Elliott Blot
email: elliott.blot@gmail.com

Jannik Dreier
email: jannik.dreier@loria.fr

Pascal Lafourcade
email: pascal.lafourcade@uca.fr

Formal Analysis of Combinations of Secure Protocols

When trying to prove the security of a protocol, one usually analyzes the protocol in isolation, i.e., in a network with no other protocols. But in reality, there will be many protocols operating on the same network, maybe even sharing data including keys, and an intruder may use messages of one protocol to break another. We call that a multiprotocol attack. In this paper, we try to find such attacks using the Tamarin prover. We analyze both examples that were previously analyzed by hand or using other tools, and find novel attacks.

Introduction

When analyzing the security of protocols, one aims at proving specific security properties. The most common types of properties are secrecy, meaning that an intruder cannot know a secret value, and authentication, meaning that if A thinks he is talking to B, then he is really talking to B. In our digitalized world there are more and more cryptographic protocols everywhere, and we want to verify them to ensure their security.

It is not realistic to assume that a protocol is running alone in the network, and in the real world, an intruder can try to use messages of other protocols in the network to break a protocol. That is what we call a multi-protocol attack.

More precisely, we study the following problem of multi-protocols attacks. Given two protocols that ensure a certain security property in isolation, are they still safe for this property if we put them together in the same network? Unsurprisingly there exist many combinations of protocols where this is not the case, i.e., where we can mount multi-protocols attacks.

There are a lot of tools for automatic analysis of security properties, like ProVerif [START_REF] Blanchet | An efficient cryptographic protocol verifier based on prolog rules[END_REF], AVISPA [START_REF] Armando | The avispa tool for the automated validation of internet security protocols and applications[END_REF], Athena [START_REF] Song | Athena: A novel approach to efficient automatic security protocol analysis[END_REF], Scyther [START_REF] Cremers | Unbounded verification, falsification, and characterization of security protocols by pattern refinement[END_REF], or Tamarin [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF]. But they are generally used to analyze the security of a protocol executed in isolation, meaning that each agent only executes the analyzed protocol. In this paper, our aim is also to automatically find multi-protocols attacks using Tamarin.

Contributions: Several multi-protocols attacks have been found manually or using other tools, our aim is to find them automatically using the Tamarin prover [START_REF] Meier | The TAMARIN prover for the symbolic analysis of security protocols[END_REF]. Our contributions are the following:

-We automatically find all the manual attacks described in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF]. Moreover, we find novel different attacks on the same properties, or unknown attacks on different properties. This demonstrates the limitations of a manual approach for finding attacks. It underlines that automatic verification is a very efficient approach for analyzing the security of cryptographic protocols.

-We analyzed all the protocols given in [START_REF] Cremers | Feasibility of multi-protocol attacks[END_REF], where the authors used Scyther, a different protocol verification tool. We confirm the results from Scyther using Tamarin. -We developed an algorithm to simplify the process of creating the multiprotocol specification file in Tamarin from the individual protocol specifications. The algorithm also automatically generates necessary helping lemmas in Tamarin in order to verify the combination of the two protocols more efficiently. The algorithm is implemented in Python, and available online [START_REF] Elliott | Formal Analysis of Combinations of Secure Protocols (Extended Version)[END_REF].

Related work:

The existence of multi-protocol attack have been introduced by Kelsey, Schneier, and Wagner in [START_REF] Kelsey | Protocol interactions and the chosen protocol attack[END_REF]. In this paper the attacks were found manually and the authors consider protocols crafted to break other protocols.

In [START_REF] Mathuria | Some new multiprotocol attacks[END_REF], Mathuria, Raj Singh, Venkata Sharavan, and Kirtankar found six multi-protocol attacks based on 13 protocols from literature: Denning-Sacco protocol [START_REF] Denning | Timestamps in key distribution protocols[END_REF], amended Woo-Lam protocol [START_REF] Buttyan | A simple logic for authentication protocol design[END_REF], ISO Five-Pass protocol [START_REF] Clark | A survey of authentication protocol literature: Version 1[END_REF], Abadi-Needham protocol [START_REF] Abadi | Prudent engineering practice for cryptographic protocols[END_REF], six protocols from Perrig and Song using APG [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF], and three protocols from Zhou and Foley using ASPB [START_REF] Zhou | Fast automatic synthesis of security protocols using backward search[END_REF]. In contrast to these works, we use an automatic verification tool to find these attacks.

