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For the non cutoff radially symmetric homogeneous Boltzmann equation with Maxwellian molecules, we give the numerical solutions using symbolic manipulations and spectral decomposition of Hermit functions. The initial data can belong to some measure space.

1. Introduction 1.1. The Boltzmann equation. The Boltzmann equation, derived by Boltzmann in 1872 (and Maxwell 1866), models the behavior of a dilute gas (see [START_REF] Boltzmann | Weitere studien über das wärmegleichgewicht unter gas-molekülen[END_REF]). As we know, Boltzmann has created a theory which described the movement of gases as balls which could bump and rebound against each other [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Dimarco | Numerical methods for kinetic equations[END_REF]. This model can be considered by one of many cases which represent the so-called kinetic equation. Presently, the diversity of sciences and applications contains these models such as rarefied gas dynamics, semiconductor modeling, radiative transfer, and biological and social sciences. This type of equations is made by including a combination of a linear transport term and several interaction terms which provide the time evolution of the distribution of particles in the phase space. The equation that bears his name is the following

∂ t f + v.∇ x f = Q(f, f )
where f = f (t, x, v) ≥ 0 is the probability density to find a particle at the time t, on the position x and with velocity v where the physical and the velocity space are located in three dimensions. The term v.∇ x f describes the free action of particles and Q(f, f ) is a bilinear operator which describes the binary collision process. It is called the Boltzmann collision operator and given by

Q(g, f )(v) = R 3 S 2 B(v -v * , σ)(g(v ′ * )f (v ′ ) -g(v * )f (v))dv * dσ
where for σ ∈ S 2 , the symbols v ′ * and v ′ are abbreviations for the expressions,

v ′ = v + v * 2 + |v -v * | 2 σ, v ′ * = v + v * 2 - |v -v * | 2 σ,
which are obtained in such a way that collision preserves momentum and kinetic energy, namely

v ′ * + v ′ = v + v * , |v ′ * | 2 + |v ′ | 2 = |v| 2 + |v * | 2
where |•| is the Euclidean norm on R 3 . Note that v, v ′ are the velocities before collision and v * , v ′ * the velocities after collision. The non-negative cross section B(z, σ) depends only on |z| and the scalar product z |z| • σ = cos θ where θ is the deviation angle. Without loss of generality, we may assume that this cross section is supported on the set cos θ ≥ 0. See for instance [START_REF] Lerner | Spectral and phase space analysis of the linearized non-cutoff Kac collision operator[END_REF] for more details on the cross section and [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] for a general collision kernel. For physical models, it usually takes the form

B(v -v * , σ) = Φ(|v -v * |)b(cos θ), cos θ = v -v * |v -v * | • σ, 0 ≤ θ ≤ π 2 ,
where Φ(|vv * |) = |vv * | γ is a kinetic factor and γ > -3.

In this work, we consider the spatially homogeneous case, that means the density distribution f = f (t, v) depends on the variables t ≥ 0, v ∈ R 3 and is uniform with respect to x. So that the Boltzmann equation reads as

∂ t f = Q(f, f ), f (0, v) = F (v) (1.1)
where the initial data F is depends only on v. For the collision kernel, we study only the Maxwellian molecules and non-cutoff cases (see [START_REF] Desvillettes | Regularization for the non Cutoff 2D Radially Symmetric Boltzmann Equation with a Velocity Dependant Cross Section[END_REF][START_REF] Desvillettes | Regularization Properties of the 2-Dimensional Non Radially Symmetric Non Cutoff Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules[END_REF][START_REF] Desvillettes | On the Smoothing Properties of a Model Boltzmann Equation without Grad's Cutoff Assumption[END_REF][START_REF] Desvillettes | On a Model Boltzmann Equation without Angular Cutoff[END_REF][START_REF] Desvillettes | Smoothness of the Solution of the Spatially Homogeneous Boltzmann Equation without Cutoff[END_REF][START_REF] Gressman | Global Classical Solutions of the Boltzmann equation without angular cut-off[END_REF][START_REF] Lerner | Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff[END_REF]), that means the kinetic factor Φ ≡ 1 and

b(cos θ) ≈ 1 |θ| 2+2s , 0 < s < 1, θ ∈ 0, π 2 
.

(1.2)

1.2. Results on the Boltzmann equation. With the previous assumption (the non-cutoff case) on the cross-section, there is existence of a weak solution for the Boltzmann equation (1.1) for a positive initial value F ∈ L 1 2+δ (R 3 ). See [START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF] and many others. Moreover, it is well-known that there is a regularization effect in Sobolev and Schwartz or analytic spaces for any time t > 0 (we refer the reader to [START_REF] Desvillettes | Regularization for the non Cutoff 2D Radially Symmetric Boltzmann Equation with a Velocity Dependant Cross Section[END_REF][START_REF] Desvillettes | Regularization Properties of the 2-Dimensional Non Radially Symmetric Non Cutoff Spatially Homogeneous Boltzmann Equation for Maxwellian Molecules[END_REF] and recently [START_REF] Alexandre | Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation[END_REF]) and that the solutions converge to the Gaussian when the time tends to infinity ( [START_REF] Gressman | Global Classical Solutions of the Boltzmann equation without angular cut-off[END_REF]).

