Cauchy-Lipschitz theory for fractional multi-order dynamics -- State-transition matrices, Duhamel formulas and duality theorems - Archive ouverte HAL
Article Dans Une Revue Differential and integral equations Année : 2018

Cauchy-Lipschitz theory for fractional multi-order dynamics -- State-transition matrices, Duhamel formulas and duality theorems

Loïc Bourdin

Résumé

The aim of the present paper is to contribute to the development of the study of Cauchy problems involving Riemann-Liouville and Caputo fractional derivatives. Firstly existence-uniqueness results for solutions of non-linear Cauchy problems with vector fractional multi-order are addressed. A qualitative result about the behavior of local but non-global solutions is also provided. Finally the major aim of this paper is to introduce notions of fractional state-transition matrices and to derive fractional versions of the classical Duhamel formula. We also prove duality theorems relying left state-transition matrices with right state-transition matrices.
Fichier principal
Vignette du fichier
Bourdin-FractionalStateTransition.pdf (383.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01558524 , version 1 (07-07-2017)
hal-01558524 , version 2 (07-02-2019)

Identifiants

  • HAL Id : hal-01558524 , version 1

Citer

Loïc Bourdin. Cauchy-Lipschitz theory for fractional multi-order dynamics -- State-transition matrices, Duhamel formulas and duality theorems. Differential and integral equations, 2018, 31 (7-8), pp.559-594. ⟨hal-01558524v1⟩
355 Consultations
272 Téléchargements

Partager

More