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ABSTRACT
When the aim is to model market-shares, the marketing literature proposes some
regression models which can be qualified as attraction models. They are generally
derived from an aggregated version of the multinomial logit model. But aggregated
multinomial logit models (MNL) and the so-called generalized multiplicative com-
petitive interaction models (GMCI) present some limitations: in their simpler version
they do not specify brand-specific and cross-effect parameters. In this paper, we con-
sider alternative models: the Dirichlet model (DIR) and the compositional model
(CODA). DIR allows to introduce brand-specific parameters and CODA allows ad-
ditionally to consider cross-effect parameters. We show that these two models can
be written in a similar fashion, called attraction form, as the MNL and the GMCI
models. As market-share models are usually interpreted in terms of elasticities, we
also use this notion to interpret the DIR and CODA models. We compare the prop-
erties of the models in order to explain why CODA and DIR models can outperform
traditional market-share models. An application to the automobile market is pre-
sented where we model brands market-shares as a function of media investments,
controlling for the brands price and scrapping incentive. We compare the quality of
the models using measures adapted to shares.

KEYWORDS
Multinomial logit; market-shares models; compositional data analysis; Dirichlet
regression; marketing

1. Introduction

Share data are characterized by the following constraints: they are positive and sum up
to 1. By definition shares are “compositional data”: a composition is a vector of parts
of some whole which carries relative information. For a composition of D parts, if D−1
parts are known the Dth part is simply 1 minus the sum of the D − 1 other parts:
D-compositions lie in a space called the simplex SD. Because of these constraints,
classical regression models cannot be used directly.

A large number of fields are concerned by the analysis of share data. In political
economy, Elff [6] studies voting behaviors and analyzes the relationship between the
shares of political parties and their policy positions in different groups of voters. In
geology, Solana-Acosta and Dutta [21] are interested in the lithologic composition
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of sandstone according to whether it is quartz, feldspar or rock fragments. For envi-
ronmental planning purposes, land use models focus on what are the proportions of
different types of uses (forest, agriculture, urban, etc...) on a given piece of land, see
for example Chakir et al. [4].

When the aim is to model market-shares as a function of explanatory variables
(marketing factors like advertising or price for example), the marketing literature
proposes some regression models which can be qualified as attraction models (Cooper
and Nakanishi [5]). They are generally inspired from an aggregated version of the
multinomial logit models, widely used in econometrics for discrete choice modeling.
But aggregated multinomial logit models (MNL) and market-share models (GMCI)
present some limitations: introducing all possible cross effects is not possible in the
MNL and would imply a very large number of parameters in the case of the GMCI.

In this paper, we propose to use the Dirichlet covariate model (DIR) and the com-
positional model (CODA) in order to model market-shares. These models consider
the vector of shares as a “composition” lying in the simplex. DIR allows to estimate
brand-specific parameters and CODA allows to estimate additionally cross-effect pa-
rameters. We show that these last two models can be written in a similar fashion,
called attraction form, as the MNL and the GMCI models. This is particularly valu-
able for the CODA model because it allows to get rid of the cumbersome notations
of simplicial operations. We compare the main properties of the models in order to
explain why CODA and DIR models can outperform traditional market-share models.

Finally, an application to the automobile market is presented where we model brands
market-shares as a function of media investments in 6 channels (TV, press, radio,
outdoor, digital, cinema), controlling for the brands average price and a scrapping
incentive dummy variable. We compare the goodness-of-fit of the various models by
cross-validation in terms of quality measures adapted to share data. The direct elas-
ticity of market-shares relative to the TV investments are computed for all presented
models.

The present paper is organized as follows: the models adapted to model share data
are presented in Section 2, and theoretically compared in Section 3. Section 4 presents
an application to an automobile market data set, along with an empirical comparison
of the models in terms of cross-validated goodness-of-fit measures, and an example
of elasticity interpretation. Finally, the last section concludes on the findings and on
further directions to be investigated.

2. Models for explaining shares

2.1. Notations

The notations used in this paper are standardized in Table 1 depending on whether
the variables are considered in volume or in share, in the left or in the right part of
the regression equation, and if they are alternative and/or observation dependent.
C() denotes the closure operation which transforms volumes into shares:

C(y1, . . . , yD)′ =

(
y1∑D
j=1 yj

, . . . ,
yD∑D
j=1 yj

)′

A composition S is a vector of D shares Sj potentially coming from the closure of
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Table 1. Notations
Variable Volumes Shares Coordinates

(absolute values) (relative values) (ILR)
Dependent Njt St = (S1t, . . . , SDt)

′ =
C(N1t, . . . , NDt)

′
S∗t = N∗t

Explanatory (observation and
component characteristic)

Xjt Zt = (Z1t, . . . , ZDt)
′ =

C(X1t, . . . , XDt)
′

Z∗t = X∗t

Explanatory (observation char-
acteristic only)