An important point that our distribution lives in a multidimensional space: this reason make us think that we have a numerical problem because in this case the computational cost is more or less forbidden [START_REF] Dimarco | Numerical methods for kinetic equations[END_REF]. The study of the numerical part for kinetic equations is not obvious due to many difficulties come from the computational cost. To clarify more, we mention two of these difficulties: It is clear the appearing of multiple scales, and then to get out of the resolution of the stiff dynamics, one should build suitable numerical schemes [START_REF] Jin | Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms[END_REF][START_REF] Jin | Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations[END_REF][START_REF] Bennoune | Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics[END_REF][START_REF] Dimarco | High order asymptotic-preserving schemes for the Boltzmann equation[END_REF][START_REF] Jin | Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations, a review[END_REF][START_REF] Dimarco | Asymptotic preserving implicit-explicit Runge-Kutta methods for nonlinear kinetic equations[END_REF]. The other one is that the collision operator is defined by multidimensional integrals and to compute one should solve it point by point as physical space [START_REF] Pareschi | Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator[END_REF][START_REF] Filbet | Solving the Boltzmann equation in N log2 N[END_REF]. To treat kinetic equations numerically, there is several ways which are used over the centuries until now: probabilistic numerical methods such as Direct Simulation Monte Carlo (DSMC) schemes [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Bird | Molecular gas dynamics and the direct simulation of gas flows[END_REF], and, deterministic numerical methods such as finite volume, semi-Lagrangian and spectral schemes [START_REF] Dimarco | Numerical methods for kinetic equations[END_REF].

There are two important deterministic methods which are used in the past decades : the discrete velocity method (DVM) [START_REF] Goldstein | Investigations of the motion of discrete-velocity gases[END_REF][START_REF] Rogier | A direct method for solving the Boltzmann equation[END_REF][START_REF] Bobylev | On approximation of the Boltzmann equation by discrete velocity models[END_REF][START_REF] Buet | Regularized Boltzmann operators, Simulation methods in kinetic theory[END_REF][START_REF] Panferov | A new consistent discrete-velocity model for the Boltzmann equation[END_REF][START_REF] Cai | Entropy monotonic spectral method for Boltzmann equation[END_REF] and the Fourier spectral method (FSM) [START_REF] Bobylev | Difference scheme for the Boltzmann equation based on fast fourier transform[END_REF][START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Pareschi | Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator[END_REF][START_REF] Gamba | A fast spectral method for the Boltzmann collision operator with general collision kernels[END_REF][START_REF] Cai | Entropy monotonic spectral method for Boltzmann equation[END_REF]. Due to its discrete nature, the DVM preserves positivity of the distribution function, the H-theorem and the exact conservation of mass, energy and momentum. Note that the Fourier spectral method is based on two main things : the truncation of the collision operator and the restriction of the distribution function to an appropriate cube, for more details see [START_REF] Pareschi | Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator[END_REF][START_REF] Mouhot | Fast algorithms for computing the Boltzmann collision operator[END_REF].

Our goal is to present an alternative method to solve formally and numerically the homogeneous Boltzmann equation in the non-cutoff case. In this work, we consider the radial symmetric case and we use a spectral method : we first compute the spectral coefficients of the solution with a formal computation software (Maple R 13; the codes can be provided). We then approximate these exact solutions and check the numerical results.

The used method helps us to motivate our work in several ways: It let us in the physical view understand more the behavior of the solutions and as we compute the first exact projections of the solutions on the spectral basis, that is in the numerical view, some other algorithms can be tested in the non-cutoff case (recall that the explicit 2D "BKW" solutions, obtained independently in [START_REF] Bobylev | Exact solutions of the Boltzmann equation[END_REF][START_REF] Krook | Exact solutions of the Boltzmann equation[END_REF] are used to test the accuracy of the numerical methods in the case of a regular collision kernel B ≡ 1, see for example [START_REF] Cai | Entropy monotonic spectral method for Boltzmann equation[END_REF]). Finally, we do hope that our work will give some clues to formulate new mathematical conjectures.

The paper is organized as follows. In section 2, we state the main theoretical results. The numerical details and algorithms are provided in section 3. Sections 4 and 5 present the numerical results of the Boltzmann equation with different initial data for the Cauchy problem: we discuss in section 4 the results for a small L 2 initial data (bi-Gaussian); in section 5, we consider the case of a measure initial data. After that, we give a conclusion for this work. The paper ends with an appendix where we set some technical results.

Theoretical results

In this section, we present some theoretical parts: we begin by linearizing the Boltzmann equation and giving the spectral decomposition of this equation.

2.1. Linearization of the Boltzmann equation. We remark that Q(µ, µ) = 0 where the Gaussian function is defined by

µ(v) = 1 (2π) 3/2 e -|v| 2 2
and it is a stationary solution of the Boltzmann equation. We consider now a perturbation g of the Gaussian. Then the solution f of (1.1) can be written as

f (t, v) = µ(v) + µ(v) g(t, v), F (v) = µ(v) + µ(v) G(v).
It is easy to show that g is a solution of the Cauchy problem

∂ t g + L(g) = Γ(g, g), g| t=0 = g(0, v) = G(v) (2.1)
where

L(g) = - 1 √ µ [Q( √ µg, µ) + Q(µ, √ µg)]
is a linear operator and

Γ(g, h) = 1 √ µ Q( √ µg, √ µh)
is a nonlinear operator. We decompose the solution of (2.1) into a linear and nonlinear part:

g(t, v) = e -tL G(v) linear part + e -tL h(t, v) nonlinear part
where e αL is the exponential of the linear operator defined by his spectral decomposition (see below) and the new function h(t, v) satisfies the following equation