Cremers found many multi-protocol attacks in [START_REF] Cremers | Feasibility of multi-protocol attacks[END_REF], using the tool Scyther, with 30 protocols from literature including Needham Schroeder protocol [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], Needham Schroeder symmetric key protocol [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], Needham Schroeder symmetric key amended protocol [START_REF] Needham | Authentication revisited[END_REF], Lowe's modified version of the Needham Schroeder protocol [START_REF] Lowe | An attack on the needham-schroeder public-key authentication protocol[END_REF], SPLICE/AS [START_REF] Yamaguchi | The design and implementation of an authentication system for the wide area distributed environment[END_REF], Hwang and Chen's version of SPLICE/AS [START_REF] Hwang | On the security of splice/as -the authentication system in wide internet[END_REF], Clark and Jacob's version of SPLICE/AS [START_REF] Clark | On the security of recent protocols[END_REF], a basic SOPH example (Secret-Out Public-Home), Woo Lam pi f [START_REF] Woo | A lesson on authentication protocol design[END_REF], Kao Chow v.1, v.2 and v.3 [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], Yahalom's protocol [START_REF] Burrows | A logic of authentication[END_REF], and Lowe's version of Yahalom protocol [START_REF] Lowe | Towards a completeness result for model checking of security protocols[END_REF]. Compared to this work we use the Tamarin instead of Scyther.

There is also a considerable amount of work of preventing multi-protocol attacks by construction using special composition frameworks. These frameworks exist in the computational (e.g., Universal Composability [START_REF] Canetti | Universally composable security: A new paradigm for cryptographic protocols[END_REF]) and in the symbolic setting (e.g., Protocol Composition Logic [START_REF] Durgin | A compositional logic for proving security properties of protocols[END_REF]).

Outline: The paper is structured as follows. In Section 2, we present the results we obtain and we compare them with those obtained manually in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF] or using Scyther [START_REF] Cremers | Feasibility of multi-protocol attacks[END_REF]. Then, Section 3 discusses our workflow in Tamarin, and finally the last section concludes the paper.

Multi-Protocol Attacks

First we define the properties that we want to verify for each protocol. We define one property for secrecy and two authentication properties.

-Secrecy [START_REF] Cremers | Security Properties[END_REF]: if A claims the secrecy of a variable N A at the end of the run of the protocol, then an intruder cannot know this variable. -Non-injective agreement [START_REF] Cremers | Injective synchronisation: an extension of the authentication hierarchy[END_REF]: if a protagonist A completes a run apparently with B, then B has run the protocol with A and A agrees with all other protagonist on all values. This is not exactly the same definition as in [START_REF] Lowe | A hierarchy of authentication specification[END_REF], but we keep this definition because it is this one that is used by Scyther. -Non-injective synchronisation [START_REF] Cremers | Injective synchronisation: an extension of the authentication hierarchy[END_REF]: if a protagonist A completes a run as the initiator apparently with B as the responder, then B has run the protocol as the responder with A, and all messages sent and received are exactly like described in the specification of the protocol, in the same order. We call a type-flaw attack an attack where the intruder uses data of a different type than the data expected by the protocol. For example, in such an attack, the intruder could use two nonces N 1 , N 2 instead of another single nonce N (N = (N 1 , N 2)), or uses an ID as a nonce. We consider separately the case where the intruder can make type-flaw attacks (such attacks are valid) and the case where the intruder cannot (such attacks are not valid).

All our Tamarin files are available online [START_REF] Elliott | Formal Analysis of Combinations of Secure Protocols (Extended Version)[END_REF].

