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The main result of the present theoretical paper is an original decomposition formula for the proximal operator of the sum of two proper, lower semicontinuous and convex functions f and g. For this purpose, we introduce a new operator, called f -proximal operator of g and denoted by prox f g , that generalizes the classical notion. Then we prove the decomposition formula prox f +g = prox f • prox f g . After collecting several properties and characterizations of prox f g , we prove that it coincides with the fixed points of a generalized version of the classical Douglas-Rachford operator. This relationship is used for the construction of a weakly convergent algorithm that computes numerically this new operator prox f g , and thus, from the decomposition formula, allows to compute numerically prox f +g . It turns out that this algorithm was already considered and implemented in previous works, showing that prox f g is already present (in a hidden form) and useful for numerical purposes in the existing literature. However, to the best of our knowledge, it has never been explicitly expressed in a closed formula and neither been deeply studied from a theoretical point of view. The present paper contributes to fill this gap in the literature. Finally we give an illustration of the usefulness of the decomposition formula in the context of sensitivity analysis of linear variational inequalities of second kind in a Hilbert space.

Introduction, notations and basics 1.Introduction

The proximal operator (also known as proximity operator ) of a proper, lower semicontinuous, convex and extended-real-valued function was first introduced by J.-J. Moreau in 1962 in [START_REF] Moreau | Fonctions convexes duales et points proximaux dans un espace hilbertien[END_REF][START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] and can be viewed as an extension of the projection operator on a nonempty closed and convex subset of a Hilbert space. This wonderful tool plays an important role, from both theoretical and numerical points of view, in applied mathematics and engineering sciences. This paper fits within the wide theoretical literature dealing with the proximal operator. For the rest of this introduction, we use standard notations of convex analysis. For the reader who is not acquainted with convex analysis, we refer to Section 1.2 for notations and basics.

Motivations from a sensitivity analysis. The present work was initially motivated by the sensitivity analysis, with respect to a nonnegative parameter t ≥ 0, of a parameterized linear variational inequality of second kind in a Hilbert space H, with a corresponding function h ∈ Γ 0 (H), where Γ 0 (H) is the set of proper, lower semicontinuous and convex functions from H into R∪{+∞}. More precisely, for all t ≥ 0, we consider the problem of finding u(t) ∈ H such that u(t), z -u(t) + h(z) -h(u(t)) ≥ r(t), z -u(t) ,

for all z ∈ H, where r : R + → H is assumed to be given and smooth enough. In that framework, the solution u(t) ∈ H (which depends on the parameter t) can be expressed in terms of the proximal operator of h denoted by prox h . Precisely it holds that u(t) = prox h (r(t)) for all t ≥ 0. As a consequence, the differentiability of u(•) at t = 0 is strongly related to the regularity of prox h . If h is a smooth function, one can easily compute (from the classical inverse mapping theorem for instance) the differential of prox h , and then the sensitivity analysis can be achieved. In that smooth case, note that the variational inequality (1) can actually be reduced to an equality. On the other hand, if h = ι K is the indicator function of a nonempty closed and convex subset K ⊂ H, then prox h = proj K is the classical projection operator on K. In that case, the work of F. Mignot in [10, Theorem 2.1 p.145] (see also the work of A. Haraux in [8, Theorem 2 p.620]) provides an asymptotic expansion of prox h = proj K and permits to obtain a differentiability result on u(•) at t = 0.

In a parallel work (in progress) of the authors on some shape optimization problems with unilateral contact and friction, the considered variational inequality [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF] involves the sum of two functions.

Precisely, h = f + g where f = ι K (K being a nonempty closed and convex set of constraints), and where g ∈ Γ 0 (H) is a smooth function (derived from the regularization of the friction functional in view of a numerical treatment). Despite the regularity of g, note that the variational inequality [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF] cannot be reduced to an equality due to the presence of the constraint set K. In that framework, in order to get an asymptotic expansion of prox h = prox f +g , a first and natural strategy would be to look for a convenient explicit expression of prox f +g in terms of prox f and prox g . Unfortunately, this theoretical question still remains an open challenge in the literature. Let us mention that Y.-L. Yu provides in [START_REF] Yu | On decomposing the proximal map[END_REF] some necessary and/or sufficient conditions on general functions f , g ∈ Γ 0 (H) under which prox f +g = prox f • prox g . Unfortunately, as underlined by the author himself, these conditions are very restrictive and are not satisfied in most of cases (see, e.g., [18, Example 2] for a counterexample).