Wt

General notations
D Number of components (3 in the application)
j, l,m = 1, . . . , D Index of components or coordinates (brands in the application)
T Number of observations (123 in the application)
t = 1, . . . , T Index of observations (time in the application)
K,KX ,KW Number of explanatory variables / of type X / of type W
k = 1, . . . ,K Index of explanatory variables (by default)
k = 1, . . . ,KX Index of explanatory variables of type X
κ = 1, . . . ,KW Index of explanatory variables of type W
sj Theoretical mean share (expected value of Sj)
Notations for the application
C Number of media channels (6 in the application)
c = 1, . . . , C Index of media channels
Mcjt Media investment in channel c at time t for brand j
Pjt Average price at time t of brand j
It Scrapping incentive dummy at time t

D positive numbers Nj and belonging to the simplex SD:

S = (S1, . . . , SD)′ = C(N1, . . . , ND)′ ∈ SD with Sj > 0 and

D∑
j=1

Sj = 1

For example, in the case we use for illustration, the dependent variable is the sales
of vehicles observed across time; among the explanatory variables we have media
investments, price and scrapping incentive (time dependent only). The sales can be
considered in volume (number of sales) or in share (market-shares). Similarly, media
investments in volume correspond to the amount of euros spent, whereas in share they
correspond to the so-called “shares-of-voice” in marketing.

2.2. Market-share models

Market-share models were developed in the 80’s, mainly by Cooper and Nakanishi
[5]. To take into account the competition between brands in a market, it is often of
interest to model market-shares instead of sales volumes directly. Thus, this type of
model is widely used in marketing. The aim is to model market-shares of D brands
using their marketing factors (price, advertising) as explanatory variables, with ag-
gregated data (market-level data rather than individual-level data). These models are
called generalized multiplicative competitive interaction (GMCI) models. The so-called
market-share models are inspired from an aggregated version of the conditional multi-
nomial logit (MNL) models. For individual data, conditional MNL models, widely used
in econometrics, model discrete choices of individuals, i.e. the probability that an in-
dividual i chooses an alternative j. If explanatory variables are alternative dependent
(not individual dependent), one can aggregate the data using a group variable (time
for example). In that case, the resulting data may also be modeled using a multinomial
distribution.
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2.2.1. GMCI attraction model

The concept of “attraction” of a brand is central in this literature, and is comparable to
the “utility” concept in discrete choice models for individual data. The specification of
the attraction of brand j is a function of the explanatory variables (marketing variables
usually, like price and media for example) describing this brand. The market-share
of brand j is defined as its relative attraction compared to competitors, i.e. as its
attraction divided by the sum of attractions of all the brands of the market.

0 < Sjt =
Ajt∑D
l=1Alt

< 1

where Ajt is the attraction of firm j at observation t such that Ajt > 0.

Cooper and Nakanishi [5] defined a general model for market-shares, called the
generalized multiplicative competitive interaction model (GMCI). It is defined as fol-
lows:

Ajt = exp(aj + εjt)

K∏
k=1

fk(Xkjt)
bk and Sjt =

Ajt∑D
l=1Alt

(1)

where exp(εjt) is a multiplicative random component, and fk is a monotonic trans-
formation of Xk such that fk(.) > 0. If all fk are the identity function (resp. the
exponential function), it is called the MCI specification (resp. to the MNL specifica-
tion):

MNL spec.: Sjt =
exp(aj +

∑K
k=1 bkXkjt + εjt)∑D

l=1 exp(al +
∑K

k=1 bkXklt + εlt)
(2)

MCI spec.: Sjt =
exp(aj +

∑K
k=1 bk logXkjt + εjt)∑D

l=1 exp(al +
∑K

k=1 bk logXklt + εlt)
(3)

The MNL specification of the GMCI is similar to the conditional multinomial logit
model (MNL), except that in the MNL model an intercept has to be fixed to zero for
identifiability reason:

MNL model: sjt = E(Sjt|Xt) =
exp(aj +

∑K
k=1 bkXkjt)∑D

l=1 exp(al +
∑K

k=1 bkXklt)
with aD = 0 (4)

Note however that the attraction formulation of the MNL model differs from that of
the GMCI models: the GMCI attraction contains the random component εjt whereas
the MNL does not since the attraction form in that case corresponds to the expected
share. We will further develop this aspect in section 3.2.

2.2.2. Estimation by OLS

Contrary to the MNL model which is estimated by maximum likelihood based on the
multinomial distribution, Nakanishi and Cooper [17] proposed an estimation method
relying on a log linearization that they call “log-centering transformation” which is
actually the log ratio between a share Sjt and the geometric mean of all shares at

4



observation t, S̃t, also called CLR (centered log-ratio) transformation in the CODA
(Compositional Data Analysis) literature. The log-centered formulations are given by:

MNL spec.: log

(
Sjt

S̃t

)
= a1 +

D∑
l=2

(aj − a1)dl +

K∑
k=1

bk(Xkjt −Xkt) + (εjt − εt)

MCI spec.: log

(
Sjt

S̃t

)
= a1 +

D∑
l=2

(aj − a1)dl +

K∑
k=1

bk log

(
Xkjt

X̃kt

)
+ (εjt − εt)

where dl = 1 if l = j, 0 otherwise (brand dummy). St and S̃t are the arithmetic and
the geometric means of Sjt.