Attacks by Cremers [9]

First we study the protocols analyzed in [START_REF] Cremers | Feasibility of multi-protocol attacks[END_REF] using Scyther. We modeled all these protocols individually in Tamarin. Figure 1 presents our results using Tamarin for the properties described previously, and Figure 2 presents our results for multi-protocols using Tamarin, where we verify the properties for the first of the two protocols. In these figures, ni-synch stands for non-injective synchronisation, sec stands for secrecy and ni-agree stands for non-injective agreement. Moreover, means that we did not find any attacks, and means there is at least one attack for the property. A yellow box means that the first protocol (the one for which we verify the security properties in the combination) is safe for this property in isolation, and red box means that both protocols are safe for this property in isolation. Empty box means that the property is not relevant for this protocol, for example the key K AB does not exist in the protocol in the property secrecy A K AB and secrecy B K AB , or a protagonist A never obtains a nonce N B in the property secrecy A N B .

We find the same results with Tamarin as with Scyther. We do not consider type-flaw attack for these protocols, because the number of combination with multi-protocol attack is too large (more than 100 different combinations) to model them all manually with Tamarin. All timings are calculated with 6 CPUs of 2 GHz and 32 GB of memory.

We can see in Figure 2 that even if two protocols are safe in isolation for a property, it is not guaranteed that the combination of this two protocols is safe Results found using Tamarin with NS = Needham Schroeder [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSS = Needham Schroeder Symmetric Key [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSSA = Needham Schroeder Symmetric Key Amended [START_REF] Needham | Authentication revisited[END_REF], NSL = Needham Schroeder Lowe [START_REF] Lowe | An attack on the needham-schroeder public-key authentication protocol[END_REF], AS = SPLICE/AS [START_REF] Yamaguchi | The design and implementation of an authentication system for the wide area distributed environment[END_REF], AShc = Hwang and Chen version of SPLICE/AS [START_REF] Hwang | On the security of splice/as -the authentication system in wide internet[END_REF], AScj = Clark and Jacob version of SPLICE/AS [START_REF] Clark | On the security of recent protocols[END_REF], K = Kao Chow [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K2 = Kao Chow v.2 [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K3 = Kao Chow v.3 [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], WLpif = Woo Lam pi f [START_REF] Woo | A lesson on authentication protocol design[END_REF], Y = Yahalom [START_REF] Burrows | A logic of authentication[END_REF], YL = Yahalom Lowe [START_REF] Lowe | Towards a completeness result for model checking of security protocols[END_REF], soph = a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes non-injective agreement, and sec A NA denotes the fact that A claims the secrecy of NA.

too if they share keys, and multi-protocol attacks are not only due to the other protocol that is not safe for this property.

We would expect that Tamarin takes more time to analyze properties for multi-protocols than for protocols in isolation, due to the increased number of transitions and the larger number of traces with the new protocol. , NSS = Needham Schroeder Symmetric Key [START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSSA = Needham Schroeder Symmetric Key Amended [START_REF] Needham | Authentication revisited[END_REF], NSL = Needham Schroeder Lowe [START_REF] Lowe | An attack on the needham-schroeder public-key authentication protocol[END_REF], AS = SPLICE/AS [START_REF] Yamaguchi | The design and implementation of an authentication system for the wide area distributed environment[END_REF], AShc = Hwang and Chen's version of SPLICE/AS [START_REF] Hwang | On the security of splice/as -the authentication system in wide internet[END_REF], AScj = Clark and Jacob's version of SPLICE/AS [START_REF] Clark | On the security of recent protocols[END_REF], K = Kao Chow [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K2 = Kao Chow v.2 [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K3 = Kao Chow v.3 [START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], WLpif = Woo Lam pi f [START_REF] Woo | A lesson on authentication protocol design[END_REF], Y = Yahalom [START_REF] Burrows | A logic of authentication[END_REF], YL = Yahalom Lowe [START_REF] Lowe | Towards a completeness result for model checking of security protocols[END_REF], soph = a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes non-injective agreement, and sec A NA denotes fact that A claims the secrecy of NA. * = the first protocol is safe in isolation, ** = both protocol are safe in isolation