Before coming to the main topic of this paper, we recall that a wide literature is already concerned with the sensitivity analysis of parameterized (linear and nonlinear) variational inequalities. We refer for instance to [START_REF] Bensoussan | Inéquations quasi-variationnelles dépendant d'un paramètre[END_REF][START_REF] Haraux | How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities[END_REF][START_REF] Qiu | Sensitivity analysis for variational inequalities[END_REF][START_REF] Shapiro | Sensitivity analysis of parameterized variational inequalities[END_REF] and references therein. The results in are considered in very general frameworks. We precise that our original objective was to look for a simple and compact formula for the derivative u (0) in the very particular case described above, that is, in the context of a linear variational inequality and with h = f + g where f is an indicator function and g is a smooth function. For this purpose, we were led to consider the proximal operator of the sum of two functions in Γ 0 (H), to introduce a new operator and finally to prove the results presented in this paper.

Introduction of the f -proximal operator and main result. Let us consider general functions f , g ∈ Γ 0 (H). In order to avoid trivialities, we will assume in the whole paper that dom(f ) ∩ dom(g) = ∅ when dealing with the sum f + g.

Section 2 is devoted to the introduction (see Definition 2.1) of a new operator prox f g : H ⇒ H called f -proximal operator of g and defined by

prox f g := I + ∂g • prox f -1 . (2) 
This new operator can be seen as a generalization of prox g in the sense that, if f is constant for instance, then prox f g = prox g . More general sufficient (and necessary) conditions under which prox f g = prox g are provided in Propositions 2.13 and 2.15. We prove in Proposition 2.5 that the domain of prox f g satisfies D(prox f g ) = H if and only if ∂(f + g) = ∂f + ∂g. Note that prox f g is a set-valued operator a priori. We provide in Proposition 2.18 some sufficient conditions under which prox f g is single-valued. Some examples illustrate all the previous results throughout the section (see Examples 2.2, 2.3, 2.4, 2.7 and 2.17).

Finally, if the additivity condition ∂(f + g) = ∂f + ∂g is satisfied, the main result of the present paper (see Theorem 2.8) is the original decomposition formula

prox f +g = prox f • prox f g . (3) 
It is well-known in the literature that obtaining a theoretical formula for prox f +g is not an easy task in general, even if prox f and prox g are known. We give a more precise description of the difficulty to obtain an easy computable formula of prox f +g in Appendix A, which claims that there is no closed formula, independent of f and g, allowing to write prox f +g as a linear combination of compositions of linear combinations of I, prox f , prox g , prox -1 f and prox -1 g . In the decomposition formula (3), it should be noted that the difficulty of computing prox f +g is only transferred to the computation of prox f g which is not an easier task. Note that other rewritings, which are not suitable for an easy computation of prox f +g neither, can be considered such as Relationship with the classical Douglas-Rachford operator. Recall that the proximal operator prox f +g is strongly related to the minimization problem argmin f + g, since the set of solutions is exactly the set of fixed points of prox f +g denoted by Fix(prox f +g ). In the sequel, we will assume that the above minimization problem admits at least one solution. The classical Douglas-Rachford operator, introduced in [START_REF] Douglas | On the numerical solution of heat conduction problems in two and three space variables[END_REF] and denoted here by DR f,g (see Section 3 for details), provides an algorithm x n+1 = DR f,g (x n ) that is weakly convergent to some x * ∈ H satisfying prox f (x * ) ∈ argmin f + g.

prox f +g = (prox -1 f + prox -1 g -I) -1 = (prox -1 2f + prox -1 2g ) -1
Even if the Douglas-Rachford algorithm is not a proximal point algorithm in general, in the sense that DR f,g is not equal to prox ϕ for some ϕ ∈ Γ 0 (H) in general, it is a very powerful tool since it allows to solve the above minimization problem, requiring only the knowledge of prox f and prox g . We refer to [2, Section 28.3 p.517] for more details.

