by recurrence on k. If k = 1 the inequality ( 68) is an immediate consequence of Proposition 26. Let us now assume (68) to hold true for k -1. In order to prove it for k we will make use of Proposition 26. A first step is to make use the identity of laws from Lemma 9. We denote by

Y [k] (t, x) = (Y α (t, x)) 1≤|α|≤k ∈ R d [k]
the unique solution of the system of equations (78)

Y α (t, x) = ∂ α X G 0 (x) + t 0 g α s, X G s , Y [k-1] (s, x) + ∇ x b s, X G s , Y α (s, x) ds + t 0 E h α s, z, X G s , Y [k-1] (s, x) + ∇ x σ l (s, z, X G s ), Y α (s, x) W µ (ds, dz) + Jt j=1 (Q α (T j , Z j , X G T j -(x), Y [k-1] (T j -, x)) + ∇ x c(T j , Z j , X G T j -), Y α (T j -, x) )1 {U k ≤γ(T j ,Z j ,X T j -) .
These equations are the same as in (74) but we replace X G s by X G s , Z j by Z j and 1 G (Z j ) by 1 {U k ≤γ(T j ,Z j ,X T j -)} . According to Lemma 9, Y [k] (t, x), t ≥ 0 has the same law as

Y [k] (t, x), t ≥ 0. Now we use Proposition 26 for V 0 = ∂ α X G 0 (x) (implying that |V 0 | ≤ 1), h(s) = g α (s, X G s , Y [k-1] (s, x)) and H(s, z) = h α (s, z, X G s (x) , Y [k-1] (s, x)), Q(s, z) = Q α (s, z, X G s (x), Y [k-1] (s, x)
), for all s ∈ [0, T ] and all z ∈ E. In view of ( 75) and ( 76)

H(s) L 2 (µ) ≤ C σ 2,k,(µ,∞) × sup s≤t Y [k-1] (s, x) R d [k-1] , |h(s)| ≤ C b 2,k,∞ × sup s≤t Y [k-1] (s, x) R d [k-1]
.

The estimates (77) give

|Q(s, z)| ≤ ρ(s, z, X G s (x))R s , where R s = Y [k-1] (s-, x) R d [k-1] , ρ(s, z, x) = C 2≤|α ′ |≤k ∂ α ′ x c(s, z, x) .
We recall that |α| = k ≥ 2 and p ≥ 2k. Then, by Proposition 26, one has

∂ α X G • (x) T, p k = ∂ α X G • (x) T, p k (79) ≤ C exp(CT a p k (G))θ k, p k (G) sup x∈R d E sup s≤T Y [k-1] (s, x) p k R d [k-1] k p ∨ 1 = C exp(CT a p k (G))θ k, p k (G) 1≤|β|≤k-1 E sup s≤T ∂ β X G s (x) kp |β|k k p .
We assume that 1 ≤ |β| = r ≤ k -1. Using the recurrence hypothesis and due to the fact that

kp |β|k = p r , one gets E sup s≤T ∂ β X G s (x) p |β| |β| p = ∂ β X G • (x) T, p r ≤ Cθ r 1≤n≤r 1 n r,p (G) exp CT r 1≤n≤r 1 n! a p (G) .
This implies

E sup s≤T ∂ β X G s (x) kp |β|k k p ≤ Cθ k 1≤n≤k-1 1 n r,p (G) exp CT k 1≤n≤k-1 1 n a p (G) .
We insert this inequality in (79) and note that a

p k (G) ≤ a p (G) and θ k, p k (G) ≤ θ k,p (G) to conclude ∂ α X G • (x) T, p k ≤ Cθ 1+k 1≤n≤k-1 1 n k,p (G) exp CT a p (G) 1 + k 1≤n≤k-1 1 n = Cθ k 1≤n≤k 1 n k,p (G) exp CT a p (G)k 1≤n≤k 1 n .
The proof is now complete by taking pk to replace p in (68).

Proof of the Corollary 11 and Lemma 12

We begin with the following simple remark.