This OLS estimation would be correct if error terms ε∗jt = (εjt − εt) had a
multivariate distribution with diagonal variance covariance matrix, but indeed the
ε∗jt can only follow a degenerate multivariate normal distribution. Nakanishi and
Cooper suggest to use a generalized least squares (GLS) estimation instead of an
OLS estimation due to the potential heteroscedasticity and/or correlation of error
terms (if observations are time periods for example). But as stated in Cooper and
Nakanishi [5], we found that the GLS procedure, which is quite heavy in terms of
implementation for this kind of models, does not give empirically better results than
the OLS procedure.

Implementation in R: the function lm() allows to fit the log-centered model by
ordinary least squares (GMCI). The package “mclogit” developped by Martin Elff [7]
allows to fit conditional logit models with count data, using the Fisher-scoring/IWLS
algorithm1 (MNL).

2.3. Dirichlet covariate models

The Dirichlet distribution is the distribution of a composition obtained as the closure of
a vector of D independent gamma-distributed variables with the same scale parameter.
Thus, it is another distribution adapted for variables lying in the simplex. Let S =
(S1, . . . , SD) ∼ D(α1, . . . , αD) where Sj > 0 and

∑D
j=1 Sj = 1, αj > 0 and

∑D
j=1 αj =

α0. α0 is called the precision parameter. Then, E(Sj) = αj
α0

. Two parametrizations exist
for the Dirichlet regression model: the “common parametrization” and the “alternative
parametrization”2. We focus here on the common specification.

2.3.1. Dirichlet model

Campbell and Mosimann [3] developed Dirichlet covariate models to explain a com-
positional dependent variable, supposed to be Dirichlet distributed, by classical (non-
Dirichlet) covariates. As explained in Hijazi and Jernigan [10], “a different Dirichlet
distribution is modeled for every value of the explanatory variables, resulting in a
conditional Dirichlet distribution”. The conditional distributions St|Xt are mutually
independent: St|Xt ∼ D(α1(Xt), . . . , αD(Xt)) with unknown parameters. Under the

1For details on IWLS algorithm, see for example Green [8].
2The alternative parametrization uses the parameters µj = E(Sj) to account for the expected values of the

shares, and φ = α0 to account for the precision. See Hijazi and Jernigan [10].
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common parametrization, the parameters of the Dirichlet distribution, the αj ’s, are
allowed to depend on the explanatory variables Xk in a GLM fashion with a log link.

log(αj(Xt)) = aj +

K∑
k=1

bkjXkjt and E(Sj) =
αj(Xt)∑D

m=1 αm(Xt)
(5)

The components may have different explanatory variables (a different number of ex-
planatory variables and/or explanatory variables which take different values for the
different components), but for the sake of simplicity X denotes the vector of explana-
tory variables for all components.

2.3.2. Estimation by maximum likelihood

The log-likelihood to maximize is:

logL(S|α(X)) =

T∑
t=1

log Γ

 D∑
j=1

αj(Xt)

− D∑
j=1

log Γ(αj(Xt)) +

D∑
j=1

(αj(Xt)− 1) logSjt


Implementation in R: the package “DirichReg” created by Maier [12] allows

to fit Dirichlet model for the common or alternative parametrization, by maximum
likelihood.

2.4. Compositional models

Compositional data analysis was developed in the 80’s by John Aitchison [1]. The first
applications were for geological data, with the objective to analyze the composition of
a rock sample in terms of the relative presence of different chemical elements. More
generally, CODA aims to analyze relative information between the components (parts)
of a composition where the total of the components is not relevant or is not of interest,
taking into account the constraints of the simplex space.

2.4.1. The log-ratio transformation approach

As it is not possible to use properly classical statistical methods (e.g. linear regression
models) on constrained data like compositions, a log-ratio transformation of com-
positions can be used in order to obtain unbounded coordinates in R. Then, usual
tools can be used on coordinates, and results in the simplex can be recovered by in-
verse transformation, thus enforcing the simplex constraints. Several transformations
are proposed: notably the CLR (centered log-ratio) and the ILR (isometric log-ratio)
transformations.

- The CLR transformation leads to D coordinates which satisfy the constraint of
zero sum (it is not reducing the dimension of the composition). It is defined as follows:

clr(S) =
(

log S1

S̃
, . . . , log SD

S̃

)′
where S̃ is the geometric mean of the D components.

Its inverse transformation is: S = clr−1(clr(S)) = C(exp(clr(S)1), . . . , exp(clr(S)D))′.

- The ILR transformation consists in a projection of components in an orthonormal
basis of SD in order to obtain D − 1 orthonormal coordinates. Let {v1, . . . ,vD−1}
be an arbitrary orthonormal basis in RD−1, then el = clr−1(vl), l = 1, . . . D − 1,
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represent an orthonormal basis in the simplex SD equipped with its “natural
geometry” (see Pawlowsky-Glahn et al. [18]). Considering the D × (D − 1) ma-
trix V with columns vl = clr(el), l = 1, . . . D − 1, ILR coordinates are defined
as ilr(S) = S∗ = V′clr(S) = V′ log(S). Its inverse transformation is given by:
S = ilr−1(S∗) = C(exp(VS∗))′.