Section 3 deals with the relations between the Douglas-Rachford operator DR f,g and the fproximal operator prox f g introduced in this paper. Precisely, we prove in Proposition 3.2 that

prox f g (x) = Fix DR f,g (x, •) ,
for all x ∈ H, where DR f,g (x, •) denotes a x-dependent generalization of the classical Douglas-Rachford operator DR f,g , in the sense that DR f,g (y) = DR f,g (prox f (y), y) for all y ∈ H. We refer to Section 3 for the precise definition of DR f,g (x, •) that only depends on the knowledge of prox f and prox g .

Let us show that the above statements, in particular the decomposition formula (3), allow to recover in a concise way the well-known inclusion

prox f (Fix (DR f,g )) ⊂ argmin f + g = Fix(prox f +g ). (4) Indeed, if x * ∈ Fix(DR f,g ), then x * ∈ Fix(DR f,g (prox f (x * ), •)) = prox f g (prox f (x * )).
From the decomposition formula (3), we conclude that

prox f (x * ) = prox f • prox f g (prox f (x * )) = prox f +g (prox f (x * )).
This proof of only few lines is an illustration of the theoretical interest of the decomposition formula [START_REF] Bensoussan | Inéquations quasi-variationnelles dépendant d'un paramètre[END_REF]. Note that the above inclusion (4) is, as well-known, an equality (see Section 3.3 and Proposition 3.8 for details).

The f -proximal operator prox f g introduced in this paper is also of interest from a numerical point of view. Indeed, if x ∈ D(prox f g ), we prove in Theorem 3.3 that the fixed-point algorithm y k+1 = DR f,g (x, y k ), denoted by (A 1 ), weakly converges to some y * ∈ prox f g (x). Moreover, if the additivity condition ∂(f + g) = ∂f + ∂g is satisfied, we get from the decomposition formula (3) that prox f (y * ) = prox f +g (x). In that situation, we conclude that Algorithm (A 1 ) allows to compute numerically prox f +g (x) with the only knowledge of prox f and prox g . It turns out that Algorithm (A 1 ) was already considered, up to some translations, and implemented in previous works (see, e.g., [START_REF] Combettes | Dualization of signal recovery problems[END_REF]Algorithm 3.5]), showing that the f -proximal operator prox f g is already present (in a hidden form) and useful for numerical purposes in the existing literature. However, to the best of our knowledge, it has never been explicitly expressed in a closed formula such as (2) and neither been deeply studied from a theoretical point of view. The present paper contributes to fill this gap in the literature. Some other applications and forthcoming works. Section 4 can be seen as a conclusion of the paper. Its aim is to provide a glimpse of some other applications of our main result (Theorem 2.8) and to raise open questions for forthcoming works. This section is splitted into two parts.

In Section 4.1 we consider the framework where f , g ∈ Γ 0 (H) with g differentiable on H. In that framework, we prove from the decomposition formula (3) that prox f +g is related to the classical Forward-Backward operator (see [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]Section 10.3 p.191] for details) denoted by FB f,g . Precisely, we prove in Proposition 4.1 that

prox f +g (x) = Fix FB f,g (x, •) ,
for all x ∈ H, where FB f,g (x, •) denotes a x-dependent generalization of the classical Forward-Backward operator FB f,g . We refer to Section 4.1 for the precise definition of FB f,g (x, •) that only depends on the knowledge of prox f and ∇g. From this point, one can develop a similar strategy as in Section 3. Precisely, for all x ∈ H, one can consider the algorithm y k+1 = FB f,g (x, y k ), denoted by (A 2 ), in order to compute numerically prox f +g (x), with the only knowledge of prox f and ∇g. Convergence proof (under some assumptions on f and g) of (A 2 ) should be the topic of a future work.