∂ t h = e tL Γ(e -tL (G + h), e -tL (G + h)), h(0, v) = 0. (2.2)
The linearized operator L is a positive unbounded symmetric operator on L 2 (R 3 v ) (see [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF][START_REF] Lerner | Spectral and phase space analysis of the linearized non-cutoff Kac collision operator[END_REF][START_REF] Lerner | Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff[END_REF]) with the kernel

N = span √ µ, √ µv 1 , √ µv 2 , √ µv 3 , √ µ|v| 2 .
From a rescaling argument (see Appendix 7.1), we can always assume that the initial condition G satisfies

G ∈ N ⊥ .
In [START_REF] Lerner | Spectral and phase space analysis of the linearized non-cutoff Kac collision operator[END_REF], For the radially symmetric case, the authors show that the linear Boltzmann operator behaves like the fractional harmonic oscillator H s (0 < s < 1) with

H = -∆ + |v| 2 4 .
We study in the next section the spectral properties of the operators L and Γ.

2.2.

The spectral problem. We introduce now an orthonormal basis of L 2 r (R 3 ) the radial symmetric functions of L 2 (R 3 ) involving the generalized Laguerre polynomials L [ℓ+ 1 2 ] n : for that, we set for any n ≥ 0

ϕ n (v) = n! √ 2Γ(n + 3/2) 1/2 e -|v| 2 4 L [ 1 2 ] n |v| 2 2 1 √ 4π (2.3)
where Γ( • ) is the standard gamma function, for all x > 0,

Γ(x) = +∞ 0 t x-1 e -x dx
and the Laguerre polynomial L (α) n of order α, degree n is

L (α) n (x) = n r=0 (-1) n-r Γ(α + n + 1) r!(n -r)!Γ(α + n -r + 1)
x n-r .

We have the spectral decomposition for the linear Boltzmann operator

L ϕ n = λ n ϕ n n ≥ 0, with φ 0 = √ µ, λ 0 = 0 and for n ≥ 1 λ n = 2 π 4 0 β(θ) 1 -(sin θ) 2n -(cos θ) 2n dθ (2.4)
where β(θ) is defined from the collision kernel (see (1.2))

β(θ) = sin θ b(cos θ) ≈ 1 |θ| 1+2s , 0 < s < 1, θ ∈ 0, π 2 .
(2.5)

The two families (ϕ n (v)) n≥0 and (λ n ) n≥0 represent the eigenvectors and the eigenvalues of L. Remark that this diagonalization of the linearized Boltzmann operator with Maxwellian molecules is also verified in the cutoff case (see [START_REF] Bobylev | The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules[END_REF][START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Dolera | On the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules[END_REF][START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF][START_REF] Lerner | Spectral and phase space analysis of the linearized non-cutoff Kac collision operator[END_REF]). We consider the spectral expansion

g(t, v) = ∞ n=0 g n (t) ϕ n (v), G(v) = ∞ n=0 G n ϕ n (v) (2.6)
where

g n (t) = g(t, •), ϕ n (•) L 2 and G n = G, ϕ n L 2
. By definition, we have

e -tL G(v) = ∞ n=0 e -λnt G n ϕ n (v).
It is the solution of the equation

∂ t g ℓin + L g ℓin = 0, g ℓin (0, v) = G(v).
Then the operator Γ satisfies Γ(ϕ p , ϕ q ) = µ pq ϕ p+q where the non-linear eigenvalues are given by

µ pq = (2p + 2q + 1) (2p + 1)(2q + 1) C 2p 2p+2q 1 2 |θ|≤ π 4 β(θ) (sin θ) 2p (cos θ) 2q dθ
(2.7) for p ≥ 1, q ≥ 0 and

µ 0q = - |θ|≤ π 4 β(θ) (1 -(cos θ) 2q )dθ
for q ≥ 1. Following [START_REF] Lerner | Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff[END_REF], we therefore derive from (2.1) the following infinite system of ordinary differential equations :

           g ′ 0 (t) = 0, g ′ 1 (t) = 0, for all n ≥ 2, g ′ n (t) + λ n g n (t) = p+q=n 0≤p, q≤n µ pq g p (t) g q (t) (2.8)
with the initial conditions (see (2.6))

g n (0) = G n for n ≥ 0.
The goal is to study the behavior of each function t → g n (t).

In the rest, we will focus on the computation and properties of this intermediate solution.