Example: A particular ILR transformation that could be used is the following:

S∗l =

√
D − l

D − l + 1
log

Sl

(
∏D
l′=l+1 Sl′)

1

D−l
, l = 1, . . . , D − 1

S∗1 contains all the relative information of part S1 to the parts S2, . . . , SD.

If D = 3 for example, it leads to S∗1 =
√

2
3 log S1√

S2S3
=
√

2
3 logS1− 1√

6
(logS2 + logS3)

and S∗2 =
√

1
2 log S2

S3
= 1√

2
(logS2 − logS3).

Thus, V =

 √2/3 0

−1/
√

6 1/
√

2

−1/
√

6 −1/
√

2

.

For regression as well as for other statistical analysis, the results are the same after
inverse transformation regardless of the chosen transformation. However, as CLR in-
troduces collinearity between coordinates, ILR is preferred for compositional regression
models.

2.4.2. CODA regression models

Compositional regression models are of different types depending on whether the
response variable and/or the explanatory variables are compositional. We focus here
on the case where the dependent as well as the explanatory variables are compositional
and of same dimension D (for example, market-shares of D brands are explained by
the corresponding media investments)3.
CODA models can be expressed either in terms of the initial compositional obser-
vations in the simplex (equation (6)) or alternatively in terms of the corresponding
transformed coordinates in the Euclidean space (equation (7)), as follows:

- Linear CODA model in the simplex (in terms of compositions):

St = a

K⊕
k=1

Bk � Zkt ⊕ εt (6)

with S,a,Zk, ε ∈ SD and Bk ∈ RD×D such that row and column sums are equal to
zero4, and the following operations are used in the simplex:

• ⊕ is the perturbation operation, corresponding to the addition operation in the simplex:
x⊕ y = C(x1y1, . . . , xDyD)′ with x,y ∈ SD

• � is the power transformation, corresponding to the multiplication operation in the
simplex: x� λ = C(xλ1 , . . . , xλD)′ with λ ∈ R,x ∈ SD

3Note that the dependent composition and the explanatory compositions could be of different dimensions.
4Under these conditions, B�Z is an endomorphism of the simplex SD (See Kynclova et al. [11]). Thus model

(6) is a linear model in the simplex.
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• � is the compositional matrix product, corresponding to the matrix product in the

simplex: B� x = C(
∏D
j=1 x

b1j
j , . . . ,

∏D
j=1 x

bDj
j )

′
with B ∈ RD×D,x ∈ SD

- Linear CODA model in the Euclidean space (in terms of ILR coordi-
nates):

S∗jt = a∗j +

K∑
k=1

D−1∑
m=1

b∗kjmX
∗
kmt + ε∗jt ∀ j ∈ 1, . . . , D − 1 (7)

where j is the index of S’s ILR coordinates, m is the index of X’s ILR coordinates
and ε∗j ∼ N (0, σ2). Equation 7 corresponds to a system of D − 1 linear models, one
for each ILR coordinate of S. Note here that compositional explanatory variables
coordinates can be equivalently calculated using X (volumes) or Z (shares).

The second presentation has the advantage to look like a classical linear model but
its connection with the original data is obscured by the transformation. On the other
hand, the first presentation in terms of the original share data is obscured by the
simplex operations involved in the model equation. However, we show in 3.2.2 that
this model can be expressed in a so-called attraction formulation so that it is not
needed to be familiar with simplex notations detailed above in order to understand
and use this compositional model.

2.4.3. Estimation by OLS

After log-ratio transformation (equation (7)), the estimation is usually done with the
OLS method, separately on the D − 1 linear models expressed in coordinates5.
Then, the estimated model can be back transformed into the simplex using the inverse
transformation which transforms α into a, β into b, ilr(S) into S and ilr(Z) into Z:

a = ilr−1(a∗1, . . . , a
∗
D−1) = C(exp(Va∗))

BD,D = VB∗D−1,D−1V
′

S = ilr−1(S∗1 , . . . , S
∗
D−1) = C(exp(VS∗))

with B∗ =

 b∗1,1 . . . b∗1,D−1

. . . b∗j,l . . .

b∗D−1,1 . . . b∗D−1,D−1

, and B =

 b1,1 . . . b1,D
. . . bj,l . . .
bD,1 . . . bD,D

 where b∗j,l is

the parameter corresponding to the impact of Z∗l on S∗j , and bj,l is the parameter
corresponding to the impact of Zl on Sj .

Implementation in R: the packages “compositions” [23] and “robCompositions”
[22] allow to transform compositional data, to fit the compositional model by OLS on
the coordinates and to back transform the results into compositions. Implementation
of CODA using R is presented in the book of Van den Boogaart and Tolosana-Delgado
[24].

5The orthonormality of coordinates allows us to estimate the D − 1 models separately.
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3. Theoretical comparison of share models

In this section, we highlight the similarities and differences of the presented models
from a theoretical perspective. Because these models are deeply linked with the type
of applications they have been proposed for, the following comparison refers not only
to statistical properties, but also to econometric and marketing properties. Table 2
summarizes the distributional assumptions, the estimation methods, the properties
and the complexity of each model6. These items are discussed in detail below. Finally
we highlight the fact that GMCI can be expressed in a CODA way.