In Section 4.2 we turn back to our initial motivation, namely the sensitivity analysis of the parameterized variational inequality [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF]. Precisely, under some assumptions (see Proposition 4.3 for details), we derive from the decomposition formula (3) that if

u(t) := prox f +g (r(t)),
for all t ≥ 0, where f := ι K (where K ⊂ H is a nonempty closed convex subset) and where g ∈ Γ 0 (H) and r : R + → H are smooth enough, then

u (0) = prox ϕ f +ψg (r (0)),
where ϕ f := ι C (where C is a nonempty closed convex subset of H related to K) and where ψ g (x) := 1 2 D 2 g(u(0))(x), x for all x ∈ H. It should be noted that the assumptions of Proposition 4.3 are quite restrictive, raising open questions about their relaxations (see Remark 4.5). This also should be the subject of a forthcoming work.

Notations and basics

In this section we introduce some notations available throughout the paper and we recall some basics of convex analysis. We refer to standard books like [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF][START_REF] Hiriart-Urruty | Fundamentals of convex analysis[END_REF][START_REF] Rockafellar | Convex analysis[END_REF] and references therein.

Let H be a real Hilbert space and let •, • (resp. • ) be the corresponding scalar product (resp. norm). For every subset S of H, we denote respectively by int(S) and cl(S) its interior and its closure. In the sequel we denote by I : H → H the identity operator and by L x : H → H the affine operator defined by L x (y) := x -y, for all x, y ∈ H.

For a set-valued map A : H ⇒ H, the domain of A is given by

D(A) := {x ∈ H | A(x) = ∅}.
We denote by A -1 : H ⇒ H the set-valued map defined by

A -1 (y) := {x ∈ H | y ∈ A(x)}, for all y ∈ H. Note that y ∈ A(x) if and only if x ∈ A -1 (y), for all x, y ∈ H. The range of A is given by R(A) := {y ∈ H | A -1 (y) = ∅} = D(A -1 ).
We denote by Fix(A) the set of all fixed points of A, that is, the set given by

Fix(A) := {x ∈ H | x ∈ A(x)}.
Finally, if A(x) is a singleton for all x ∈ D(A), we say that A is single-valued.

For all extended-real-valued functions g : H → R ∪ {+∞}, the domain of g is given by dom(g

) := {x ∈ H | g(x) < +∞}.
Recall that g is said to be proper if dom(g) = ∅.

Let g : H → R∪{+∞} be a proper extended-real-valued function. We denote by g * : H → R∪{+∞} the conjugate of g defined by g * (y

) := sup z∈H { y, z -g(z)},
for all y ∈ H. Clearly g * is lower semicontinuous and convex.

We denote by Γ 0 (H) the set of all extended-real-valued functions g : H → R ∪ {+∞} that are proper, lower semicontinuous and convex. If g ∈ Γ 0 (H), we recall that g * ∈ Γ 0 (H) and that the Fenchel-Moreau equality g * * = g holds. For all g ∈ Γ 0 (H), we denote by ∂g : H ⇒ H the Fenchel-Moreau subdifferential of g defined by

∂g(x) := {y ∈ H | y, z -x ≤ g(z) -g(x), ∀z ∈ H},
for all x ∈ H. It is easy to check that ∂g is a monotone operator and that, for all x ∈ H, 0 ∈ ∂g(x) if and only if x ∈ argmin g. Moreover, for all x, y ∈ H, it holds that y ∈ ∂g(x) if and only if x ∈ ∂g * (y). Recall that, if g is differentiable on H, then ∂g(x) = {∇g(x)} for all x ∈ H.

Let A : H → H be a single-valued operator defined everywhere on H, and let g ∈ Γ 0 (H). We denote by VI(A, g) the variational inequality which consists of finding y ∈ H such that -A(y) ∈ ∂g(y), or equivalently, A(y), z -y + g(z) -g(y) ≥ 0, for all z ∈ H. Then we denote by Sol VI (A, g) the set of solutions of VI(A, g). Recall that if A is Lipschitzian and strongly monotone, then VI(A, g) admits a unique solution, i.e. Sol VI (A, g) is a singleton.

Let g ∈ Γ 0 (H). The classical proximal operator of g is defined by

prox g := (I + ∂g) -1 .
Recall that prox g is a single-valued operator defined everywhere on H. Moreover, it can be characterized as follows:

prox g (x) = argmin g + 1 2 • -x 2 = Sol VI (-L x , g),
for all x ∈ H. It is also well-known that Fix(prox g ) = argmin g.

