
HAL Id: hal-01558552
https://hal.science/hal-01558552v3

Preprint submitted on 4 Aug 2017 (v3), last revised 11 Nov 2017 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Analysis of Combinations of Secure Protocols
(Extended Version)

Elliott Blot, Jannik Dreier, Pascal Lafourcade

To cite this version:
Elliott Blot, Jannik Dreier, Pascal Lafourcade. Formal Analysis of Combinations of Secure Protocols
(Extended Version). 2017. �hal-01558552v3�

https://hal.science/hal-01558552v3
https://hal.archives-ouvertes.fr

Formal Analysis of Combinations of Secure
Protocols?

Elliott Blot1 and Jannik Dreier2 and Pascal Lafourcade1

1. LIMOS, University Clermont Auvergne, France
2. LORIA, Université de Lorraine, INRIA, CNRS, France

Abstract. When trying to prove the security of a protocol, one usually
analyzes the protocol in isolation, i.e., in a network with no other proto-
cols. But in reality, there will be many protocols operating on the same
network, maybe even sharing data including keys, and an intruder may
use messages of one protocol to break another. We call that a multi-
protocol attack. In this paper, we try to find such attacks using the
Tamarin prover. We analyze both examples that were previously ana-
lyzed by hand or using other tools, and find novel attacks.

1 Introduction

When analyzing the security of protocols, one aims at proving specific security
properties. The most common types of properties are secrecy, meaning that an
intruder cannot know a secret value, and authentication, meaning that if A thinks
he is talking to B, then he is really talking to B. In our digitalized world there
are more and more cryptographic protocols everywhere, and we want to verify
them to ensure their security.

It is not realistic to assume that a protocol is running alone in the network,
and in the real world, an intruder can try to use messages of other protocols in
the network to break a protocol. That is what we call a multi-protocol attack.

More precisely, we study the following problem of multi-protocols attacks.
Given two protocols that ensure a certain security property in isolation, are
they still safe for this property if we put them together in the same network?
Unsurprisingly there exist many combinations of protocols where this is not the
case, i.e., where we can mount multi-protocols attacks.

There are a lot of tools for automatic analysis of security properties, like
ProVerif [3], AVISPA [2], Athena [25], Scyther [9], or Tamarin [21]. But they
are generally used to analyze the security of a protocol executed in isolation,
meaning that each agent only executes the analyzed protocol. In this paper, our
aim is also to automatically find multi-protocols attacks using Tamarin.

? This work was supported in part by the project C-ROADS, by the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR) and Center Franco-
Indien Pour LA Promotion DE LA Recherche Avancee (CEFIPRA) through the
project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted Programme.

2

Contributions: Several multi-protocols attacks have been found manually
or using other tools, our aim is to find them automatically using the Tamarin
prover [21]. Our contributions are the following:
– We automatically find all the manual attacks described in [20]. Moreover, we

find novel different attacks on the same properties, or unknown attacks on
different properties. This demonstrates the limitations of a manual approach
for finding attacks. It underlines that automatic verification is a very efficient
approach for analyzing the security of cryptographic protocols.

– We analyzed all the protocols given in [10], where the authors used Scyther,
a different protocol verification tool. We confirm the results from Scyther
using Tamarin.

– We developed an algorithm to simplify the process of creating the multi-
protocol specification file in Tamarin from the individual protocol specifica-
tions. The algorithm also automatically generates necessary helping lemmas
in Tamarin in order to verify the combination of the two protocols more ef-
ficiently. The algorithm is implemented in Python, and available online [13].
Related work: The existence of multi-protocol attack have been introduced

by Kelsey, Schneier, and Wagner in [16]. In this paper the attacks were found
manually and the authors consider protocols crafted to break other protocols.

In [20], Mathuria, Raj Singh, Venkata Sharavan, and Kirtankar found six
multi-protocol attacks based on 13 protocols from literature: Denning-Sacco pro-
tocol [12], amended Woo-Lam protocol [5], ISO Five-Pass protocol [6], Abadi-
Needham protocol [1], six protocols from Perrig and Song using APG [24], and
three protocols from Zhou and Foley using ASPB [28]. In contrast to these works,
we use an automatic verification tool to find these attacks.

Cremers found many multi-protocol attacks in [10], using the tool Scyther,
with 30 protocols from literature including Needham Schroeder protocol [23],
Needham Schroeder symmetric key protocol [23], Needham Schroeder symmetric
key amended protocol [22], Lowe’s modified version of the Needham Schroeder
protocol [17], SPLICE/AS [27], Hwang and Chen’s version of SPLICE/AS [14],
Clark and Jacob’s version of SPLICE/AS [7], a basic SOPH example (Secret-Out
Public-Home), Woo Lam pi f [26], Kao Chow v.1, v.2 and v.3 [15], Yahalom’s
protocol [4], and Lowe’s version of Yahalom protocol [19]. Compared to this work
we use the Tamarin instead of Scyther.

Outline: The paper is structured as follows. In Section 2, we present the
results we obtain and we compare them with those obtained manually in [20]
or using Scyther [10]. Then, Section 3 discusses our workflow in Tamarin, and
finally the last section concludes the paper.