But as we can see in Figure 1 and 2, this is not always the case, like for example for the property ni-synch A for Kao Chow (K) in Figure 1, and for Kao Chow + Woo Lam pi f (K+ WLpif) in Figure 2. This is generally due to the fact that Tamarin finds an attack more rapidly than a proof as Tamarin stops after the first attack it finds (it does not try to find all attacks). It can also happen that Tamarin proves a property for the combination of protocols more quickly than for the protocols in isolation, like for example Needham Schroeder Lowe in Figure 1 and Needham Schroeder Lowe + SPLICE/AS in Figure 2 for ni-synch A. This can occur for example if the precomputations are the dominating part of the total runtime.

Attacks by Mathuria et al. [22]

We try to find the attacks described in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF] using Tamarin, to see if we find the same or different attacks if we use an automatic tool. The properties verified are not clearly defined in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF], so we keep the properties as defined previously. More precisely, we verified different authentication properties: non-injective synchronization, non-injective agreement, and a weaker agreement property. The property non-injective agreement as define previously is too strong to get comparable result with the paper, most of protocols of the paper are not safe for this property even in isolation. So we consider a weaker authentication property defined as follows:

weaker agreement: if B thinks that a nonce N A is generated by A, then A has generated N A and B authenticates A (called Aut A in Figure 3 and4) Figure 3 summarizes results that we obtain with Tamarin in isolation on protocols from [START_REF] Mathuria | Some new multiprotocol attacks[END_REF], and Figure 4 summarizes results we obtain for the multiprotocols. As previously, ni-synch stands for non-injective synchronization, sec stands for secrecy and ni-agree stands for non-injective agreement. Moreover means that we did not find any attacks, and means there is at least one attack for the property. A yellow box means that the first protocol (the one for which we verify security in the combination) is safe for this property in isolation, and red box means that both protocols are safe for this property in isolation. An empty box means that the property is not relevant for this protocol.

We can see in Figure 3 in the case of APG.3 for non-injective synchronization and non-injective agreement, all attacks which we found in isolation are typeflaw attacks, and the protocol is safe if we do not consider type-flaw attacks. But attacks we found for APG.3 with APG.2 are not type flaw attacks (see 2.2), so we consider type-flaw attacks separately in this paper. But in the case of ZF.2, we have a protocol that is not safe for any property, considering type-flaws or not. So it is useless to see if ZF.2 can have a multi-protocol attack for a property in combination with an other protocol, a point that the authors of the original paper missed most likely since they searched for attacks manually.

The property weaker agreement seems to be closest to the property used in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF], because we found the same attacks for some protocols. Thus, in rest of the paper, we only present attacks on this property.

In comparison to the original paper we have found, using Tamarin, sometimes different attacks, and sometimes new attacks on the authentication of other protagonists in the same combination of protocols. This is likely due to the fact that Mathuria et al. searched for attacks manually, and were thus probably unable to analyze all combinations in detail or missed attacks in their analysis.

In all protocols, we have three participants, A the initiator, B the responder, and S the trusted server. We use symmetric encryption, so S shares the key K AS (respectively K BS) with A (respectively B). Moreover, K AB denotes the session key between A and B, and N A (respectively N B) a nonce generated by A (respectively B). Then {M } K denotes the cipher-text obtained by encrypting a message M with the symmetric key K. As in the original paper, we assume that each participant shares the same key for both protocols. In the following, when we talk about authentication, we mean non-injective agreement.

In the following we discuss our results in details. First we discuss attacks that we found and that differ from those presented in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF], then we present new attacks for properties that were not analyzed in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF].

Different Attacks

APG.4 with APG.6: The first attack is on the authentication of A. In this attack, two protagonists A and A initiate the APG.6 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF] protocol with B, and the intruder C pretends to be A in APG.4 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF]. In the protocol initiated by A , C learns (N A , N B , A), used as a session key, and its ciphertext {N A , N B , A } K BS . In the protocol initiated by A, C learns the nonce N B , used to authenticate to ZF from [START_REF] Zhou | Fast automatic synthesis of security protocols using backward search[END_REF], * = the first protocol is safe in isolation, ** = both protocols are safe in isolation.