Proposition 2.1. We assume that G ∈ N ⊥ . Then the intermediate solution h(t, v) defined by (2.2) satisfies h(t, v) = ∞ n=0 h n (t) ϕ n (v) (2.9) 
where

h 0 ≡ h 1 ≡ h 2 ≡ h 3 ≡ 0 and for all n ≥ 4 h n (t) = p+q=n 2≤p, q≤n-2 t 0 µ pq e -(λp+λq-λn)s G p + h p (s) G q + h q (s) ds.
(2.10) Remark 2.2. As we have seen before, we divide the function g in two parts as follows:

g(t, v) = ∞ n=0 e -λn t G n ϕ n (v) g ℓin (t,v) + ∞ n=0 e -λn t h n (t) ϕ n (v) g nℓ (t,v) , (2.11) 
therefore the formal solution f (t, v) can be written as

f (t, v) = µ(v) + µ(v) ∞ n=0 e -λn t G n + e -λn t h n (t) ϕ n (v). (2.12)
Proof of proposition 2.1. : As G ∈ N ⊥ , we get G 0 = G 1 = 0 and we can verify from (2.8) that

g 0 (t) = g 1 (t) = 0, g 2 (t) = G 2 e -λ 2 t , g 3 (t) = G 3 e -λ 2 t
and therefore h 0 ≡ h 1 ≡ h 2 ≡ h 3 ≡ 0. By (2.8), we may write

g n (t) = e -λn t G n + e -λn t h n (t) (2.13) and g ′ n (t) + λ n g n (t) = p+q=n 2≤p, q≤n-2 µ pq g p (t) g q (t).
(2.14)

We plug again the value of g n from (2.13) into the equation (2.14) and we get h ′ n (t) = e λn t p+q=n 2≤p, q≤n-2 µ pq g p (t) g q (t).

Note that h n (0) = g nℓ n (0) = 0. Finally, plugging the expression of g p and g q from (2.13) into the previous equation and integrating we prove (2.10). Concerning the exact expression of the eigenvalue λ n and µ pq , see [START_REF] Lerner | Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff[END_REF]. This concludes the proof.

We introduce now the following notations. For a k-uplet α ∈ N k ,

Λ α = λ α 1 + λ α 2 + • • • + λ α k , G α = G α 1 × G α 2 • • • × G α k .
Proposition 2.3. For each integer n ≥ 4, we define I n a set of admissible indices

I n = α ∈ N k k ∈ N * , α i ≥ 2, |α| = n, .
Then for each multi-index α, β, ∈ I n there exists some real coefficients c α β which depends only on λ 2 , . . . , λ n and µ pq for 2 ≤ p, q ≤ n -2, p + q ≤ n such that

h n (t) = α,β∈In c α β G α 1 -e -(Λ β -λn) t . (2.15) 
Proof. We compute directly from (2.10)

h 4 (t) = c (2,2) (2,2) G 2 2 1 -e -(Λ (2,2) -λ 4 ) t
where c

(2,2) (2,2) = µ 22 (Λ (2,2) -λ 4 ) and h 5 (t) = c (2,3) (2,3) G 2 G 3 1 -e -(Λ (2,3) -λ 5 ) t + c (3,2) (3,2) G 3 G 2 1 -e -(Λ (3,2) -λ 5 ) t where c (2,3) (2,3) = µ 23 (Λ (2,3) -λ 5 )
and c

(3,2) (3,2) = µ 32 (Λ (3,2) -λ 5 )
.

We prove the result by induction. Then we can suppose that (2.15) is true for each h n ′ (4 ≤ n ′ ≤ n -1). We will use the integral expression (2.10) of h n . We consider two integers p, q such that 2 ≤ p , q ≤ n -2 and p + q = n. Then from (2.15)

h p (t) = α,β∈Ip c α β G α 1 -e -(Λ β -λp) t , h q (t) = α ′ ,β ′ ∈Iq c α ′ β ′ G α ′ 1 -e -(Λ β ′ -λq) t .
From the integral formula (2.10) we get

h n (t) = t 0 p+q=n 2≤p, q≤n-2 (A + B + C + D) ds with A = µ pq G p G q e -(λp+λq-λn) s , B = α ′ ,β ′ ∈Iq µ pq c α ′ β ′ G p G α ′ (e -(λp+λq-λn) s -e -(λp+Λ β ′ -λn) s ), C = α,β∈Ip µ pq c α β G α G q (e -(λp+λq-λn) s -e -(Λ β +λq-λn) s ), D = α,β∈Ip α ′ ,β ′ ∈Iq µ pq c α β c α ′ β ′ G α G α ′ × (e -(λp+λq-λn) s -e -(Λ β +λq-λn) s -e -(λp+Λ β ′ -λn) s + e -(Λ β +Λ β ′ -λn) s ).
Expanding each previous terms and integrating over [0, t], we get the result (2.15) since each number

λ p +λ q -λ n , Λ β +λ q -λ n , λ p +Λ β ′ -λ n , Λ β + Λ β ′ -λ n are positive from the next lemma and |α| = |β| = p, |α ′ | = |β ′ | = q and p + q = n.
Lemma 2.4. The linear eigenvalues λ n for the non-cutoff radially symmetric spatially homogeneous Boltzmann equation

λ n = |θ|≤ π 4 β(θ) 1 -(sin θ) 2n -(cos θ) 2n dθ, n ≥ 2,
verify the following property

λ α 1 +•••+α k < λ α 1 + • • • + λ α k (= Λ α ) for multi-index α ∈ (N \ {0, 1}) k .
Proof. By [START_REF] Lerner | Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff[END_REF], we may write

λ α 1 +α 2 < λ α 1 + λ α 2 ,
then by iteration, we have

λ (α 1 +•••+α k )+α k+1 < λ α 1 +•••+α k + λ α k+1 < (λ α 1 + • • • + λ α k ) + λ α k+1 .