2 Multi-Protocols Attack

First we define the properties that we want to verify for each protocol. We define
one property for secrecy and two authentication properties.
– Secrecy [8]: if A claims the secrecy of a variable NA at the end of the run of

the protocol, then an intruder cannot know this variable.

3

– Non-injective agreement [11]: if a protagonist A completes a run apparently
with B, then B has run the protocol with A and A agrees with all other
protagonist on all values. This is not exactly the same definition as in [18],
but we keep this definition because it is this one that is used by Scyther.

– Non-injective synchronisation [11]: if a protagonist A completes a run as the
initiator apparently with B as the responder, then B has run the protocol
as the responder with A, and all messages sent and received are exactly like
described in the specification of the protocol, in the same order.
We call a type-flaw attack an attack where the intruder uses data of a different

type than the data expected by the protocol. For example, in such an attack,
the intruder could use two nonces N1, N2 instead of another single nonce N
(N = (N1, N2)), or uses an ID as a nonce. We consider separately the case
where the intruder can make type-flaw attacks (such attacks are valid) and the
case where the intruder cannot (such attacks are not valid).

All our Tamarin files are available online [13].

2.1 Attacks by Cremers [10]

First we study the protocols analyzed in [10] using Scyther. We modeled all these
protocols individually in Tamarin. Figure 1 presents our results using Tamarin
for the properties described previously, and Figure 2 presents our results for
multi-protocols using Tamarin, where we verify the properties for the first of the
two protocols. In these figures, ni-synch stands for non-injective synchronisation,
sec stands for secrecy and ni-agree stands for non-injective agreement. Moreover,
3 means that we did not find any attacks, and 7 means there is at least one
attack for the property. A yellow box means that the first protocol (the one
for which we verify the security properties in the combination) is safe for this
property in isolation, and red box means that both protocols are safe for this
property in isolation. Empty box means that the property is not relevant for this
protocol, for example the key KAB does not exist in the protocol in the property
secrecy A KAB and secrecy B KAB , or a protagonist A never obtains a nonce
NB in the property secrecy A NB .

We find the same results with Tamarin as with Scyther. We do not consider
type-flaw attack for these protocols, because the number of combination with
multi-protocol attack is to large (more than 100 different combinations) to model
them all manually with Tamarin. All timings are calculated with 6 CPUs of 2
Ghz and 32 Go of memory.

We can see in Figure 2 that even if two protocols are safe in isolation for a
property, it is not guaranteed that the combination of this two protocols is safe
too if they share keys, and multi-protocol attacks are not only due to the other
protocol that is not safe for this property.

We would expect that Tamarin takes more time to analyze properties for
multi-protocols than for protocols in isolation, due to the increased number of
transitions and the larger number of traces with the new protocol.

But as we can see in Figure 1 and 2, this is not always the case, like for
example for the property ni-synch A for Kao Chow (K) in Figure 1, and for Kao