The classical Moreau's envelope M g : H → R of g is defined by

M g (x) := min g + 1 2 • -x 2 ,
for all x ∈ H. Recall that M g is convex and differentiable on H with ∇M g = prox g * . Let us also recall the classical Moreau's decompositions

prox g + prox g * = I and M g + M g * = 1 2 • 2 .
Finally, it is well-known that if g = ι K is the indicator function of a nonempty closed and convex subset K of H, that is, ι K (x) = 0 if x ∈ K and ι K (x) = +∞ if not, then prox g = proj K , where proj K denotes the classical projection operator on K.

2 The f -proximal operator

Definition and main result

Let f , g ∈ Γ 0 (H). In this section we introduce (see Definition 2.1) a new operator denoted by prox f g , generalizing the classical proximal operator prox g . Assuming that dom(f ) ∩ dom(g) = ∅, and under the additivity condition ∂(f + g) = ∂f + ∂g, we prove in Theorem 2.8 that prox f +g can be written as the composition of prox f with prox f g .

Definition 2.1 (f -proximal operator). Let f , g ∈ Γ 0 (H). The f -proximal operator of g is the set-valued map prox f g : H ⇒ H defined by

prox f g := (I + ∂g • prox f ) -1 . (5) 
Note that prox f g can be seen as a generalization of prox g since prox c g = prox g for all constant c ∈ R.

Example 2.2. Let us assume that H = R. We consider f = ι [-1,1] and g(x) = |x| for all x ∈ R.

In that case we obtain that ∂g • prox f = ∂g and thus prox f g = prox g .

Example 2.2 provides a simple situation where prox f g = prox g while f is not constant. We provide in Propositions 2.13 and 2.15 some general sufficient (and necessary) conditions under which prox f g = prox g .

Example 2.3. Let us assume that H = R. We consider f = ι {0} and g(x) = |x| for all x ∈ R.

In that case we obtain that ∂g 1 for graphical representations of prox g and prox f g in that case. Example 2.4. Let us assume that H = R. We consider f (x) = g(x) = |x| for all x ∈ R. In that case we obtain that ∂g 2 for graphical representations of prox g and prox f g in that case.

• prox f (x) = [-1, 1] for all x ∈ R. As a consequence prox f g (x) = [x -1, x + 1] for all x ∈ R. See Figure
• prox f (x) = -1 for all x < -1, ∂g • prox f (x) = [-1, 1] for all x ∈ [-1, 1] and ∂g • prox f (x) = 1 for all x > 1. As a consequence prox f g (x) = x + 1 for all x ≤ -2, prox f g (x) = [-1, x + 1] for all x ∈ [-2, 0], prox f g (x) = [x -1, 1] for all x ∈ [0, 2] and prox f g (x) = x -1 for all x ≥ 2. See Figure
Examples 2.3 and 2.4 provide simple illustrations where prox f g is not single-valued. In particular it follows that prox f g cannot be written as a proximal operator prox ϕ for some ϕ ∈ Γ 0 (H). We provide in Proposition 2.18 some sufficient conditions under which prox f g is single-valued. Moreover, Examples 2.3 and 2.4 provide simple situations where ∂g • prox f is not a monotone operator. As a consequence, it may be possible that D(prox f g ) H. In the next proposition, a necessary and sufficient condition under which D(prox f g ) = H is derived. 

∂(f + g) = ∂f + ∂g, ( C 1 ) 
is satisfied.