Remark 28 Whenever n ∈ N * and p ≤ n, one gets

J t p ≤ J t n and J t n n =
d n e 2Γµ(G)t(e s -1) ds n / s=0 = P n (Γµ(G)t) ,

an n-degree polynomial. As a consequence, for some large enough constant depending, eventually, on the upper bound n but not on Γ, µ(G) nor on t, (80) J t p ≤ CΓµ(G) max (t, 1) .

We now give the proof of Corollary 11. Proof of Corollary 11. In order to prove the first assertion, one simply writes, (P-almost surely on k ≤ J t ),

∂ α g(T k , X G T k -(x)) ≤ C g 1,q,∞ A q , with A q = 1 ∨ 1≤|ρ|≤q sup s≤t ∂ ρ x X G s (x) q .
Using Hölder's inequality and (31), we upper bound the term in the left hand side of (32) by

C g 1,q,∞ E ([(J t × A q ) p ]) 1 p ≤ C g 1,q,∞ J t (1+η)p η E A (1+η)p q 1 (1+η)p ≤ C g 1,q,∞
Γµ(G) max (t, 1) α q q,(1+η)pq (C, G). To prove the second assertion, we write

Jt k=1 1 G (Z k ) ∂ α g T k , Z k , X G T k -(x) ≤ A q × B q , with B q = 1≤|β|≤q B q (β), where B q (β) = Jt k=1 1 G (Z k ) (∂ β g)(T k , Z k , X G T k -(x)) .
Using Hölder's inequality and (31), we upper bound the term in (33) by

A q (1+η)p η × B q (1+η)p ≤ α q q, (1+η)pq η (C, G) × B q (1+η)p .
Using the identification of laws from Lemma 9 and the inequality (67), one has

B q (1+η)p = t 0 G×[0,2T ] ∂ β g s, z, X G s-(x) 1 {u≤γ(s,z,X G s-(x))} N µ (ds, dz, du) (1+η)p ≤ C[∂ β g] (1+η)p 
G,(1+η)p . The assertion follows by putting these estimates together.

Proofs of Results in Section 6

We begin with Theorem 19. As already hinted before, the result follows from Theorem 16. Proof of Theorem 19. We use Theorem 16 with k = 0 and q = 3. It is easy to check that P ε t verifies H 2 (0) and H 3 (0, 3) (note that the constant C in (43) depends on ε; but is not involved in the estimate (45)). And P t verifies H 2 (0) and H 3 (0, 3) as well. Moreover, the constant Q 3 (t, P ) defined in (39) verifies

Q 3 (t, P) ≤ C(t ∨ 1) 3 C 42 * exp((t ∨ 1)CC 36 * )
where C * is the constant in (48) and C is a universal constant. Moreover, using a Taylor expansion of order three we get

(L ε -L)f ∞ ≤ Cδ(ε) f 3,∞
with C an universal constant. Then (45) gives (49).

Next, we proceed with checking the Assumption H 1 to complete the explicit example. Proof of Assumption H 1 . We notice that, by the choice of α, 3ε ε c ε (z, x)γ(x) dz z 2 = 0 so our equation may be written as

X ε t = x + t 0 3ε ε 1 0 c ε (z, X ε s-)1 {u≤γ(X ε s-)} N µε (ds, dz, du) + t 0 1 3ε 1 0 c ε (z, X ε s-)1 {u≤γ(X ε s-)} N µε (ds, dz, du).
This is the same as the equation ( 46). We take E = [0, 1] , A ε = (0, 3ε] , B ε = (3ε, 4ε] and C ε = (4ε, 1] and we have

3ε ε c 2 ε (z, x)γ(x) dz z 2 = σ 2 (x), 4ε 3ε c ε (z, x)γ(x) dz z 3/2 = b(x), so that δ σ (ε) = δ b (ε) = 0. Moreover, on C ε , c = c ε which implies δ c,γ (ε) = 0. Finally, simple computations yield δ A (ε) + δ B (ε) + δ C (ε) ≤ C √
ε which leads to the desired conclusion.