4

name
ni-

synch
A

ni-
synch
B

sec A
NA

sec B
NA

sec A
NB

sec B
NB

sec A
KAB

sec B
KAB

ni-
agree
A

ni-
agree
B

NSS
0:07
3

0:06
3

0:01
7

-
0:02
3

0:01
3

0:02
3

0:01
3

0:03
3

0:02
3

NSSA
0:16

7

0:37
7

0:05
7

-
0:35
3

10:28
3

0:03
3

0:06
3

0:03
7

0:02
7

NS
0:28
3

0:05
7

0:01
3

0:01
7

0:08
3

0:02
7

- -
0:12
3

0:04
7

NSL
0:22
3

1:07
3

0:01
3

0:04
3

0:07
3

0:02
3

- -
0:08
3

0:17
3

AS
0:09

7

0:04
7

0:03
7

0:02
7

-
0:02

7
- -

0:11
7

0:01
7

AShc
0:05

7

0:05
7

0:04
7

0:03
7

-
0:03

7
- -

0:45
7

0:02
7

K
0:06

7

0:15
7

0:00
7

0:16
7

0:03
7

0:01
7

0:02
3

0:32
3

0:07
7

0:12
7

K2
0:05

7

1:40
7

0:04
7

0:30
7

0:04
7

0:30
7

0:04
3

0:21
3

0:04
7

0:40
7

K3
0:03

7

5:43
7

0:02
7

0:02
7

0:04
7

0:05
7

0:05
3

2:27
3

0:02
7

4:26
7

WLpif
0:00

7

0:01
7

- -
0:00

7

0:00
7

- -
0:00

7

0:01
7

Y
0:04

7

5:53
7

0:04
7

0:12
7

0:24
3

0:13
7

0:09
3

0:12
7

0:03
7

4:18
7

YL
0:12
3

0:32
3

0:01
7

0:02
7

0:07
3

0:15
3

0:05
3

0:11
3

0:06
3

0:17
3

AScj
0:06

7

0:25
7

0:05
7

0:05
3

-
0:01

7
- -

0:02
7

0:06
7

soph
0:00
3

0:01
7

0:00
7

0:01
7

- - - -
0:00
3

0:01
7

Fig. 1. Results found using Tamarin with NS = Needham Schroeder [23], NSS =
Needham Schroeder Symmetric Key [23], NSSA = Needham Schroeder Symmetric Key
Amended [22], NSL = Needham Schroeder Lowe [17], AS = SPLICE/AS [27], AShc
= Hwang and Chen version of SPLICE/AS [14], AScj = Clark and Jacob version of
SPLICE/AS [7], K = Kao Chow [15], K2 = Kao Chow v.2 [15], K3 = Kao Chow v.3 [15],
WLpif = Woo Lam pi f [26], Y = Yahalom [4], YL = Yahalom Lowe [19], soph = a
SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree denotes
non-injective agreement, and sec A NA denotes the fact that A claims the secrecy of
NA.

Chow + Woo Lam pi f (K+ WLpif) in Figure 2. This is generally due to the
fact that Tamarin finds an attack more rapidly than a proof as Tamarin stops
after the first attack it finds (it does not try to find all attacks).

It can also happen that Tamarin proves a property for the combination of
protocols more quickly than for the protocols in isolation, like for example Need-
ham Schroeder Lowe in Figure 1 and Needham Schroeder Lowe + SPLICE/AS

5

name
ni-

synch
A

ni-
synch
B

sec A
NA

sec B
NA

sec A
NB

sec B
NB

sec A
KAB

sec B
KAB

ni-
agree
A

ni-
agree
B

NSS
+

NSSA

0:53
7 *

1:35
7 *

0:12
7

-
10:39

3

0:32
7 **

0:05
3

1:34
7 **

0:32
7 *

0:24
7 *

NS +
AS

0:40
3

0:09
7

0:01
3

0:02
7

0:14
7 **

0:03
7

- -
0:16
3

0:06
7

NS +
AShc

0:39
3

0:08
7

0:01
3

0:02
7

0:14
7 **

0:03
7

- -
0:18
3

0:07
7

NSL
+ AS

0:08
3

4:45
3

0:02
3

0:13
3

0:08
7 **

0:08
7 *

- -
0:04
3

0:53
3

NSL
+

AShc

0:28
3

18:44
3

0:01
3

0:21
3

0:19
7 **

0:14
7 *

- -
0:11
3

0:23
3

K +
WLpif

0:03
7

0:11
7

0:02
7

0:03
7

0:02
7

0:03
7

0:01
3

0:03
7 **

0:03
7

0:06
7

K2 +
WLpif

0:05
7

0:22
7

0:03
7

0:04
7

0:03
7

0:03
7

0:05
3

0:03
7 **

0:07
7

0:15
7

K3 +
WLpif

0:03
7

0:23
7

0:02
7

0:32
7

0:02
7

0:03
7

0:11
3

0:03
7 **

0:02
7

0:29
7

YL +
Y

1:52*
7

3:12*
7

1:03
7

1:01
7

2:21
3

19:37
3

1:15
3

6:48
3

1:01
7 *

6:43
7 *

AScj
+

soph

0:15
7

0:06
7

0:11
7

0:09
7 *

-
0:02

7
- -

0:04
7

0:04
7

Fig. 2. Result found with Tamarin. NS = Needham Schroeder [23], NSS = Need-
ham Schroeder Symmetric Key [23], NSSA = Needham Schroeder Symmetric Key
Amended [22], NSL = Needham Schroeder Lowe [17], AS = SPLICE/AS [27], AShc
= Hwang and Chen’s version of SPLICE/AS [14], AScj = Clark and Jacob’s version
of SPLICE/AS [7], K = Kao Chow [15], K2 = Kao Chow v.2 [15], K3 = Kao Chow
v.3 [15], WLpif = Woo Lam pi f [26], Y = Yahalom [4], YL = Yahalom Lowe [19], soph
= a SOPH basic example. ni-synch denotes non-injective synchronisation, ni-agree de-
notes non-injective agreement, and sec A NA denotes fact that A claims the secrecy of
NA. * = the first protocol is safe in isolation, ** = both protocol are safe in isolation

in Figure 2 for ni-synch A. This can occur for example if the precomputations
are the dominating part of the total runtime.

2.2 Attacks by Mathuria et al. [20]

We try to find the attacks described in [20] using Tamarin, to see if we find the
same or different attacks if we use an automatic tool. The properties verified
are not clearly defined in [20], so we keep the properties as defined previously.
More precisely, we verified different authentication properties: non-injective syn-
chronization, non-injective agreement, and a weaker agreement property. The

6

property non-injective agreement as define previously is too strong to get com-
parable result with the paper, most of protocols of the paper are not safe for
this property even in isolation. So we consider a weaker authentication property
defined as follows:
– weaker agreement : if B thinks that a nonce NA is generated by A, then A

has generated NA and B authenticates A (called Aut A in Figure 3 and 4)
Figure 3 summarizes results that we obtain with Tamarin in isolation on

protocols from [20], and Figure 4 summarizes results we obtain for the multi-
protocols. As previously, ni-synch stands for non-injective synchronization, sec
stands for secrecy and ni-agree stands for non-injective agreement. Moreover 3
means that we did not find any attacks, and 7 means there is at least one attack
for the property. A yellow box means that the first protocol (the one for which
we verify security in the combination) is safe for this property in isolation, and
red box means that both protocols are safe for this property in isolation. An
empty box means that the property is not relevant for this protocol.