Proof. We first assume that ∂(f + g) = ∂f + ∂g. Let x ∈ H. Defining w = prox f +g (x) ∈ H, we obtain that x ∈ w + ∂(f + g)(w) = w + ∂f (w) + ∂g(w). Thus, there exist w f ∈ ∂f (w) and w g ∈ ∂g(w) such that x = w + w f + w g . We define y = w + w f ∈ w + ∂f (w). In particular we have w = prox f (y). Moreover we obtain x = y + w g ∈ y + ∂g(w) = y + ∂g(prox f (y)). We conclude that y ∈ prox f g (x). Without any additional assumption and directly the definition of the subdifferential, one can easily see that the inclusion ∂f (w) + ∂g(w) ⊂ ∂(f + g)(w) is always satisfied for every w ∈ H. Now let us assume that D(prox f g ) = H. Let w ∈ H and let z ∈ ∂(f + g)(w). We consider x = w + z ∈ w + ∂(f + g)(w). In particular it holds that w = prox f +g (x). Since D(prox f g ) = H, there exists y ∈ prox f g (x) and thus it holds that x ∈ y + ∂g(prox f (y)). Moreover, since y ∈ prox f (y) + ∂f (prox f (y)), we get that x ∈ prox f (y) + ∂f (prox f (y)) + ∂g(prox f (y)) ⊂ prox f (y) + ∂(f +g)(prox f (y)). Thus it holds that prox f (y) = prox f +g (x) = w. Moreover, since x ∈ prox f (y)+ ∂f (prox f (y)) + ∂g(prox f (y)), we obtain that x ∈ w + ∂f (w) + ∂g(w). We have proved that z = x -w ∈ ∂f (w) + ∂g(w). This concludes the proof.

In most of the present paper, we will assume that Condition (C 1 ) is satisfied. It is not our aim here to discuss the weakest qualification condition ensuring that condition. A wide literature already deals with this topic (see, e.g., [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF][START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF][START_REF] Rockafellar | Convex analysis[END_REF]). However, we recall in the following remark the classical sufficient condition of Moreau-Rockafellar under which Condition (C 1 ) holds true (see, e.g., [2, Corollary 16.48 p.277]), and we provide a simple example where Condition (C 1 ) does not hold and D(prox f g ) H.

Remark 2.6 (Moreau-Rockafellar theorem). Let f , g ∈ Γ 0 (H) such that dom(f )∩int(dom(g)) = ∅.

Then ∂(f + g) = ∂f + ∂g.

Example 2.7. Let us assume that H = R. We consider f = ι R -and g(x) = ι R + (x) -√ x for all x ∈ R. In that case, one can easily check that dom(f ) ∩ dom

(g) = {0} = ∅, ∂f (0) + ∂g(0) = ∅ R = ∂(f + g)(0) and D(prox f g ) = ∅ H.
We are now in position to state and prove the main result of the present paper.

Theorem 2.8. Let f , g ∈ Γ 0 (H) such that dom(f ) ∩ dom(g) = ∅. If ∂(f + g) = ∂f + ∂g, then the decomposition formula prox f +g = prox f • prox f g ( 6 
)
holds true. In other words, for every x ∈ H, we have prox f +g (x) = prox f (z) for all z ∈ prox f g (x).

Proof. Let x ∈ H and let y ∈ prox f g (x) constructed as in the first part of the proof of Proposition 2.5. In particular it holds that prox f (y) = prox f +g (x). Let z ∈ prox f g (x). We know that x -y ∈ ∂g(prox f (y)) and x -z ∈ ∂g(prox f (z)). Since ∂g is a monotone operator, we obtain that

(x -y) -(x -z), prox f (y) -prox f (z) ≥ 0.
From the cocoercivity (see for instance [2, Definition 4.10 p.72]) of the proximal operator, we obtain that 0

≥ y -z, prox f (y) -prox f (z) ≥ prox f (y) -prox f (z) 2 ≥ 0.
We deduce that prox f (z) = prox f (y) = prox f +g (x). The proof is complete.

Remark 2.9. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅ and such that ∂(f + g) = ∂f + ∂g and let x ∈ H. Theorem 2.8 states that, even if prox f g (x) is not a singleton, all elements of prox f g (x) has the same value through the proximal operator prox f , and this value is equal to prox f +g (x).

Remark 2.10. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅. Note that the additivity condition ∂(f + g) = ∂f + ∂g is not only sufficient, but also necessary for the validity of the equality prox f +g = prox f • prox f g . Indeed, from Proposition 2.5, if ∂f + ∂g ∂(f + g), then there exists x ∈ H such that prox f g (x) = ∅ and thus prox f +g (x) = prox f • prox f g (x).