Proofs of the Results in Section 7

Before proceeding to the proofs, we recall the following estimates for the derivatives of the above cut off function given in [6, Lemma 2.3].

Lemma 29 ([6, Lemma 2.3])

There exists ε 0 > 0 such that, for every ε ∈ (0, ε 0 ), every multiindex α ∈ {1, 2} l , l ∈ N * and every v ∈ R 2 , one has

|∂ α ln ϕ ε (|v|)| ≤ C l (1 {|v|∈(ε,Γε-1]} |v| -l + 1 {|v|∈(Γε-1,Γε+1)} Γ -1 ε ), (81) |∂ α ϕ κ ε (|v|)| ≤ C l (1 {|v|∈(ε,Γε-1]} |v| κ-l + 1 {|v|∈(Γε-1,Γε+1)} Γ κ-1 ε ). (82)
Moreover, for every β ∈ (0, 1], ε ∈ (0, ε 0 ), and x, y ≥ 0 (83)

x β |ϕ κ ε (x) -ϕ κ ε (y)| ≤ C β Γ κ ε |x -y| β .

Proof of the First-Order Estimates in Boltzmann Equation

The proof consists in two major steps. First, we give upper-bounds for the constants in ( 28), ( 29) and [START_REF] Kunita | Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms[END_REF]. Second, we use Theorem 16 for which we check the assumptions. To conclude, we invoke (55) together with the estimates provided by Theorem 16.

We recall the parameters associated with P δ in ( 28), ( 29) and ( 30),

θ q,p,(δ) (E δ ) = 1 + b δ 2,q,∞ + 2≤|α|≤q [∂ α v c] E δ ,p = 1 + b δ 2,q,∞ , a p,(δ) (E δ ) = ∇b δ ∞ + [∇c] p G,p , α q,p,(δ) (C, E δ ) = Cθ q 1≤n≤q 1 n q,pq,(δ) (E δ ) exp CT q 1≤n≤q 1 n ∇b δ ∞ + [∇c] pq G,pq
.

the first expression following from ∂ α c = 0 if |α| ≥ 2.

Lemma 30

We assume that κ < 1 8 and we take q = 2 (so that q 2 κ < 1 2 ). For every a > 0 there exists ε 0 > 0 and C ≥ 1 such that for every ε ∈ (0, ε 0 ) one has

(84) α q,4q,(δ) (C, E δ ) ≤ Cε -a .
Moreover (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] for the notation), for all r ≤

1-ν 1-κ , (85) 
Γ E δ ,q (γ) + [ln γ] E δ ,q,4q ≤ C × δ -qν × ε -q = C × δ -q(ν+r) .
As a consequence, the constant in the right hand side of (45) verifies

(86) Q q (T, P δ ) ≤ C × δ -q(ν+r+a) .
Proof. (Throughout the proof, C will be a universal real constant and a an arbitrary small constant that may change from one line to another.) Since |∂ α c(t, θ, ρ, v)| ≤ |θ| × 1 |α|=1 and |γ| ≤ Γ κ ε we get, for every p ≥ 1

E δ |∂ α c(t, θ, ρ, v)| p γ(t, ρ, v)µ(dθ, dρ) ≤ CΓ κ ε .
In particular

[∇c] 4q 2 E δ ,4q 2 = sup 1≤p≤4q |∇c| 4q 2 E δ ,p ≤ CΓ 4q 2 κ ε
and consequently, if 4q 2 κ < 2 then, as a consequence of (58), for sufficiently small ε > 0 exp