B.

In Figure 5, steps on the left hand side are steps of APG.4, and steps on the right hand side are steps from APG.6. This attack is a type-flaw attack, because the intruder uses (N A , N B , A) as a session key. So we blocked type-flaw attacks in Tamarin to see if there are other types of attacks, and we did not find other attacks on the authentication of A.

Denning-Sacco with Amended Woo-Lam: This attack is on the authentication of A. Again, it is a type-flaw attack, because the intruder uses (K AB , T) as a nonce. In this attack, the intruder C plays the role of A and S in both protocols. First, B initiates a protocol Woo-Lam [START_REF] Buttyan | A simple logic for authentication protocol design[END_REF] with C who impersonates A. Then C sends the ID of A and a fake session key and a timestamp as a nonce. B encrypts that and C has now a valid message to send to B in Denning-Sacco [START_REF] Denning | Timestamps in key distribution protocols[END_REF]. This attack is described in Figure 6.

We did not find other types of attacks for this protocol when we blocked type-flaw attacks in Tamarin using a modified model.

C A B B C S A A C C A B B C S A A C C B NA, A NA, A {NA, NB, A}K BS , B {NA, NB, A}K BS , B {KAB, NB}K BS , {KAB, NA, NB, B}K AS NB, {KAB, NB}K BS N A , A N A , A {N A , N B , A }K BS , B {N A , N B , A }K BS , B {K A B , N B }K BS , {K A B , N A , N B , B}K A S N B , {K A B , N B }K BS {N A , N B , A }K BS , {NB} (N A ,N B ,A) APG.6 APG.4

New Attacks

APG.1 with APG.2: The attack described in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF] is an attack on the authentication of B, but we also found an attack on the authentication of A. In this attack, the intruder C plays the role of A in both protocols. First, B runs the APG.2 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF] protocol as the initiator and then the protocol APG.1 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF] as the responder. C can pretend to be A in APG.1 and B will accept. In Figure 7 steps at the left are steps from APG.1, and the right part are steps from APG.2.

APG.3 with APG.2:

This attack is an attack on the authentication of B. This attack is possible if A runs the APG.3 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF] protocol as the initiator, and APG.2 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF] as the responder. In this attack, C plays the roles of B and S in both protocols.

B C B B S C S S B C B NB, A NB, B m {NB, N B , B}K AS {NB, N B , B}K AS {NB, N B , B, A}K BS N B N B m = {NB, N B , A, B}K BS , B APG.1 APG.2
Fig. 7. Representation of the attack on APG.1 with APG.2. Then C can pretend to be B in APG.3, and A will accept. In Figure 8 steps at the left are steps of APG.3, and at the right part are steps from APG.2.

C A A A C A NA, A NA, B {NA, N A , B}K AS , A {NA, N A , B}K AS APG.3 APG.2
We also found an attack on the authentication of A. In this attack, the intruder C plays the role of A in both protocols. B runs the APG.2 protocol as the initiator, and APG.3 as the responder. C can pretend to be A, and B in APG.3 will accept. In Figure 9 steps at the left are steps from APG.3, and steps at the right are steps from APG.2. APG.4 with APG.6: We found an attack on the authentication of B. In this attack, A initiates the protocol APG.3, then the intruder C will initiate APG.6 with B, using data sent by A in the other protocol. Finally, C sends the answer of B to the server in APG.4, and lets the protocol run. In Figure 10, steps on the left hand side are steps from APG.4, and steps on the right hand side are steps from APG.6.

This attack is possible because the message from APG.6 used for this attack is also used in APG.4, so C can get a response from B, while B does not act in APG.4. APG.5 with APG.6: This attack is on the authentication of A. In this attack, two protagonists A and A initiate the APG.6 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF] protocol with B, and the intruder C pretends to be A in APG.5 [START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF]. In the protocol initiated by A , C learns (N A , N B , A), used as a session key, and its encrypted version {N A , N B , A } K BS . In the protocol initiated by A, C learns the nonce N B , used to authenticate to B. In Figure 11, steps at the left part are steps of APG.5, and steps on the right are steps from APG.6.