3.1. Distributional assumptions

In the MNL model the dependent variable is a vector of positive numbers Nj which
follow a multinomial distribution. In the other three models the dependent variable
is directly the vector of shares Sj which are Dirichlet distributed in the case of DIR
and Gaussian in the simplex distributed for GMCI and CODA (the coordinates are
Gaussian in the transformed space). Note that the MNL model differs from the MNL
specification of the GMCI model by its underlying distributional assumptions.

MNL and Dirichlet models belong to the family of GLM (Generalized linear models):
see Peyhardi et al. [19] for MNL and Maier [12] for Dirichlet. GMCI and CODA
models belong to the family of transformation models (TRM hereafter) in which a
classical linear model is postulated in the transformed space.

3.2. Expected shares and attraction formulation

3.2.1. Expected value of shares

Let us notice that the model formulation of the two GLM models - MNL (4) and
DIR (5) - involves the expected shares E(Sjt|Xt), while the two transformation models
formulation - GMCI (1) and CODA (6) - involves the random shares Sjt and a random
error term. The usual expected value cannot be analitically computed for the GMCI
and the CODA models. For this reason, we turn attention to the “expected value in
the simplex”, defined as follows (see Theorem 6.10 p.109 in Pawlowsky-Glahn et al.
[18]):

E⊕S = C(exp(E logS)) = clr−1(Eclr(S)) = ilr−1(Eilr(S)) = ilr−1(ES∗)

This means that the expected value in the simplex of the composition of shares,
E⊕S, coincides with the ILR back transformation of expected values of the random
coordinates, ES∗.

Remark: If the explanatory variables only consist of intercepts, the fitted shares
are not the same across the four models. In the case of the CODA and the GMCI
models, they correspond to the center of the compositional data, that is the closed
vector of geometric means of each component, while in the case of the MNL and the
DIR models, fitted shares are the arithmetic means of components (weighted in the
case of MNL). The geometric mean, which is coherent with the simplex geometry, is

6Here the GMCI model is presented with the MNL specification. Note that if X is replaced by logX, it

corresponds to the MCI specification.
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more adapted than the arithmetic mean to summarize shares data. This is an argument
in favor of CODA and GMCI models.

3.2.2. Attraction formulation of share models

As seen before, the attraction formulations in MNL and GMCI are different (in GMCI
it includes a random error term). In order to unify the presentation, we introduce
a deterministic attraction Ajt and a random attraction ujt such that Ajt = Ajtujt.
According to equations (4), (2), (3), the deterministic attraction formulations of MNL
and the two GMCI models (GMNL for the MNL specification and GMCI for the MCI
specification) are:

AMNL
jt = exp(aj +

K∑
k=1

bkXkjt) with aD = 0 ⇔ ESjt =
AMNL
jt∑D

m=1A
MNL
mt

AGMNLjt = exp(aj +

K∑
k=1

bkXkjt) ⇔ E⊕Sjt =
AGMNLjt∑D
m=1A

GMNL
mt

AGMCIjt = exp(aj +

K∑
k=1

bk logXkjt) ⇔ E⊕Sjt =
AGMCIjt∑D
m=1A

GMCI
mt

This emphasizes the fact that the type of expected shares involved in the attraction
formulation are different between MNL and the MNL specification of GMCI.

The Dirichlet model can also be expressed with an attraction formulation:

ADIRjt = exp(aj +

K∑
k=1

bkjXkjt) = αjt ⇔ ESjt =
ADIRjt∑D
m=1A

DIR
mt

This emphasizes the fact that the parameters of the DIR model are alternative-specific
(they depend on j), contrary to the GMCI and MNL models.

We now derive the attraction form of the compositional model, using equation (6).
We first express the market-share of brand j in the CODA model7 as:

St = at

K⊕
k=1

Bk � Zkt ⊕ εt = C

(
a1

K∏
k=1

D∏
l=1

Xbk1l
klt ε1t, . . . , aD

K∏
k=1

D∏
l=1

XbkDl
klt εDt

)

Thus, if we let

ACODAjt = aj

K∏
k=1

D∏
l=1

X
bkjl
klt = exp

(
log(aj) +

K∑
k=1

D∑
l=1

bkjl log(Xklt))

)
(8)

7The market-share Sjt is here expressed as a function of Xklt directly and not as a function of Zklt because

Sjt is obtained by a closure operation (dividing by the denominator), thus it can be shown that the explanatory
variables can be used in volume as they are closed at the end.
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then we have:

E⊕Sjt =
ACODAjt∑D
m=1A

CODA
mt

(9)

Note that taking X as explanatory variable in (6) actually corresponds to using
log(X) in the attraction formulation of the CODA model under the exponential form
(8). This is similar to the MCI specification of the GMCI model, and different from
the MNL model, the MNL specification of the GMCI and the DIR model.