(CT [∇c] 4q 2 E δ ,4q 2 ) ≤ exp(CΓ 4q 2 κ ε ) ≤ ε -a .
Moreover, using (82) we get

|∂ α (c(t, θ, ρ, v)γ ε (t, ρ, v))| ≤ C |θ| × (ε 1+κ-|α| + Γ κ ε ).
As a consequence,

|∂ α b δ (t, v)| ≤ Cδ 1-ν × ε 1+κ-|α| + Γ κ ε = C δ 1-ν+r(1+κ-|α|) + δ 1-ν Γ κ ε ≤ C the last inequality being true for |α| = 2, if r ≤ 1-ν |α|-1-κ = 1-ν 1-κ . We infer that b δ 1,q,∞ ≤ C and θ q,4q 2 (E δ ) = 1 + b δ 2,q,∞ ≤ C implying (84).
We now turn to the proof of the inequality (85). Using (81) we get

γ |∂ α v ln γ| p ≤ C1 {|v-vt(ρ)|>Γε-1} + 1 {|v-vt(ρ)|∈[ε,Γε-1]} (1 + |v -v t (ρ)| -|α| ) p |v -v t (ρ)| κ ≤ C 1 {|v-vt(ρ)|>Γε-1} + 1 {|v-vt(ρ)|∈[ε,Γε-1]} ε -p|α|+κ .
For every p ≥ 1 (and small enough δ), we infer

|∂ α v ln γ| E δ ,p ≤ Cδ -ν/p ε -|α| ≤ Cδ -ν ε -|α| ,
In particular, [ln γ] E δ ,4q = 1≤|α|≤q sup 1≤p≤4q |∂ α v ln γ| E δ ,4q ≤ Cδ -ν ε -q = Cδ -ν-qr and Γ G,q (γ) = q h=1 1≤|α|≤h |∂ α v ln γ| q/|α| E δ ,h/|α| ≤ Cδ -qν ε -q = Cδ -q(ν+r) .

Remark 31

The inequality (86) remains true (with the exact same proof ) for q = 3 and r ≤ 1-ν 2-κ as soon as κ < 1 18 .

Proof. Finally, by gathering these estimates, one obtains (85).

Lemma 32 Suppose that (57) holds and κ < 1 8 , (we recall that ε = δ r with 0 < r ≤ 1-ν 1-κ ). For every a > 0 there exists ε 0 > 0 such that, for ε < ε 0 (87) 1 ψ 2 (P ε t 0 ,t f -P δ t 0 ,t )f ∞ ≤ Cδ 2-3ν-2r-3a × f 2,∞ .

Proof. We will use Theorem 16 with q = 2, k = 2.

Step 1. We check that for every p ∈ N and every a > 0, one can find C ≥ 1 and ε p,a > 0 such that, for every ε ∈ (0, ε p,a ), the following estimate holds true 

|J p (t)| ≤ CΓ κ ε E t 0 π 2 -π 2 1 0 |A(θ)(V ε s -v s (ρ))| × (|A(θ)(V ε s -v s (ρ))| p-1 + |V ε s | p-1 ) dθ θ 1+ν dρds ≤ CΓ κ ε E t 0 1 0 (|v s (ρ)| + |V ε s |)(|v s (ρ)| p-1 + |V ε s | p-1 )dρds ≤ CΓ κ ε E t 0 1 0 (|v s (ρ)| p + |V ε s | p )dρds) ≤ CΓ κ ε (1 + E t 0 |V ε s | p )ds
The last inequality is a consequence of (89) The inequality (88) is then a consequence of Gronwall's Lemma.

Step 2. Second, we need to estimate, for regular f, the difference between the actions of infinitesimal operators

L ε t -L δ t f (v) = E c
δ µ(dθ, dρ)γ ε (t, ρ, v)(f (v + c(t, θ, ρ, v)) -f (v) -∇f (v), c(t, θ, ρ, v) ).

One easily notes (using, again, (89)), that

L ε t -L δ t f (v) ≤ f 2,∞ Γ κ ε E c δ µ(dθ, dv) |c(t, θ, ρ, v)| 2 ≤ Cψ 2 (v)δ 2-ν f 2,∞ Γ κ ε .
We conclude that (90) 1

ψ 2 L ε t -L δ t f ∞ ≤ Cδ 2-ν f 2,∞ ε -a .
This proves that (44) holds with k = 2 and ε(t) = δ 2-ν ε -a .