This attack is a type-flaw attack. So we changed our model to disable such type-flaw attacks in Tamarin to see if there are other types of attacks, and we did not find another attack on the authentication of A.

We also found an attack on the authentication of A where the intruder uses (N A , N B , A) as a session key. In this attack, A initiates the protocol APG.5, then the intruder C will initiate APG.6 with B, using data sent by A in the other protocol. Finally, C sends the answer of B to the server in APG.5, and lets the protocol run. In Figure 12, steps on the left hand side are steps from APG.5, and on the right hand side are steps from APG.6.

This attack is possible because the message from APG.6 used for this attack is also used in APG.5, so C can get a response from B, while B does not act in APG.5.

Workflow in Tamarin

As we had to write many different combinations of multiple protocols to obtain our results, we tried to simplify the process by adopting the following workflow to combine to protocols: 1. Specify each protocol individually and check the properties in isolation using Tamarin. 2. Generate the files for all the required combinations using the individual specifications. 3. Verify the combined protocols, and compare the results to known results. To simplify the process of generating the combined specifications, we adopted certain (mostly syntactic) conventions when specifying the protocols. These mostly concern the common setup rules (key distribution etc.), the placement of labels, and the uniqueness of labels to avoid conflicts.

These conventions allowed us to develop an algorithm that can generate the input files of the composed protocols based on the individual specifications, including intermediate lemmas that simplify the analysis for Tamarin by removing undesirable cases for the subsequent analysis. The generation of these lemmas goes beyond a pure syntactical merger of the individual files. The algorithm requires some interaction with Tamarin, but noticeably simplifies the following analysis. The main idea is that if Tamarin finds an a problem in the merged lemma, then we need to analyze the trace produced by the tool and to modify the lemma. This procedure seems to be systematic for all the examples that we have considered here.

This algorithm is implemented in Python, and works automatically on most combinations from [START_REF] Mathuria | Some new multiprotocol attacks[END_REF] and [START_REF] Cremers | Feasibility of multi-protocol attacks[END_REF]. Only in a handful of cases we need to manually adapt the produced output to obtain a valid lemma that removes all undesirable cases. Note that even in these cases, the manual intervention was only necessary to create the models, the following analysis was then automatic. For more information about this algorithm, see Appendix A. The implementation is also available on line [START_REF] Elliott | Formal Analysis of Combinations of Secure Protocols (Extended Version)[END_REF].

Conclusion

In this paper, we perform an automated analysis of multi-protocols in Tamarin. For this we have used the both protocols studied in [START_REF] Cremers | Feasibility of multi-protocol attacks[END_REF] using Scyther and the protocol studied in [START_REF] Mathuria | Some new multiprotocol attacks[END_REF] manually. In all cases where attacks were known previously, we also find attacks. However, the tool sometimes finds different attacks than the ones found manually or using Scyther. Moreover, we also find new and unknown attacks, underlining the advantages of an automatic analysis. We also proposed an algorithm to systematically merge two Tamarin files for our analysis.

Our future work is to see how we can integrate our algorithm for automatically merging two Tamarin files into the tools in order to facilitate the life of Tamarin users. Finally our experience also shows us that it might even be possible to propose a similar heuristic to help Tamarin users by automatically generating such helping intermediate lemmas.

A Details of the workflow

We denote by In dec#i labels that manage the input in deconstructions lemma (each one can appear only once in rules), and Out dec#i denotes labels that manage the output in deconstructions lemma (can appear many times in rules).

Making the combination of two protocols with Tamarin is not just to put all transitions from these protocols in the same file. But in fact we have often to solve some partial deconstruction problems. A partial deconstruction is when Tamarin cannot say where a fact come from. That makes open chains and Tamarin may not terminate. An idea is to make the conjunction of both deconstructions lemmas. With this, There are no more partial deconstruction left, but the lemma might be wrong, due to new sources in the other protocol, for rules concerned by the deconstructions lemma. So we have to correct the lemma and verify it again. We have implemented a part (except one special case described below) of this algorithm in python and we succeed on 14/18 of our test to produce the Tamarin file of the combination (3 of the 4 fail are due to the special case that we don't implemented yet). It is also possible to create new loop by making the combination of both protocols, so Tamarin may not terminate the proof of lemmas that terminates when the protocol is alone.