It is interesting to highlight the fact that Cooper and Nakanishi [5] proposed an
attraction model with differential cross-competitive effects called “fully extended at-
traction model” which is similar to the CODA model in the sense that the determin-
istic attraction of the two models is the same (equation (8)). However, the estimating
method is different: they suggest to estimate the fully extended attraction model by
OLS on the CLR coordinates using dummy variables (see equations (5.27) and (5.28)
in [5]) implying constant variance of error terms across the CLR coordinates, whereas
the CODA model is usually estimated by OLS, separately on the different ILR co-
ordinates, allowing non constant variance across the ILR coordinates. Note that the
issue raised in section 2.2.2 concerning the independence of error terms when CLR
coordinates are used still holds here. Moreover, Cooper and Nakanishi pointed out
the fact that their method can only lead to the estimation of centered coefficients,
b∗kjl = bkjl− b̄k.l, but they argued that the b∗kjl are sufficient for interpreting the model.
In the CODA model, the estimation allows to obtain the estimated coefficients directly.
Thus, we strongly support the use of the CODA model when cross effects have to be
considered.

3.3. Properties

We now discuss whether the properties that have been introduced and established in
the literature for a given model are valid for the other ones.

3.3.1. IIA and subcompositional coherence

In the econometric literature, an important question often discussed is whether or not
a choice model satisfies the IIA (Independence from Irrelevant Alternatives) property.
IIA means that the ratio of shares of an alternative j with respect to an alternative l
only depends on the characteristics of j and l and is not affected by the presence or
absence of irrelevant alternatives. This property allows to simplify the models but it is
not always realistic (see the red bus - blue bus example of McFadden [14]). Without
cross-effects, MNL, GMCI and Dirichlet models satisfy IIA but CODA models do not.

In the CODA literature, the subcompositional coherence property (see Pawlowsky-
Glahn [18]) means that the results of an analysis made on a subcomposition (i.e.
remove some alternatives) should not contradict the results of the analysis made on
the whole composition. This is coming from the fact that compositional data analysis is
based on the use of log-ratios. However, if we look at equation (8), we can see that the
market-share of brand j is determined by the explanatory variables of all the brands.
Thus, subcompositional coherence does not imply IIA, but the reciprocal is true. In
the econometrics literature, it is considered that IIA can be a severe limitation, which
is a positive point for CODA models.
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3.3.2. Invariance

The scale invariance is the fact that multiplying the count data by a constant does
not affect the estimation results. It is a desirable property satisfied by the four models.
The permutation invariance is a desirable property corresponding to invariance
through a permutation of the components of a composition. It is clearly satisfied by
all the described models.
The perturbation invariance corresponds to coherence when performing a change
of units possibly different for each component of a composition. For example, we can
model brand market-shares in terms of sales volumes or in terms of sales values (that
is sales volumes perturbed by the vector of prices). The estimated market-shares and
parameters from the “volume” model should be equal to those of the “value” model
after perturbation by the vector of prices. This property is satisfied by CODA and
GMCI models. We can show empirically that it is not satisfied by MNL and DIR.

3.4. Model complexity

In MNL, GMCI and DIR models, the deterministic attraction Ajt is a function of the
explanatory variables characterizing alternative j only, leading to the absence of cross-
effects. But in the Dirichlet model, parameters are alternative-specific, which increases
the complexity of the model. In the CODA model, the attraction may depend on all
alternative characteristics, inducing alternative-specific and cross-effect parameters.
This is why CODA is the most complex model with the higher number of parameters.

It is not possible to take into account all cross effects in the MNL model (see So and
Kuhfeld [20]). Cross effects can be incorporated in the GMCI model (see Cooper and
Nakanishi [5]) and in the Dirichlet models but the number of parameters dramatically
increases. CODA is relatively parsimonious in the sense that it allows to incorporate
all cross effects with a number of parameters relatively lower than the other models
((D−1)× (D−1) versus D×D for others), thanks to the constraints on the B matrix
of parameters.

It is interesting to see that using the same dependent and explanatory variables,
the complexity is totally different from one model to another. For example (as in our
application, see Section 4), if the number of components (shares) of the dependent
variable is D = 3, explained by KX = 7 compositions of size D = 3 and KW = 1 time-
dependent variable, the number of estimated parameters are the following: 11 for MNL,
13 for GMCI, 27 for DIR and 32 for CODA. With 32 parameters, the CODA model
reflects all the cross-effects between shares whereas the DIR and the GMCI models
with cross-effects would require 69 parameters (D(1 + D × KX + KW )). Note also
that the number of parameters increases dramatically with the number of components
(brands), especially in the CODA model. For example if D becomes equal to 5 (with
KX and KW fixed), the number of parameters become 15, 17, 45, and 120, which can
be a serious limitation for the CODA model.

3.5. Compositional form of the GMCI model

Even though the GMCI estimation procedure uses a log-ratio transformation as the
CODA model, the two models are different and we are now going to express the GMCI
model in a compositional form, which will reveal this difference.

Wang et al. [25] propose a CODA regression model for the case when both de-
pendent and explanatory variables are compositional which is simpler than the one
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presented in paragraph 2.4: instead of having a matrix of parameters for each composi-
tional explanatory variable, the model has a unique real parameter for all components
of the explanatory composition. This model does not include cross effects between
components contrary to the usual CODA model.

Actually Wang et al.’s model is exactly similar to the MCI model proposed by
Cooper and Nakanishi in 1988 [5], except that Wang et al. use ILR coordinates while
CLR coordinates are used in the MCI model.