Numerical computations

From now on, for sake of simplicity, we consider the specific case s = 1 2 and β(θ) = (sin θ) -2 .

For the general case s ∈]0, 1[ and other kernel β which satisfies (2.5), we can compute some numerical approximations of the eigenvalues. We think that the results do not change.

3.1. Computation of the eigenvalues. By the following assumption β(θ) ≈ 0 1 |θ| 2 , we obtain (see [START_REF] Lerner | Spectral and phase space analysis of the linearized non-cutoff Kac collision operator[END_REF])

λ n ≈ ∞ √ n (3.1)
where the linear eigenvalues λ n of L was defined in (2.4). We recall the value of λ n for n ≥ 2:

λ n = 2 π 4 0 β(θ) 1 -(sin θ) 2n -(cos θ) 2n dθ.
We compute the exact and approximate values of λ n by the following algorithm :

λ 0 ← 0 for n from 1 to N do expr ← algebraic simplification of 1-sin 2n θ-cos 2n θ sin 2 θ λ exact n ← symbolic computation of 2 π 4 0 expr dθ λ approx n ← numerical computation of λ exact n
The "algebraic simplification" of "expr" removes the singularity when θ → 0 coming from the collision kernel β(θ) = sin -2 θ (see (2.5)).

It consists in a factorization of trigonometric polynomials. The symbolic computation of λ exact n is reduced to compute the exact integral of a trigonometric polynomial. Then λ exact n is approached numerically with a number of significant digits (equal to 10 in 1). The approximation of eigenvalues can be controlled to be sufficiently precise for upcoming computations. For a general kernel β(θ), there is in general no more explicit values. But some classical numerical methods can be easily applied. Nevertheless, there is no more any algebraic simplification, and it is necessary to treat carefully the singularity.

3.2.

Computation of the nonlinear eigenvalues. We recall the coefficients µ pq from (2.7): for some p, q ≥ 1

µ pq = (2p + 2q + 1) (2p + 1)(2q + 1) C 2p 2p+2q |θ|≤ π 4 β(θ) (sin θ) 2p (cos θ) 2q dθ.
We compute the exact and the approximate value of µ pq (again with a relative error ≈ 10 -10 ) for 1 ≤ p + q ≤ N by the following algorithm :

for p from 1 to N do for q from 0 to N-p do expr ← symbolic computation of 2

π 4 0 sin 2p-2 θ cos 2q θ dθ µ exact pq ← (2p+2q+1) (2p+1)(2q+1) C 2p 2p+2q × expr µ approx pq ← numerical computation of µ exact pq
We present in the table 2 of results for p+q = n = 2, . . . , 5, 20. The sin- gularity coming from the collision kernel β(θ) = sin -2 θ is removed by a simple simplification (remark the exponent (2p -2) of the sinus term of µ pq ). Again for a general collision kernel, the values of these nonlinear eigenvalues can be approximated by classical numerical methods.

n = 2 n = 3 n = 4 n = 5 n = 20 µ 1,1 ≈ 2.

3.3.

Numerical solutions of the linear problem. We introduce from (2.11) the approximation of the linear solution

g ℓin N (t, v) = N n=0 e -λn t G n ϕ n (v) (3.2)
where the reals G n are the given initial spectral coefficients. In order to compute the value of the linear solution, we use the formula (2.3) of the eigenfunction ϕ n which involves the generalized Laguerre polynomials L

[ℓ+ 1 2 ] n . We get the following algorithm : for n from 0 to N do

ϕ n (v) ← n! √ 2Γ(n+3/2) 1/2 e -|v| 2 4 L [ 1 2 ] n |v| 2 2 1 √ 4π
Finally, we obtain the linear solution by the sum :

g ℓin N (t, v) ← 0 for n from 2 to N do g ℓin N (t, v) ← g ℓin N (t, v) + e -λnt G n ϕ n (v)
We estimate the L 2 theoretical error (g ℓing ℓin N ) for the different initial data G used for computation in the next sections. Proposition 3.1. We consider the solution of the following linear problem ∂ t g ℓin + L g ℓin = 0, g ℓin (0, v) = G(v).

(3.3)

We have the following estimates : 1) For initial data G ∈ L 2 ,

g ℓin (t, •) -g ℓin N (t, •) L 2 e -c √ N t G L 2 .
2) For the measure initial data G defined by (5.1) (see also proposition 7.

3), there exist some constants C > 0 and c > 0 such that for t > 0

g ℓin (t, •) -g ℓin N (t, •) L 2 1 t b e -γ √ N t .
Proof. The solution of (3.3) is

g ℓin (t, v) = ∞ n=0 e -λn t G n ϕ n (v).
The exact error in L 2 is

g ℓin (t, •) -g ℓin N (t, •) 2 L 2 = ∞ n=N +1 e -2λn t |G n | 2 . 1) If G ∈ L 2 (R 3 v )
, then as we have from (3.1)

g ℓin (t, •) -g ℓin N (t, •) 2 L 2 = ∞ n=N +1 e -2λn t |G n | 2 e -2 c √ N t G 2 L 2 .
We can deduce that the exact error tends to zero when N tends to infinity.

2) We suppose now that F is the measure initial data µ + δ. We can approximate the spectral coefficients G n of G by n 1 4 and by 3.1 we can then find some positive constants c and C such that

g ℓin (t, •) -g ℓin N (t, •) 2 L 2 ≤ C ∞ n=N +1
e -c √ n t n 2 .