Step 3. We check that H 3 (1, 2) holds true for both P δ and P ε . We will only check it for the approximating semigroup P δ , the remaining case being very similar. We recall that f t (dv) = P(V t ∈ dv) where V t is the solution of the equation (52). Then, for every x ∈ R We write now I t (f )(x) := E δ µ(dθ, dρ)γ(t, ρ, x)(f (x + c(t, θ, ρ, x)) -f (x)) = E δ µ(dθ, dρ)γ(t, ρ, x) 1 0 dλ ∇f (x + λA(θ)(x -V t )), A(θ)(x -V t ) . And, using again (83) with β = 1, this gives (92) 1

ψ 1 I t (f ) ∞ + 1 ψ 1 ∇I t (f ) ∞ ≤ CΓ κ ε f 2,∞ .
Step 4. We use (45) with q = 2, k = 2 :

1 ψ 1 (P ε t 0 ,t f -P δ t 0 ,t )f

∞ ≤ C × C 1 (t, P ε )Q 2 (t, P δ ) t t 0 ε(s)ds × f 2,∞ ≤ Cε -a × δ -2(ν+r+a) × δ 2-ν × f 2,∞ = Cδ 2-3ν-2r-3a × f 2,∞ .
Here we have used (88),(90) and (86).

We can now provide a proof for Theorem 23. Proof of Theorem 23. We recall that r = 2-3ν 3+κ and ε = δ r and we write

E [f (V t )] -E f (U δ (V 0 ) ≤ A + B, where A = |E [f (V t )] -E [f (V ε t (V 0 )]| , B = E f (U δ t (V 0 )) -E [f (V ε t (V 0 )] .

By (55),

A ≤ ε -a × ε 1+κ f 1,∞ ≤ δ r(1+κ)-a f 1,∞ .

Since (2 -3ν)/(1 -ν) ≤ 3 ≤ (3 + κ)/(1 -κ) it follows that r ≤ (1 -ν)/(1 -κ) and so we may use (87) and we obtain

B ≤ R 2 E [f (V ε t (v)] -E f (U δ (v) f 0 (dv) ≤ C R 2
(1 + |v| 2 )f 0 (dv) × δ 2-3ν-2r-3a f 2,∞ .

We conclude that

E [f (V t )] -E f (U δ (V 0 ) ≤ C f 2,∞ (δ r(1+κ)-a + δ 2-3ν-2r-3a ) ≤ C f 2,∞ δ (2-3ν)(1+κ) 3+κ -3a
the last inequality being a consequence of the choice of r.

Proof of the Second-Order Estimates in Boltzmann Equation

We begin with giving some useful estimates for the noise coefficient σ δ :

Lemma 33 1. Let q ∈ N * , r ≤ (1 -ν/2)/(q -1 -κ/2) and ε = δ r . Then, the following inequality holds true σ δ 1,q,(µ,∞) ≤ C. (The remaining estimates are similar to step 3 in the proof of Lemma 32). One has a i,j δ (t, v) = {|θ|≤δ} µ(dθ, dρ) c i c j (t, θ, ρ, v)γ(t, ρ, v) so (95) follows from (83) with β = 1.

3. We will use Theorem 16 with q = k = 3. Using the first assertion and (86) (see Remark 31), we get that both P δ t and P ε t verify H 3 (2, 3) with Q q (t, P δ ) ≤ C × δ -q(ν+r+a) . And we recall that in (88) we have proved that C 3 (T, P ε ) = ε -a . It remains to estimate

(L ε t -L δ t )f (v) = E c δ µ(dθ, dρ)γ(t, ρ, v) f (v + c(t, θ, ρ, v)) -f (v) -∇f (v), c(t, θ, ρ, v) -1 2 d i,j=1 c i c j (t, θ, ρ, v)∂ 2 ij f (v) Taylor's formula gives (L ε t -L δ t )f (v) ≤ C E c δ µ(dθ, dv) |c(t, θ, ρ, v)| 3 × f 3,∞ Γ κ ε ≤ Cδ 3-ν 1 0 |v -v t (ρ)| 3 dρ × f 3,∞ Γ κ ε ≤ Cψ 3 (v)δ 3-ν f 3,∞ Γ κ ε
so that (44) holds with ε(t) = δ3-ν ε -a . We use (45) with q = k = 3 to get