We can see in Figure 3 in the case of APG.3 for non-injective synchronization
and non-injective agreement, all attacks which we found in isolation are type-
flaw attacks, and the protocol is safe if we do not consider type-flaw attacks. But
attacks we found for APG.3 with APG.2 are not type flaw attacks (see 2.2), so
we consider type-flaw attacks separately in this paper. But in the case of ZF.2,
we have a protocol that is not safe for any property, considering type-flaws or
not. So it is useless to see if ZF.2 can have a multi-protocol attack for a property
in combination with an other protocol, a point that the authors of the original
paper missed most likely since they searched for attacks manually.

The property weaker agreement seems to be closest to the property used
in [20], because we found the same attacks for some protocols. Thus, in rest of
the paper, we only present attacks on this property.

In comparison to the original paper we have found, using Tamarin, sometimes
different attacks, and sometimes new attacks on the authentication of other
protagonists in the same combination of protocols.

In all protocols, we have three participants, A the initiator, B the responder,
and S the trusted server. We use symmetric encryption, so S shares the key
KAS (respectively KBS) with A (respectively B). Moreover, KAB denotes the
session key between A and B, and NA (respectively NB) a nonce generated by
A (respectively B). Then {M}K denotes the cipher-text obtained by encrypt-
ing a message M with the symmetric key K. We assume that each participant
shares the same key for both protocols. In the following, when we talk about
authentication, we talk about non-injective agreement.

In the following we discuss our results in details. First we discuss attacks
that we found and that differ from those presented in [20], then we present new
attacks for properties that were not analyzed in [20].

Different Attacks

APG.4 with APG.6: The first attack is on the authentication of A. In this
attack, two protagonists A and A′ initiate the APG.6 [24] protocol with B, and

7

name
ni-

synch
A

ni-
synch
B

sec A
NA

sec B
NA

sec A
NB

sec B
NB

sec A
KAB

sec B
KAB

ni-
agree
A

ni-
agree
B

Aut
A

Aut
B

APG.1
0:14
3

0:03
3

0:01
7

0:01
7

0:08
7

0:01
7

- -
0:06
3

0:01
3

0:01
3

0:04
3

APG.2
0:09
3

0:03
3

0:01
7

0:01
7

0:05
7

0:01
7

- -
0:05
3

0:01
3

0:01
3

0:02
3

APG.3
0:06
7 *

0:05
7 *

0:01
7

0:01
7

0:08
7

0:02
7

- -
0:05
7 *

0:02
7 *

0:01
3

0:06
3

APG.4
0:37
3

0:21
3

0:04
7

0:04
7

0:18
3

0:01
3

0:13
3

0:04
3

0:23
3

0:09
3

0:06
3

0:06
3

APG.5
0:48
3

25:57
3

0:05
7

0:03
7

0:20
3

2:04
3

0:14
3

6:18
3

0:30
3

11:37
3

0:29
3

0:00
3

APG.6
0:04

7

0:06
7

0:01
7

0:02
7

0:02
7

0:02
7

0:06
3

0:04
3

0:04
7

0:02
7

0:02
3

0:04
3

DS
0:01

7

0:01
7

- - - -
0:01
3

0:01
3

0:01
3

0:01
7

0:00
3

-

AWL
0:01

7

0:01
7

- -
0:00

7

0:00
7

- -
0:00

7

0:00
7

0:00
7

0:00
3

ISO5
0:19
3

0:33
3

0:02
7

0:03
7

0:04
3

0:09
3

0:01
3

0:09
3

0:05
3

0:16
3

0:06
3

0:04
3

AN
0:01

7

0:01
7

0:00
7

0:01
7

-
0:01

7

0:01
3

0:02
3

0:00
7

0:00
7

0:01
7

0:00
7

ZF.1
0:16

7

5:01
7

0:05
7

0:24
7

0:06
7

0:18
7

0:13
7

1:08
3

0:02
7

0:39
3

0:11
3

0:06
7

ZF.2
0:01

7

0:06
7

0:01
7

0:01
7

0:01
7

0:01
7

0:01
7

0:01
7

0:01
7

0:04
7

0:07
7

0:01
7

ZF.3
28:25

3

1:08
7

0:39
7

0:12
7

0:33
7

0:11
7

4:50
3

0:57
7

2:10
3

0:22
7

0:47
3

0:35
3

Fig. 3. Results found with Tamarin with APG from [24], DS = Denning Sacco [12],
AWL = Amended Woo Lam [5], ISO5 = ISOFive-Pass [6], AN = Abadi Needham [1],
ZF from [28], * = only type-flaw attacks.

the intruder C pretends to be A in APG.4 [24]. In the protocol initiated by A′, C
learns (NA′ , N ′

B , A
′), used as a session key, and its ciphertext {NA′ , N ′

B , A
′}KBS

.
In the protocol initiated by A, C learns the nonce NB , used to authenticate to
B. In Figure 5, steps on the left hand side are steps of APG.4, and steps on the
right hand side are steps from APG.6.