We consider the function ρ t defined on R + by ρ t (x) = e -c √ x t x 2 . So that ρ t is positive, continuous and decreasing for x ≥ 16/(c t) 2 , therefore by using the Cauchy integral criterion, we can write the following inequality :

g ℓin (t, •) -g ℓin N (t, •) L 2 ≤ C t b e -γ √ N t -→ 0 N →∞
where b and γ are some positive constants.

3.4.

Numerical solutions of the non-linear part. Concerning the nonlinear part g nℓ = e -tL h of the solution, we consider the partial series

g nℓ N (t, v) = N n=0 e -λn t h n (t) ϕ n (v). (3.4) 
We then use the decomposition of h in the spectral basis (2.9) and the integral formula (2.10) to compute h n (t). Therefore we solve explicitly the system (2.8) by the following algorithm: h 0 (t), h 1 (t), h 2 (t), h 3 (t) ← 0 for n from 4 to N do S ← 0 for p from 4 to n do

q ← n -p S ← S + µ pq (G p + h p (t)) (G q + h q (t)) e -(λp+λq-λn) t h n (t) ← symbolic computation of t 0 S
The exact computation of the integral t 0 S is straightforward since, from proposition 2.3, the symbolic expression S is an linear combination of exponential terms e αt . We get the exact following solutions of the system of integral formula (2.10):

h 0 = h 1 = h 2 = h 3 = 0, h 4 = µ 22 λ 2 + λ 2 -λ 4 G 2 2 1 -e -(λ 2 +λ 2 -λ 4 ) t , h 5 = µ 23 + µ 32 λ 2 + λ 3 -λ 5 G 2 G 3 1 -e -(λ 2 +λ 3 -λ 5 ) t , • • •
From the symbolic expression of h n we compute the numerical approximation : 

h 0 = h 1 = h 2 = h 3 = 0, h 4 =2.51 G 2 2 1 -e -0.279 t , h 5 =1.62 G 2 G 3 1 -e -0.698 t , h 6 =0.322 G 3 2 1 -e -1.
g nℓ N (t, v) ← 0 for n from 2 to N do g nℓ N (t, v) ← g nℓ N (t, v) + e -λnt h n (t) ϕ n (v)
The symbolic and numerical computation of the nonlinear part of the solution plays the main difficulty of our method. We analyze the computation time and rounding off error in the next section. 

f N = µ + √ µ (g ℓin N + g nℓ N ). (3.5)
The method using the software Maple R 13 and its internal function "int(f (x), x = a..b)" for symbolic computation of integrals seems limited to a number N around 20, since for N = 20, the number of terms of h 20 is around 5000 and the computation time is around 50 seconds. Moreover they are both exponentially increasing (see Figure 1). We now estimate the truncation and rounding error due to the software computations. For a regular L 2 initial data we have computed the solution f N for N = 20 and different number of digits (we can control the number of digits that Maple R 13 uses when making calculations with software floating-point numbers). We set P 1 and P 2 two numbers of digits and we compare the two numerical solutions f P 1 N and f P 2 N computed respectively using P 1 and P 2 . We define the rounding relative error as

error = f P 1 N -f P 2 N ∞ f P 2 N ∞
and we get the following results for different choices of (P 1 , P 2 ) : We check from the table 3 that the relative error is roughly 10 times the run on a computer having 8 Xeon processors 2.33 GHz with 8 GB of memory. The method using Maple R 13 on this computer seems limited to a number around N = 20. Surprisingly, the computation time is roughly the same (around 90 seconds) for a number of digits between 20 and 1000. The main part of this time is therefore used for algebraic manipulation.

We present in the two upcoming sections the results of the computation for different initial values.

Radial bi-Gaussian initial value

We set the initial data :

F (w) = 1 (2π) 3 2 exp - 1 2 (|w| + 1) 2 + exp - 1 2 (|w| -1) 2 .
We next rescale the initial data following lemma 7.1. We show in figure 3 the spectral approximation

F N (v) of the initial data F (v) such that F N (v) = µ(v) + µ(v) G N (v) where G N (v) = N n=0 G n ϕ n (v).
We then compute the solutions h n (t) from the proposition 2.

1 for n = -6 -4 -2 0 2 4 6 0 1 • 10 -2 2 • 10 -2 3 • 10 -2 v F F 20 F 10 F 5
Figure 3. Approximation of the initial data 4, 5, . . . , N with N = 20. For each integer n, the function t → h n (t) is monotone and tends to a finite limit when t tends to infinity (See Figure 4 (a)). We recall that h n (t) is a finite sum of decreasing exponential terms (see section 3.4). Since the initial data G is a regular function, the spectral coefficients G n are exponentially decreasing. The numerical computation of h n (t) shows also that h n ∞ is exponentially decreasing with respect to n (See Figure 4 (b)). In this special case, the linear part e -tL G and the nonlinear part e -tL h have roughly the same behavior. We present in figure 5 the graph of the linear part and nonlinear part and the ratio in