From this correspondence we derive a compositional form for the GMCI model:

St = a

K⊕
k=1

bk � Zkt ⊕ εt (10)

⇔ Sjt =
aj
∏K
k=1X

bk
kjtεjt∑D

l=1 al
∏K
k=1X

bk
kltεlt

=
exp(log aj +

∑K
k=1 bk logXkjt + log εjt)∑D

l=1 exp(log al +
∑K

k=1 bk logXklt + log εlt)

Equation (10) highlights the similarities and differences between GMCI and CODA
models: in place of the Bk matrix in Equation (6) of the CODA model, we now have a
single bk parameter in the GMCI model. We prove in Morais et al. [16] that the GMCI
model is a particular case of the CODA model, and that the two specifications can be
combined in a single model.
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4. Empirical comparison of share models

In this section, we use the MNL, GMCI, DIR and CODA models for a concrete case
study in order to demonstrate that Dirichlet and compositional models can perform
better that usual market-share models. After presenting the application and the data
of our illustrative example, a cross-validation process is proposed based on quality
measures adapted for shares models on the four types of models. Finally, we compare
the interpretation of the parameters of the four models in terms of elasticities.

4.1. Application and data

The main objective of this application is to understand the impact of media invest-
ments on brand market-shares controlling for other factors like price and scrapping
incentive. In each model specification, the interest is on the marginal impact of each
media channel on relative sales, that is on the elasticities of market-shares to media
investments by channel.

We focus here on the B segment8 of the French automobile market, which represents
half of the sales in France in terms of volume. More precisely, following the subcompo-
sitional coherence property of CODA, we focus on 3 brands of this segment: Renault,
Nissan and Dacia (D = 3).

The studied period, running from June 2005 to August 2015, is characterized by
the birth of Dacia on the French automobile market, a low-cost brand belonging to
Renault, at the beginning of 2005. It is also characterized by the economic crisis
which has hurt the French automobile market a lot from 2008 to 2012. The French
government tried to help this market setting up a scrapping incentive9 which has
“artificially” boosted the sales during 2009 and 2010. Note that Dacia increased a lot
its market-share during the crisis thanks to its low price. These facts have to be kept
in mind in order to understand the evolution of market-shares, and it justifies the use
of a scrapping incentive dummy as control variable.

The four models are applied to an automobile market data set coming from Renault
containing for each brand of the B segment the sales volume in units Njt, the catalog
price in euros Pjt, the media investments by channel in euros Mcjt (TV, press, radio,
outdoor, digital, cinema), and the periods of scrapping incentive It (dummy variable),
monthly from June 2005 to August 2015 (T = 123 periods of observation).

The ternary diagram allows to represent compositions of 3 components in the sim-
plex (see Van den Boogaart and Tolosana-Delgado [24]). Figure 1 represents for ex-
ample the annual market-shares of Dacia, Nissan and Renault from 2005 to 2014. We
can see easily that Dacia increases its market-share easily at the expense of Renault
from 2005 to 2010.
According to the marketing literature, it is preferable to use the logarithm of price

instead of the raw price10. Indeed, for our four models, using the log of price instead

8Segments of the automobile market are determined according to the size of the chassis. Segment B corresponds
to small mainstream vehicles like the Renault Clio which is the most famous of this segment in France.
9A scrapping incentive is an incentive given by a government to promote the replacement of old vehicles with

modern vehicles.
10The reason of that is linked to the shape of the elasticity of market-shares to the price. Moreover, to keep
the market-shares equal, the logged variables have to increase in the same proportion while the non-logged
variables have to increase by the same amount.
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Figure 1. Ternary diagram of annual market-shares of Dacia, Nissan and Renault

of the price gives best in-sample fits. The media investments have to be considered
with a lag with respect to sales. Statistically in this application, a lag of four months
gave the best results on the four models11. To avoid the problem of zeros due to the
use of logarithm, when media investments at time t are equal to zero, we replace them
by one euro, which is a very small amount compared to the non-zero investments.

4.2. A cross-validation comparison

A cross-validation process is used to compute out-of-sample goodness-of-fit measures
on the four considered models, in order to avoid an over-fitting effect and in order to
compare the considered models which do not have the same number of parameters.

(1) Randomly draw a sub-sample of 100 observations among 12312, resulting in 81% (100)
in-sample observations and 19% (23) out-of-sample observations

(2) Fit the 4 models to the sub-sample, store the fitted parameters
(3) Apply the 4 models to the out-of-sample observations, store the fitted values of the

shares
(4) Compute the quality measures using the out-of-sample predicted share values
(5) Iterate 100 times steps 1 to 4
(6) Compute the average quality measures using the out-of-sample predicted share values

over the 100 iterations

4.3. Quality measures

The out-of-sample accuracy of the four models is compared according to different
indicators adapted to shares that we found in the literature.

Table 3 presents the out-of-sample average quality measures for our four models (for
each measure, the best model is in bold), for the following measures: the R-squared
based on the total variability, widely used in the compositional literature (R2

T ), the
R-squared based on Aitchison distance, used in Hijazi [9] and Monti et al. [15] (R2

A,
it can be smaller than 0 and larger than 1), and the compositional Kullback-Leibler
divergence defined by Martin-Fernandez et al. [13] (KLC).