This attack is a type-flaw attack, because the intruder uses (NA′ , N ′
B , A

′)
as a session key. So we blocked type-flaw attacks in Tamarin to see if there are
other types of attacks, and we did not find other attacks on the authentication
of A.

Denning-Sacco with Amended Woo-Lam: This attack is on the authentication
of A. Again, it is a type-flaw attack, because the intruder uses (KAB , T) as a
nonce. In this attack, the intruder C plays the role of A and S in both protocols.

8

name
ni-

synch
A

ni-
synch
B

sec
A
NA

sec
B
NA

sec
A
NB

sec
B
NB

sec
A

KAB

sec B
KAB

ni-
agree
A

ni-
agree
B

Aut A
Aut
B

APG.1
+

APG.2

0:01
7 **

0:08
7 **

0:01
7

0:01
7

0:01
7

0:02
7

- -
0:01
7 **

0:03
7 **

0:02
7 **

0:01
7 **

APG.3
+

APG.2

0:01
7

0:08
7

0:01
7

0:03
7

0:02
7

0:03
7

- -
0:01

7

0:03
7

0:03
7 **

0:01
7 **

APG.4
+

APG.6

0:18
7 **

1:20:54
7 *

0:05
7

0:06
7

4:54
3

53:41
7 *

2:09
3

1:27:40
7 **

0:15
7 *

1:00:48
7 *

4:27
7 **

0:28
7 **

APG.5
+

APG.6

0:08
7 **

28:40
7 *

0:07
7

0:03
7

2:05
3

0:02
7 *

1:23
3

0:03
7 **

0:04
7 *

23:28
7 *

4:45
7 **

0:07
7 **

DS +
AWL

0:01
7

0:01
7

- - - -
0:01
7 **

0:01
7 **

0:01
7 *

0:01
7 *

0:01
7 *

-

ISO5
+ AN

0:03
7 *

0:09
3

0:01
7

0:03
7

0:01
7 **

0:04
3

0:01
7 **

0:06
7 **

0:02
7 *

0:03
7 *

0:04
3

0:01
7 *

ZF.2
+ ZF.1

0:01
7

0:39
7

0:07
7

0:12
7

0:06
7

0:12
7

0:05
7

0:12
7

0:01
7

0:33
7

3:52
7

0:11
7

ZF.3
+

APG.2

2:48
7 **

2:17
7

0:08
7

1:19
7

4:01
7

1:20
7

0:07
7 **

3:52
7

59:21
7 **

1:34
7

1:29:39
3

0:38
7 **

Fig. 4. Results found with Tamarin with APG from [24], DS = Denning Sacco [12],
AWL = Amended Woo Lam [5], ISO5 = ISOFive-Pass [6], AN = Abadi Needham [1],
ZF from [28], * = the first protocol is safe in isolation, ** = both protocols are safe in
isolation.

First, B initiates a protocol Woo-Lam[5] with C who impersonates A. Then C
sends the ID of A and a fake session key and a timestamp as a nonce. B encrypts
that and C has now a valid message to send to B in Denning-Sacco[12]. This
attack is described in Figure 6.

We did not find other types of attacks for this protocol when we blocked
type-flaw attacks in Tamarin using a modified model.

New Attacks

APG.1 with APG.2: The attack described in [20] is an attack on the authen-
tication of B, but we also found an attack on the authentication of A. In this
attack, the intruder C plays the role of A in both protocols. First, B runs the
APG.2 [24] protocol as the initiator and then the protocol APG.1 [24] as the
responder. C can pretend to be A in APG.1 and B will accept. In Figure 7 steps
at the left are steps from APG.1, and the right part are steps from APG.2.

9

C A′B

B C S A′

A′C

C AB

B C S A

AC

CB

NA, ANA, A

{NA, NB , A}KBS , B {NA, NB , A}KBS , B
{KAB , NB}KBS ,
{KAB , NA, NB , B}KAS

NB , {KAB , NB}KBS

NA′ , A′NA′ , A′

{NA′ , N ′
B , A

′}KBS , B {NA′ , N ′
B , A

′}KBS , B

{KA′B , N
′
B}KBS ,

{KA′B , NA′ , N ′
B , B}KA′S

N ′
B , {KA′B , N

′
B}KBS

{NA′ , N ′
B , A

′}KBS ,
{NB}(NA′ ,N′

B
,A′)

APG.6APG.4

Fig. 5. Representation of the attack on APG.4 with APG.6.

C B

BC

B BC

B

A, (NA = (KAB , T))

{A, (NA = (KAB , T))}KBS{A,KAB , T}KBS

Denning-Sacco Woo-Lam

Fig. 6. Representation of the attack on Denning-Sacco with Woo-Lam.