L 2 -norm R N (t) = g nℓ N (t, •) L 2 g ℓin N (t, •) L 2 = N n=4 |e -λnt h n (t)| 2 1 2 N n=2 |e -λnt G n | 2 1 2 . ( 4.1) 
We observe that the nonlinear part is very small compared to the other. We remark that in this case the series (3.2) and (3.4) behave as 

g ℓin N (t, v) ≈ e -λ 2 t G 2 ϕ 2 (v), g nℓ N (t, v) ≈ 2.51 e -λ 4 t G 2 2 (1 -e -(2 λ 2 -λ 4 ) t ) ϕ 4 (v)
, because the terms of h n (t) are composed of products of terms which are numerically converging to zero. The quotient (for G 2 = 0) of the two previous approximations behaves closely like the ratio (see (4.1))

R N (t) ≈ R(t) def = e -(λ 4 -λ 2 ) t |G 2 |(1 -e -(2 λ 2 -λ 4 ) t ). (4.2)
We finaly compute (see figure 6) the solution f = µ + √ µg using the spectral Hermite eigenfunctions ϕ n (v) and the expansion (2.12) of g in this basis. Since the function g(t, •) ∈ N ⊥ for all time t ≥ 0, the approximate solution f N (t, •) is naturally orthogonal to ϕ 0 and ϕ 1 . Therefore is a conservation of the mass and the energy. Finally, we check that the approximate solution f N converges to the Gaussian function when the time tends to infinity. 

Numerical results for initial measure data

We consider the initial measure data F = gaussian + Dirac = µ + δ.

Following the lemma and rescaling the solution F (v) = 2 -5 2 F (2 -1 2 v), we get the normalized initial data

F (v) = 2 -5 2 µ(2 -1 2 v) + 2 -1 δ(v), G(v) = 2 -13 4 π -3 4 -µ(v) + 2 -1 4 π 3 4 δ(v). (5.1) 
We verify that G, ϕ 0 = G, ϕ 1 = 0 and therefore G ∈ N ⊥ . We then compute the spectral coefficients for n ≥ 0 (see proposition 7.1):

G n = G, ϕ n = 1 + (-1) n 2 (2 n + 1)! 2 2n (n!) 2 1 2
.

Note that the coefficients G 2n+1 are equal to zero and we have the following approximation of G:

G(v) ≈ ∞ n=1 n 1 4 ϕ 2n (v).
We set F reg (v) = 2 -5 2 µ(2 -1 2 v) the regular part of the distribution F . We check in the left figure 7 that the approximate initial data behaves as a Dirac function. Remark that to capture the approximation of the regular part F reg , we have to rescale the cote y-coordinate. We observe the oscillations of F N which are expected since the functions F N approach the Dirac function when N tends to infinity (see the right figure 7). We now focus on the evolution problem. As the initial data is a distribution, we can check that the linear part of the solution is singular :

g ℓin (t, •) 2 L 2 = ∞ n=2 G 2 n e -2 λnt ≈ 1 t α , when t → 0 (5.2)
for some α > 0 (since G 2n ≈ n 1 4 and λ n ≈ n

2 ). We next compute the nonlinear part h n (t) of the solution (see the left figure 8). We observe some numerical evidences that these functions are increasing less than a power of n :

sup t≥0 |h n (t)| ≤ C n a with a close to 1. Since G n ≈ n 1 4
, the behavior of a term of the series (g ℓin N (t) + g nℓ N (t)) is dominated by the nonlinear part. We next calculate the linear part and nonlinear part of solution (see Figure 9). g nℓ N (t) is a regular function for all time and we verify also that g ℓin N (t) is singular as t → 0 as pointed in (5.2). For a large time, the L 2 norm of the linear part (∼ e -λ 2 t ) dominates the norm of the nonlinear part (∼ e -λ 4 t ), and the ration R N (t) has the same behavior as in the previous section (see (4.2)).

We then compute the numerical approximation f N of the solution f for N = 20 and we check that the solution behaves as a Dirac function as t → 0 and tends to the Gaussian as t → ∞ (see Figure 10).

Since λ n ≈ c √ n and if the behavior of sup t≥0 |h n (t)| is dominated by a power of n (which is numerically verified), then we have for some b, γ > 0 :

∀t > 0, f N (t, •) -f (t, •) L 2 1 t b e -γ √ N t → 0 as N → ∞.
We observe some other numerical evidences that the series converges in L 2 for t > 0 and the solution converges to a Gaussian as t → ∞.

Conclusion

We have considered the perturbation g of the solution f of the Boltzmann equation defined by

f = µ + √ µg where g(t, v) = n g n (t)ϕ n (v)
and we have studied the behavior of the spectral coefficients We have then computed formally the spectral coefficients h n (t) for n = 0, 1, . . . , N with N = 20. We have checked also the results for small L 2 initial data and distribution type initial data µ + δ.

g n (t) = e -λnt (G n + h n (t)), g n (0) = G n .
• For small L 2 initial data, our method was tested with several L 2 initial conditions : F is a sum of two Gaussian, G n = 0.1 n , G n = 1 n . The results show that there are some numerical evidences that the spectral series n e -λnt (G n + h n (t))ϕ n is convergent in L 2 for any time t ≥ 0 and the solution converges to a Gaussian. Moreover, for large times, the linear part G n is preponderant with respect to the non-linear part h n (t).

• For the distribution type initial data µ + δ, the simulations show some numerical evidences that the spectral series converges in L 2 and there is a regularization of the solution for t > 0.