-First we need to write "theory [name] begin" -Copy builtins, functions and equations of both protocols without redundancies, we make the union of them.

-Copy the initialisations rules once.

-Copy rules of the first protocol, then copy rules of the second protocol without creating some conflicts with the names of rules, facts, and labels (keep the names of facts from initialisations rules).

def We have two cases:

• The lemma is validate by Tamarin, it concludes the algorithm.

• Tamarin finds a counter-example, and gives us a trace where we have a In dec#i without a Out dec#i associated. So we add the missing Out dec#i in the rule preceding the rule with In dec#i in the trace, then we retry to prove the deconstruction lemma.

def CorrectLemma : i = last rule with In_dec (x) in trace ; j = previous rule of i in trace ; put label Out_dec (x) in j ;

Special case (not implemented yet), if the arguments of In dec#i are not in the the input of the rule, we put the Out dec#i in the rule that sends the argument to the role. for i , j in rule if " In_dec1 (arg)" & " Out_dec2 (arg)" in i if " In_dec2 (arg)" & " Out_dec1 (arg)" in j replace " In_dec1 (arg)" by " In_dec12 (arg , arg)" in rules and lemmas ; replace " In_dec2 (arg)" by " In_dec12 (arg , arg)" in rules and lemmas ; replace " Out_dec1 (arg)" by " Out_dec12 (arg , arg)" in rules and lemmas ; replace " Out_dec2 (arg)" by " Out_dec12 (arg , arg)" in rules and lemmas ;

This step has to be done before retry to prove the lemma, or Tamarin will loop at the generation of the refined sources. -Copy lemmas you want to prove.

-Write "end"

 Fig.1. Results found using Tamarin with NS = Needham Schroeder[START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSS = Needham Schroeder Symmetric Key[START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSSA = Needham Schroeder Symmetric Key Amended[START_REF] Needham | Authentication revisited[END_REF], NSL = Needham Schroeder Lowe[START_REF] Lowe | An attack on the needham-schroeder public-key authentication protocol[END_REF], AS = SPLICE/AS[START_REF] Yamaguchi | The design and implementation of an authentication system for the wide area distributed environment[END_REF], AShc = Hwang and Chen version of SPLICE/AS[START_REF] Hwang | On the security of splice/as -the authentication system in wide internet[END_REF], AScj = Clark and Jacob version of SPLICE/AS[START_REF] Clark | On the security of recent protocols[END_REF], K = Kao Chow[START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K2 = Kao Chow v.2[START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K3 = Kao Chow v.3[START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], WLpif = Woo Lam pi f[START_REF] Woo | A lesson on authentication protocol design[END_REF], Y = Yahalom[START_REF] Burrows | A logic of authentication[END_REF], YL = Yahalom Lowe[START_REF] Lowe | Towards a completeness result for model checking of security protocols[END_REF], soph = a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes non-injective agreement, and sec A NA denotes the fact that A claims the secrecy of NA.

Fig. 2 .

 2 Fig.2. Result found with Tamarin. NS = Needham Schroeder[START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSS = Needham Schroeder Symmetric Key[START_REF] Needham | Using encryption for authentication in large networks of computers[END_REF], NSSA = Needham Schroeder Symmetric Key Amended[START_REF] Needham | Authentication revisited[END_REF], NSL = Needham Schroeder Lowe[START_REF] Lowe | An attack on the needham-schroeder public-key authentication protocol[END_REF], AS = SPLICE/AS[START_REF] Yamaguchi | The design and implementation of an authentication system for the wide area distributed environment[END_REF], AShc = Hwang and Chen's version of SPLICE/AS[START_REF] Hwang | On the security of splice/as -the authentication system in wide internet[END_REF], AScj = Clark and Jacob's version of SPLICE/AS[START_REF] Clark | On the security of recent protocols[END_REF], K = Kao Chow[START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K2 = Kao Chow v.2[START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], K3 = Kao Chow v.3[START_REF] Kao | An efficient and secure authentication protocol using uncertified keys[END_REF], WLpif = Woo Lam pi f[START_REF] Woo | A lesson on authentication protocol design[END_REF], Y = Yahalom[START_REF] Burrows | A logic of authentication[END_REF], YL = Yahalom Lowe[START_REF] Lowe | Towards a completeness result for model checking of security protocols[END_REF], soph = a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes non-injective agreement, and sec A NA denotes fact that A claims the secrecy of NA. * = the first protocol is safe in isolation, ** = both protocol are safe in isolation