APG.3 with APG.2: This attack is an attack on the authentication of B. This at-
tack is possible if A runs the APG.3 [24] protocol as the initiator, and APG.2 [24]
as the responder. In this attack, C plays the roles of B and S in both protocols.
Then C can pretend to be B in APG.3, and A will accept. In Figure 8 steps at
the left are steps of APG.3, and at the right part are steps from APG.2.

We also found an attack on the authentication of A. In this attack, the
intruder C plays the role of A in both protocols. B runs the APG.2 protocol
as the initiator, and APG.3 as the responder. C can pretend to be A, and B
in APG.3 will accept. In Figure 9 steps at the left are steps from APG.3, and
steps at the right are steps from APG.2.

APG.4 with APG.6: We found an attack on the authentication of B. In this
attack, A initiates the protocol APG.3, then the intruder C will initiate APG.6

10

BCB

B S C S

SBCB

NB , A NB , B

m {NB , N
′
B , B}KAS {NB , N

′
B , B}KAS

{NB , N
′
B , B,A}KBSN ′

BN ′
B

m = {NB , N
′
B , A,B}KBS , B

APG.1 APG.2

Fig. 7. Representation of the attack on APG.1 with APG.2.

CA A

ACA

NA, A NA, B

{NA, N
′
A, B}KAS , A{NA, N

′
A, B}KAS

APG.3 APG.2

Fig. 8. Representation of the attack on APG.3 with APG.2.

BCB

B S C S

SBCB

NB , A NB , B

m {NB , N
′
B , B}KAS {NB , N

′
B , B}KAS

{NB , N
′
B , B,A}KBSN ′

BN ′
B

m = {A,NB , N
′
B}KBS , B

APG.3 APG.2

Fig. 9. Representation of the attack on APG.3 with APG.2.

with B, using data sent by A in the other protocol. Finally, C sends the answer
of B to the server in APG.4, and lets the protocol run. In Figure 10, steps on
the left hand side are steps from APG.4, and steps on the right hand side are
steps from APG.6.

This attack is possible because the message from APG.6 used for this attack
is also used in APG.4, so C can get a response from B, while B does not act in
APG.4.

11

CA B

BCS

S A

NA, A NA, A

{NA, NB , B}KBS , B{NA, NB , B}KBS , B

{KAB}KBS , {KAB , NA, NB , B}KAS

APG.4 APG.6

Fig. 10. Representation of the attack on APG.4 with APG.6.

C A′B

B C S A′

A′C

C AB

B C S A

AC

CB

NA, ANA, A

{NA, NB , A}KBS , B {NA, NB , A}KBS , B
{KAB , NB}KBS ,
{KAB , NA, NB , B}KAS

NB , {KAB , NB , A}KBS

NA′ , A′NA′ , A′

{NA′ , N ′
B , A

′}KBS , B {NA′ , N ′
B , A

′}KBS , B

{KA′B , N
′
B}KBS ,

{KA′B , NA′ , N ′
B , B}KA′S

N ′
B , {KA′B , N

′
B , A

′}KBS

{NA′ , N ′
B , A

′}KBS ,
{NB}(NA′ ,N′

B
,A′)

APG.6APG.5

Fig. 11. Representation of the attack on APG.5 with APG.6.

APG.5 with APG.6: This attack is on the authentication of A. In this attack, two
protagonists A and A′ initiate the APG.6 [24] protocol with B, and the intruder
C pretends to be A in APG.5 [24]. In the protocol initiated by A′, C learns
(NA′ , N ′

B , A
′), used as a session key, and its encrypted version {NA′ , N ′

B , A
′}KBS

.
In the protocol initiated by A, C learns the nonce NB , used to authenticate to
B. In Figure 11, steps at the left part are steps of APG.5, and steps on the right
are steps from APG.6.

This attack is a type-flaw attack. So we changed our model to disable such
type-flaw attacks in Tamarin to see if there are other types of attacks, and we
did not find another attack on the authentication of A.

We also found an attack on the authentication of A where the intruder uses
(NA′ , N ′

B , A
′) as a session key. In this attack, A initiates the protocol APG.5,

then the intruder C will initiate APG.6 with B, using data sent by A in the

12

CA B

BCS

S A

NA, A NA, A

{NA, NB , B}KBS , B{NA, NB , B}KBS , B

{KAB , NA, NB , {KAB}KBS}KAS

APG.5 APG.6

Fig. 12. Representation of the attack on APG.5 with APG.6.

other protocol. Finally, C sends the answer of B to the server in APG.5, and
lets the protocol run. In Figure 12, steps on the left hand side are steps from
APG.5, and on the right hand side are steps from APG.6.

This attack is possible because the message from APG.6 used for this attack
is also used in APG.5, so C can get a response from B, while B does not act in
APG.5.

3 Workflow in Tamarin

As we had to write many different combinations of multiple protocols to obtain
our results, we tried to simplify the process by adopting the following workflow
to combine to protocols:
1. Specify each protocol individually and check the properties in isolation using

Tamarin.
2. Generate the files for all the required combinations using the individual

specifications.
3. Verify the combined protocols, and compare the results to known results.

To simplify the process of generating the combined specifications, we adopted
certain (mostly syntactic) conventions when specifying the protocols. These
mostly concern the common setup rules (key distribution etc.), the placement of
labels, and the uniqueness of labels to avoid conflicts.