11In forthcoming work, we consider using an adstock function, which is a cumulative function of actual and
past investments.
12Here we want to have an efficient model all along the studied period, the aim is not to have a good predictive

model for the future. Moreover the presented models are not taking into account the potential auto-correlation
of error terms. That is the reason why the cross-validation can be made on randomly drawn dates and not on

a split of the studied period according to time.
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Table 3. Out-of-sample quality measures

MNL GMCI DIR CODA
Mean SD Mean SD Mean SD Mean SD

R2
T 0.425 0.164 0.462 0.179 0.622 0.224 0.647 0.227

R2
A 0.196 0.270 0.155 0.325 0.373 0.235 0.084 0.433

KLC 0.139 0.034 0.137 0.032 0.117 0.071 0.134 0.034

Table 4. Average direct elasticities for TV investments

MNL GMCI DIR CODA
DACIA 0.0019 0.0028 -0.0068 -0.0046

NISSAN 0.0101 0.0152 0.0389 -0.0022
RENAULT 0.0058 0.0088 0.0145 -0.0038

The out-of-sample average quality measures suggest that DIR is the most adapted
model to fit our data (27 parameters). However, according to the R2 based on total
variability (R2

T ), CODA (32 parameters) is better than the Dirichlet model. The GMCI
model and the MNL model without cross-effects are almost systematically the worst
models, certainly due to their simplicity and low number of parameters.

4.4. Interpretation of parameters

MNL and GMCI models are usually interpreted in terms of direct and cross elasticities
(see Cooper and Nakanishi [5]). In Morais et al. [16] we adapt this notion to compo-
sitional models using the attraction formulations presented in section 3.2. The (direct)
elasticity of the share Sjt relative to the media Xkjt is equal to (1− Sjt)bkXkjt in the
MNL model, DIR model and MNL specification of the GMCI models, whereas it is
equal to (1−Sjt)bk in the MCI specification for the GMCI, and to bkjj−

∑D
m=1 Smtbkmj

for the CODA model.
For example, the direct elasticities of market-shares of the three considered brands are
computed for the TV channel, for the 123 observed periods, and the average is pre-
sented in Table 4. They correspond to the average relative impact on the market-share
of brand j, Sj , of a 1% increase of the TV investment of brand j .

We observe that elasticities are not the same across models, and can even be of
opposite sign. For example, the DIR model concludes that, on average over the period
2005-2015, if Nissan increases its TV investment by 1% , it will increase its market-
share by 0.04%, whereas in CODA, it will have a small negative impact. The CODA
model, which includes all cross effects, suggests that the impacts of TV investments of
Dacia, Nissan and Renault tend to “cancel each other”, in the sense that all impacts
are very close to zero. However, all models except CODA agree on the fact that Nissan
has the highest TV’s elasticities (in bold in the table).

5. Conclusion

Because of the constraints of shares data, classical regression models cannot be used
directly to model market-shares. Market-share models have been developed in the mar-
keting literature, but they fail in estimating brand-specific and cross-effect parameters
in a parsimonious fashion.

In this paper, we show that the Dirichlet model (DIR) and the linear composi-
tional model (CODA), which are not usually used in this context, can perform better
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than usual market-share models, thanks to their higher flexibility. We express all these
models in attraction form to ease their comparison, and we propose to interpret them
in terms of elasticities. We also prove that the generalized multiplicative competitive
interaction model (GMCI) can be written as a particular compositional model. We
highlight the similarities and the differences of these models. The multinomial logit
model (MNL) and DIR are generalized linear models estimated by maximum likelihood
and centered on the arithmetic mean shares, whereas GMCI and CODA are transfor-
mation models estimated by OLS, centered on the geometric mean shares. MNL and
GMCI models without cross-effects are very simple and parsimonious models but fail
to capture the variability of the data in our application. The CODA model is the most
complex model but it manages to capture all cross effects with a relative parsimony,
compared to other models thanks to constraints on parameters, resulting in a good
fitting quality. The DIR model is very flexible and it successfully fits the data with
less parameters than the CODA model. All these models are implemented in R, and
can be interpreted in terms of elasticities.

We use the four models to understand the impact of media investments by channel
on brand market-shares in the automobile market, controlling for price and scrapping
incentive. We base our choice of models on cross-validation using quality measures
adapted for shares data. In our application, the Dirichlet model gives the best
out-of-sample results, followed by the CODA model.

We intend to focus in further work on the interpretability of the CODA model.
More precisely, direct and cross elasticities have to be deeply interpreted in order to
check that the models make sense for the considered application, and to be able to
use them to help decision making in practice. Concerning our particular application,
the observations are across time. Thus, the potential auto-correlation of error terms
should be tested and taken into account if necessary. Moreover, as we measure the im-
pact of media investments on market-shares, considering “adstock function” of media
investments instead of pointwise media investments might be more relevant. Adstock
functions are often used in the marketing literature, they are cumulative value of past
and present advertising expenditures, corresponding to the “carry-over effect” over
time. Furthermore, the introduction of random coefficients can be discussed. Such
models are considered by Berry, Levinsohn and Pakes [2] in the aggregated MNL
framework in econometrics.
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