We have computed the formal solutions of the spectral coefficients h n of the solution of the Boltzmann equation. If there exists a regular solution for t > 0, then the solutions h n are the exact projections of the solution on the spectral basis. These calculations were made in the case of a non-cutoff kernel. The numerical results are coherent for small L 2 initial data or for the distribution case µ + δ. There is conservation of the mass, momentum and energy of the approximated solution (since g N (t, •) is orthogonal to the kernel N for all time). Moreover the approximated solution f N (t, •) (defined in (3.5)) converges to a Gaussian when t tends to infinity. Then we have the following limit in the sense of distribution as ε → 0:

F ε → F = 2 -5 2 µ(2 -1 2 •) + (2 1 
2 ) 3 δ ,

G ε → G = - √ µ + 2 -13 4 π -3 4 + 2 -1 4 π 3 4 δ.
The coordinates of G ε in the spectral basis (ϕ n ) n≥0 are given by:

G ε,0 = G ε,1 = 0, G ε,n = 1 + (-1) n 2 (1 -ε 2 ) n (1 + ε 2 ) n (2 n + 1)! 2 2n (n!) 2 1 2
, ∀n ≥ 2.

Moreover we have G ε,n → G n as ε tends to 0 as ε → 0 where G n is given in (7.1).

Remark. There is continuity of the spectral coefficients : G ε,n → G n as ε tends to 0.

Proof. From Lemma 7.1, we set

F ε (v) = α ε Fε (β ε v)
where

α ε = 1 3 R 3 w 2
Fε (w) dw 

3. 5 .

 5 Discussions on the symbolic computation. From the computation of the linear (3.2) and nonlinear (3.4) part, we calculate the approximated solution of the Boltzmann equation (1.1)
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 10 Figure 10. Graph of (t, v) → f N (t, v) for N = 5, 10, 20 and µ(v).
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 1 The approximation is easily controlled by the estimate of the relative error |λ exact Symbolic and numerical computation of λ n .

	n numerical table 1. -λ appr. n n |/λ exact	. Using the software Maple R 13, we finally get the
		Exact value	Approximate value Relative error
	λ 1	0		0	-
	λ 2 λ 3 λ 4 λ 5 λ 10 λ 15 λ 20	1 + 1 2 π 3 2 + 3 4 π 23 12 + 15 16 π 55 24 + 35 32 π 61717 16128 + 109395 65536 π 41349267 8200192 + 35102025 16777216 π 60225247403 9906683904 + 83945001525 34359738368 π	2.570796327 3.856194490 4.861909780 5.727783632 9.070756042 11.61545300 13.75454524	8.0 × 10 -11 5.0 × 10 -11 1.2 × 10 -10 8.2 × 10 -11 9.0 × 10 -11 3.2 × 10 -10 2.5 × 10 -11

Table 2 .

 2 Numerical computation of µ pq .

	µ 4,1 ≈ 0.084 µ 4,16 ≈ 0.46 . . .
	µ 19,1 ≈ 10 -5

35 µ 1,2 ≈ 2.88 µ 1,3 ≈ 3.29 µ 1,4 ≈ 3.62 µ 1,19 ≈ 6.68 µ 2,1 ≈ 0.519 µ 2,2 ≈ 0.702 µ 2,3 ≈ 0.84 µ 2,18 ≈ 1.55 µ 3,1 ≈ 0.196 µ 3,2 ≈ 0.30 µ 3,17 ≈ 0.75

  20 t + 1.17 1e -0.928 t G 2 G 4 + -2.95 e -0.928 t + 0.677 + 2.26 e -1.20 t G 2 3 , h 7 =0.501 G 2 G 5 1e -1.09 t + 0.220 1e -1.51 t G 3 G 4 + 0.201 + 0.478 e -1.79 t -0.274 e -1.51 t -0.407 e -1.09 t G 2 2 G 3 , ... We finally get from (3.4) the approximation g nℓ N of the nonlinear part of the solution g nℓ (t, v) by the following algorithm :
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Using the change of variable w = β v, we can check that if we set the values of α and β given in the lemma, the previous equations are fulfilled.

7.2. Measure initial data. We define the following distribution initial data : F = µ + δ.

Following the rescaling of lemma 7.1, we compute

and then α = 2 -5 2 and β = 2 -1 2 . Using the change of variable w = βv, we get the new rescaled distribution initial data

2 ) 3 δ .

Proposition 7.3. We consider the initial data

2 ) 3 δ and we set G such that F = µ + √ µG. Then we have

We consider the coordinates G n = G, ϕ n of the distribution G in the spectral basis (ϕ n ) n . We can check that

and for all integer n ≥ 2,

Proof. The expression of G follows from the definition of the Gaussian µ. We then compute

ϕ n (0) and the conclusion results directly from lemma 7.5.

We consider now a special Gaussian approximation F ε ∈ L 2 of the distribution initial data F = µ+δ and we obtain some spectral stability result in this case. Proposition 7.4. We consider the initial data for ε > 0

where

Finally we get :

.

7.3. Some results on the spherical harmonics. We recall that

where the Laguerre polynomial L (α) n of order α, degree n is

x n-r .

Lemma 7.5. For a > 0 and n ≥ 0 we have

(

Proof. These equalities come from classical properties of the Hermite funtions (we have checked them using Maple R 13 for integers n ≤ 20).