Fig. 3 .

 3 Fig.3. Results found with Tamarin with APG from[START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF], DS = Denning Sacco[START_REF] Denning | Timestamps in key distribution protocols[END_REF], AWL = Amended Woo Lam[START_REF] Buttyan | A simple logic for authentication protocol design[END_REF], ISO5 = ISOFive-Pass[START_REF] Clark | A survey of authentication protocol literature: Version 1[END_REF], AN = Abadi Needham[START_REF] Abadi | Prudent engineering practice for cryptographic protocols[END_REF], ZF from[START_REF] Zhou | Fast automatic synthesis of security protocols using backward search[END_REF], * = only type-flaw attacks.

Fig. 4 .

 4 Fig.4. Results found with Tamarin with APG from[START_REF] Perrig | Looking for diamonds in the desert -extending automatic protocol generation to three-party authentication and key agreement protocols[END_REF], DS = Denning Sacco[START_REF] Denning | Timestamps in key distribution protocols[END_REF], AWL = Amended Woo Lam[START_REF] Buttyan | A simple logic for authentication protocol design[END_REF], ISO5 = ISOFive-Pass[START_REF] Clark | A survey of authentication protocol literature: Version 1[END_REF], AN = Abadi Needham[START_REF] Abadi | Prudent engineering practice for cryptographic protocols[END_REF], ZF from[START_REF] Zhou | Fast automatic synthesis of security protocols using backward search[END_REF], * = the first protocol is safe in isolation, ** = both protocols are safe in isolation.

Fig. 5 .Fig. 6 .

 56 Fig. 5. Representation of the attack on APG.4 with APG.6.

Fig. 8 . 2 Fig. 9 .

 829 Fig. 8. Representation of the attack on APG.3 with APG.2.

6 Fig. 10 .

 610 Fig. 10. Representation of the attack on APG.4 with APG.6.

5 Fig. 11 . 6 Fig. 12 .

 511612 Fig. 11. Representation of the attack on APG.5 with APG.6.

 a s t _ R u l e _ W i t h _ I n _ d e c (x) in trace ; if x not in Out () of the rule z = last rule with Out (z1 , x1 , z2); // z1 and z2 put label Out_dec (x) in z ; // can be null j = Previo us_In_ Trace (i); put label Out_dec (x) in j ; Other special case (implemented), if we have in a rule [In dec1(n), Out dec2(n)] and in an other [Out dec1(n), In dec2(n)], we can merge dec1 and dec2, and change all Out dec1 and Out dec2 into Out dec12 in all other rules: def Merge :

 RenameFacts : for each Facts , Rules , Labels in Rules from second protocols : if not in Initiation rules : rename them by S [actualName];-Make the conjunction of both deconstruction lemmas.

	def Deconstruction :
	put " lemma deconstruction [sources]:"
	in [filename]. spthy ;
	copy lemma content from first protocol
	in [filename]. spthy ;
	put "&" in [filename]. spthy ;
	copy lemma content from second protocol
	in [filename]. spthy ;

-Copy restriction of protocols -Try to prove the deconstructions lemma with Tamarin.

def Proof :

run Tamarin [filename]. spthy --prove = deconstruction ;

This research was conducted with the support of the Indo-French Centre for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promotion De La Recherche Avancée (CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme, and by the CNRS PEPS SISC ASSI 2016/2017.