These conventions allowed us to develop an algorithm that can generate the
input files of the composed protocols based on the individual specifications, in-
cluding intermediate lemmas that simplify the analysis for Tamarin by removing
undesirable cases for the subsequent analysis. The generation of these lemmas
goes beyond a pure syntactical merger of the individual files. The algorithm
requires some interaction with Tamarin, but noticeably simplifies the following
analysis. The main idea is that if Tamarin finds an a problem in the merged
lemma, then we need to analyze the trace produced by the tool and to modify
the lemma. This procedure seems to be systematic for all the examples that we
have considered here.

This algorithm is implemented in Python, and works automatically on most
combinations from [20] and [10]. Only in a handful of cases we need to manually

13

adapt the produced output to obtain a valid lemma that removes all undesir-
able cases. For more information about this algorithm, see Appendix A. The
implementation is available on line [13].

4 Conclusion

In this paper, we perform an automated analysis of multi-protocols in Tamarin.
For this we have used the both protocols studied in [10] using Scyther and the
protocol studied in [20] manually. We see that the tool finds different and new
attacks in some cases. We also proposed an algorithm to systematically merge
two Tamarin files for our analysis.

Our future work is to see how we can integrate our algorithm for automat-
ically merging two Tamarin files into the tools in order to facilitate the life
of Tamarin users. Finally our experience also shows us that it might even be
possible to propose a similar heuristic to help Tamarin users by automatically
generating such helping intermediate lemmas.

References

1. M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Trans. Softw. Eng., 22(1):6–15, Jan. 1996.

2. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H.
Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The avispa tool for the automated validation of internet security protocols and
applications. In Proceedings of the 17th International Conference on Computer
Aided Verification, CAV’05, pages 281–285, Berlin, Heidelberg, 2005. Springer-
Verlag.

3. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In Proceedings of the 14th IEEE Workshop on Computer Security Foundations,
CSFW ’01, pages 82–, Washington, DC, USA, 2001. IEEE Computer Society.

4. M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Trans.
Comput. Syst., 8(1):18–36, Feb. 1990.

5. L. Buttyan, S. Staamann, and U. Wilhelm. A simple logic for authentication
protocol design. In In 11th IEEE Computer Security Foundations Workshop, pages
153–162. IEEE Computer Society Press, 1998.

6. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0,
1997.

7. J. A. Clark and J. Jacob. On the security of recent protocols. Inf. Process. Lett.,
56(3):151–155, 1995.

8. C. Cremers. Feasibility of multi-protocol attacks. In Proc. of The First Interna-
tional Conference on Availability, Reliability and Security (ARES), pages 287–294,
Vienna, Austria, April 2006. IEEE Computer Society.

9. C. Cremers and S. Mauw. Security Properties, pages 37–65. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

10. C. Cremers, S. Mauw, and E. de Vink. Injective synchronisation: an extension of
the authentication hierarchy. Theoretical Computer Science, pages 139–161, 2006.

14

11. C. J. Cremers. Unbounded verification, falsification, and characterization of secu-
rity protocols by pattern refinement. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security, pages 119–128, New York,
NY, USA, 2008. ACM.

12. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Com-
mun. ACM, 24(8):533–536, Aug. 1981.

13. B. Elliott, J. Dreier, and P. Lafourcade. Formal Analysis of Combinations of Secure
Protocols (Extended Version). Technical report, LORIA - Université de Lorraine,
July 2017. https://hal.archives-ouvertes.fr/hal-01558552.

14. T. Hwang and Y.-H. Chen. On the security of splice/as - the authentication system
in wide internet. Inf. Process. Lett., 53(2):97–101, Jan. 1995.

15. I.-L. Kao and R. Chow. An efficient and secure authentication protocol using
uncertified keys. SIGOPS Oper. Syst. Rev., 29(3):14–21, July 1995.

16. J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen proto-
col attack. In Proceedings of the 5th International Workshop on Security Protocols,
pages 91–104, London, UK, UK, 1998. Springer-Verlag.

17. G. Lowe. An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett., 56(3):131–133, Nov. 1995.

18. G. Lowe. A hierarchy of authentication specification. In 10th Computer Security
Foundations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts,
USA, pages 31–44. IEEE Computer Society, 1997.

19. G. Lowe. Towards a completeness result for model checking of security protocols.
Journal of computer security, 7(2-3):89–146, 1999.

20. A. Mathuria, A. R. Singh, P. V. Shravan, and R. Kirtankar. Some new multi-
protocol attacks. In Proceedings of the 15th International Conference on Advanced
Computing and Communications, ADCOM ’07, pages 465–471, Washington, DC,
USA, 2007. IEEE Computer Society.

21. S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover for
the symbolic analysis of security protocols. In Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, pages 696–701, 2013.

22. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large
networks of computers. Commun. ACM, 21(12):993–999, Dec. 1978.