Remark 2.11. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅ and such that ∂(f + g) = ∂f + ∂g. From Theorem 2.8, we deduce that R(prox f +g ) ⊂ R(prox f ) ∩ R(prox g ). If the additivity condition ∂(f + g) = ∂f + ∂g is not satisfied, this remark does not hold true anymore. Indeed, with the framework of Example 2.7, we have R(prox f +g ) = {0} while 0 / ∈ R(prox g ).

Example 2.12. Following the idea of Y.-L. Yu in [18, Example 2], let us consider H = R and f (x) = 1 2 x 2 for all x ∈ R. Since prox γf = 1 1+γ I for all γ ≥ 0 and prox f f = 2 3 I, we retrieve that

1 3 I = prox 2f = prox f +f = prox f • prox f f = 1 3 I = 1 4 I = prox f • prox f ,
which illustrates Theorem 2.8.

Properties

Let f , g ∈ Γ 0 (H). We know that prox f g is a generalization of prox g in the sense that prox f g = prox g if f is constant for instance. In the next proposition, our aim is to provide more general sufficient (and necessary) conditions under which prox f g = prox g . We will base our discussion on the following conditions:

∀x ∈ H, ∂g(x) ⊂ ∂g(prox f (x)), (C 2 ) ∀x ∈ H, ∂g(prox f (x)) ⊂ ∂g(x). (C 3 )
Note that Condition (C 2 ) has been introduced by Y.-L. Yu in [START_REF] Yu | On decomposing the proximal map[END_REF] as a sufficient condition under which prox

f +g = prox f • prox g . Proposition 2.13. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅. (i) If Condition (C 2 ) is satisfied, then prox g (x) ∈ prox f g (x) for all x ∈ H.
(ii) If Conditions (C 1 ) and (C 3 ) are satisfied, then prox f g (x) = prox g (x) for all x ∈ H.

In both cases, Condition (C 1 ) is satisfied and the equality prox f +g = prox f • prox g holds true.

Proof. Let x ∈ H. If Condition (C 2 ) is satisfied, considering y = prox g (x), we get that x ∈ y + ∂g(y) ⊂ y + ∂g(prox f (y)) and thus y ∈ prox f g (x). In particular, it holds that D(prox f g ) = H and thus Condition (C 1 ) is satisfied from Proposition 2.5. Secondly, if Conditions (C 1 ) and (C 3 ) are satisfied, then D(prox f g ) = H from Proposition 2.5. Considering y ∈ prox f g (x), we get that x ∈ y + ∂g(prox f (y)) ⊂ y + ∂g(y) and thus y = prox g (x). The last assertion of Proposition 2.13 directly follows from Theorem 2.8.

In the first item of Proposition 2.13 and if prox f g is set-valued, we are in the situation where prox g is a selection of prox f g . Proposition 2.15 specifies this selection in the case where ∂(f + g) = ∂f + ∂g.

Lemma 2.14. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅. Then prox f g (x) is a nonempty closed and convex subset of H for all x ∈ D(prox f g ).

Proof. The proof of Lemma 2.14 is provided after the proof of Proposition 3.2 (required).

Proposition 2.15. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅ and such that ∂(f

+ g) = ∂f + ∂g and let x ∈ H. If prox g (x) ∈ prox f g (x), then prox g (x) = proj prox f g (x) (prox f +g (x)).
Proof. If prox g (x) ∈ prox f g (x), then x ∈ D(prox f g ) and thus prox f g (x) is a nonempty closed and convex subset of H from Lemma 2.14. Let z ∈ prox f g (x). In particular we have prox f (z) = prox f +g (x) from Theorem 2.8. Using the fact that x -prox g (x) ∈ ∂g(prox g (x)) and x -z ∈ ∂g(prox f (z)) = ∂g(prox f +g (x)) together with the monotonicity of ∂g, we obtain that

prox f +g (x) -prox g (x), z -prox g (x) = prox f +g (x) -prox g (x), (x -prox g (x)) -(x -z) ≤ 0. Since prox g (x) ∈ prox f g (x)
, we conclude the proof from the characterization of proj prox f g (x) .