1 ψ 3 (P ε t 0 ,t f -P δ t 0 ,t )f ∞ ≤ C × C 3 (P ε )Q 3 ( P δ ) t t 0 ε(s)ds × f 3,∞ ≤ Cε -a × δ -3(ν+r) × δ 3-ν × f 3,∞ = Cδ 3-4ν-3r-a × f 3,∞ .
Proof of Theorem 24. We proceed as in the first-order case by combining the two errors by taking r such that r(1 + κ) = 3 -4ν -3r which amounts to r = 3-4ν 4+κ . But we need (93) to hold true so we ask (61) to hold true.

  ε t (v)| p ] ≤ Cψ p (v)ε -a .This implies that the hypothesis H 2 (p) (see (41)) holds for the semigroup P ε with C p (T, P ε ) = ε -a .To this purpose, we use Itô's formula for f p (x) = |x| p to getE [|V ε t (v)| p ] = |v| p + J p (t), where J p (t) = E t 0 E×R + ( V ε s-+ A(θ)(V ε s--v s (ρ)) p -V ε s-p )1 {u≤ϕ κ ε (|V ε s--vs(ρ)|} N (ds, dθ, dρ, du) .Using the inequality ||a + b| p -|a| p | ≤ C |b| (|a| p-1 + |b| p-1 ), we obtain

1 0

 1 |v s (ρ)| p dρ = R 2 |v| p f s (dv) ≤ C < ∞.

  2 , b δ (t, x) = E c δ µ(dθ, dρ)γ ε (t, ρ, x)c(t, θ, ρ, x) = {θ≤δ} E [A(θ)(x -V t )ϕ κ ε (|x -V t |)] dθ θ 1+ν .Using (83) with β = 1 we get|b δ (t, x)| + |∇b δ (t, x)| ≤ CΓ κ ε ψ 1 (xδ (t, •)∇f ) ∞ ≤ CΓ κ ε f 2,∞ .

1 0

 1 dλ ∇f (x + λc(t, θ, ρ, x)), c(t, θ, ρ, x) = E {δ≤|θ|≤ π 2 } dθ θ 1+ν ϕ κ ε (|x -V t |)

κ 2 ε

 2 which gives, for 1≤ |α| ≤ q, E c δ |∂ α σ(t, θ, ρ, v)| 2 µ(dθ, dρ) ≤ Cδ 2-ν ε 2+κ-2|α| + Γ κ ε = Cδ 2-ν-r(2|α|-2-κ) ≤ C the last inequality being true if r ≤ (2 -ν)/(2q -2 -κ). i,j δ (t, •)∂ i ∂ j f ∞ ≤ CΓ κ ε f 3,∞ .

  2. L δt verifies H 3 (2, 3) 3 . 3. Let us assume that κ ≤ 1/18 and Cδ 3-4ν-3r-a × f 3,∞ .Proof. 1. Using (82) (with κ 2 instead of κ), we get|∂ α σ(t, θ, ρ, v)| = ∂ α c(t, θ, ρ, v)γ

	(93) Then		r ≤	1 -ν 2 -κ	∧	1 -ν/2 2 -κ/2	.
	(94)	1 ψ 3	(P ε t 0 ,t f -P δ t 0 ,t )f		

∞ ≤ 1 2 (t, ρ, v) ≤ C |θ| ε 1+ κ 2 -|α| + Γ

In this sense, Vt provides a probabilistic representation for ft

We recall that |ρ| G,p is defined in[START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] and [ρ]G,p = sup 1≤p ′ ≤p |ρ| G,p ′ .

see (43)