23. R. M. Needham and M. D. Schroeder. Authentication revisited. SIGOPS Oper.
Syst. Rev., 21(1):7–7, Jan. 1987.

24. A. Perrig and D. Song. Looking for diamonds in the desert - extending automatic
protocol generation to three-party authentication and key agreement protocols.
In Proceedings of the 13th IEEE Workshop on Computer Security Foundations,
CSFW ’00, pages 64–, Washington, DC, USA, 2000. IEEE Computer Society.

25. D. X. Song, S. Berezin, and A. Perrig. Athena: A novel approach to efficient
automatic security protocol analysis. J. Comput. Secur., 9(1-2):47–74, Jan. 2001.

26. T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. SIGOPS
Oper. Syst. Rev., 28(3):24–37, July 1994.

27. S. Yamaguchi, K. Okayama, and H. Miyahara. The design and implementation
of an authentication system for the wide area distributed environment. IEICE
TRANSACTIONS on Information and Systems, 74(11):3902–3909, 1991.

28. H. Zhou and S. N. Foley. Fast automatic synthesis of security protocols using
backward search. In Proceedings of the 2003 ACM Workshop on Formal Methods
in Security Engineering, FMSE ’03, pages 1–10, New York, NY, USA, 2003. ACM.

15

A Details of the workflow

We denote by In dec#i labels that manage the input in deconstructions lemma
(each one can appear only once in rules), and Out dec#i denotes labels that
manage the output in deconstructions lemma (can appear many times in rules).

Making the combination of two protocols with Tamarin is not just to put
all transitions from these protocols in the same file. But in fact we have of-
ten to solve some partial deconstruction problems. A partial deconstruction is
when Tamarin cannot say where a fact come from. That makes open chains and
Tamarin may not terminate. An idea is to make the conjunction of both decon-
structions lemmas. With this, There are no more partial deconstruction left, but
the lemma might be wrong, due to new sources in the other protocol, for rules
concerned by the deconstructions lemma. So we have to correct the lemma and
verify it again. We have implemented a part (except one special case described
below) of this algorithm in python and we succeed on 14/18 of our test to pro-
duce the Tamarin file of the combination (3 of the 4 fail are due to the special
case that we don’t implemented yet). It is also possible to create new loop by
making the combination of both protocols, so Tamarin may not terminate the
proof of lemmas that terminates when the protocol is alone.
– First we need to write ”theory [name] begin”
– Copy builtins, functions and equations of both protocols without redundan-

cies, we make the union of them.
– Copy the initialisations rules once.
– Copy rules of the first protocol, then copy rules of the second protocol with-

out creating some conflicts with the names of rules, facts, and labels (keep
the names of facts from initialisations rules).

def RenameFacts:

for each Facts , Rules , Labels in Rules

from second protocols:

if not in Initiation rules:

rename them by S[actualName];

– Make the conjunction of both deconstruction lemmas.

def Deconstruction:

put "lemma deconstruction[sources]:"

in [filename].spthy;

copy lemma content from first protocol

in [filename]. spthy;

put "&" in [filename]. spthy;

copy lemma content from second protocol

in [filename]. spthy;

– Copy restriction of protocols
– Try to prove the deconstructions lemma with Tamarin.

def Proof:

run Tamarin [filename]. spthy --prove=deconstruction;

16

We have two cases:
• The lemma is validate by Tamarin, it concludes the algorithm.
• Tamarin finds a counter-example, and gives us a trace where we have

a In dec#i without a Out dec#i associated. So we add the missing
Out dec#i in the rule preceding the rule with In dec#i in the trace,
then we retry to prove the deconstruction lemma.

def CorrectLemma:

i = last rule with In_dec(x) in trace;

j = previous rule of i in trace;

put label Out_dec(x) in j;

Special case(not implemented yet), if the arguments of In dec#i are not
in the the input of the rule, we put the Out dec#i in the rule that sends
the argument to the role.

def CorrectLemma:

i = Last_Rule_With_In_dec(x) in trace;

if x not in Out() of the rule

z = last rule with Out(z1,x1,z2); //z1 and z2

put label Out_dec(x) in z; //can be null

j = Previous_In_Trace(i);

put label Out_dec(x) in j;

Other special case(implemented), if we have in a rule [In dec1(n),

Out dec2(n)] and in an other [Out dec1(n), In dec2(n)], we can
merge dec1 and dec2, and change all Out dec1 and Out dec2 into Out dec12

in all other rules:

def Merge:

for i,j in rule

if "In_dec1(arg)" & "Out_dec2(arg)" in i

if "In_dec2(arg)" & "Out_dec1(arg)" in j

replace "In_dec1(arg)" by "In_dec12(arg ,arg)"

in rules and lemmas;

replace "In_dec2(arg)" by "In_dec12(arg ,arg)"

in rules and lemmas;

replace "Out_dec1(arg)" by "Out_dec12(arg ,arg)"

in rules and lemmas;

replace "Out_dec2(arg)" by "Out_dec12(arg ,arg)"

in rules and lemmas;

This step has to be done before retry to prove the lemma, or Tamarin
will loop at the generation of the refined sources.

– Copy lemmas you want to prove.
– Write ”end”

	Formal Analysis of Combinations of Secure Protocols