Remark 2.16. Let f = ι {ω} with ω ∈ H and let g ∈ Γ 0 (H) such that ω ∈ int(dom(g)). Hence the additivity condition ∂(f + g) = ∂f + ∂g is satisfied from Remark 2.6. From Remark 2.11 and since prox f = proj {ω} , we easily deduce that R(prox f +g ) = {ω}. Let x ∈ H such that prox g (x) ∈ prox f g (x). From Proposition 2.15 we get that prox g (x) = proj prox f g (x) (ω).

If moreover ω = 0, we deduce that prox g (x) is the particular selection that corresponds to the element of minimal norm in prox f g (x) (also known as the lazy selection). The following example is in this sense.

Example 2.17. Let us consider the framework of Example 2.3. In that case, Conditions (C 1 ) and (C 2 ) are satisfied. We deduce from Proposition 2.13 that prox g (x) ∈ prox f g (x) for all x ∈ R. From Remark 2.16, we conclude that prox g (x) is exactly the element of minimal norm in prox f g (x) for all x ∈ R. This result is clearly illustrated by the graphs of prox g and prox f g provided in Figure 1.

Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅ and such that ∂(f + g) = ∂f + ∂g. From Theorem 2.8, one can easily see that, if prox f is injective, then prox f g is single-valued. Since the injection of prox f is too restrictive, other sufficient conditions under which prox f g is single-valued are provided from Theorem 2.8 in the next proposition.

Proposition 2.18. Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅ and such that ∂(f + g) = ∂f + ∂g. If either ∂f or ∂g is single-valued, then prox f g is single-valued. Proof. Let x ∈ H and let z 1 , z 2 ∈ prox f g (x)
. From Theorem 2.8, it holds that prox f (z 1 ) = prox f (z 2 ) = prox f +g (x). If the operator ∂f is single-valued, we obtain that z 1 = prox f +g (x) + ∂f (prox f +g (x)) = z 2 . If the operator ∂g is single-valued, we get x -z 1 = ∂g(prox f (z 1 )) = ∂g(prox f (z 2 )) = x -z 2 and thus z 1 = z 2 .

Relations with the Douglas-Rachford operator

Let f , g ∈ Γ 0 (H). The Douglas-Rachford operator DR f,g : H → H associated to f and g is usually defined by DR f,g (y) := y -prox f (y) + prox g (2prox f (y) -y), for all y ∈ H. We refer for instance to [2, Section 28.3 p.517] where details can be found on this classical operator.

One aim of this section is to study the relations between the f -proximal operator prox f g introduced in this paper and the Douglas-Rachford operator DR f,g . For this purpose, we introduce an extension DR f,g : H × H → H of the classical Douglas-Rachford operator defined by DR f,g (x, y) := y -prox f (y) + prox g (x + prox f (y) -y), for all x, y ∈ H. Note that DR f,g (y) = DR f,g (prox f (y), y) for all y ∈ H, and that the definition of DR f,g only depends on the knowledge of prox f and prox g .

Several characterizations of prox f g

Let f , g ∈ Γ 0 (H). In this subsection, our aim is to derive several characterizations of prox f g in terms of solutions of variational inequalities, of minimization problems and of fixed point problems (see Proposition 3.2). [2, Proposition 24.8 p.416]) and from Moreau's decompositions.

Lemma 3.1. Let f , g ∈ Γ 0 (H). It holds that DR f,g (x, •) = prox g * •Lx • prox f * , for all x ∈ H. Proof. Let x ∈ H. Lemma 3.1 directly follows from the equality prox g * •Lx = L x • prox g * • L x (see
Proposition 3.2. Let f , g ∈ Γ 0 (H). It holds that prox f g (x) = Sol VI (prox f , g * • L x ) = argmin (M f * + g * • L x ) = Fix(DR f,g (x, •)),
for all x ∈ H.

Proof. In this proof we will use standard properties of convex analysis recalled in Section 1.2. Let x ∈ H. One can easily prove that ∂(g

* • L x ) = -∂g * • L x . For all y ∈ H, it holds that y ∈ prox f g (x) ⇐⇒ x -y ∈ ∂g(prox f (y)) ⇐⇒ prox f (y) ∈ ∂g * (x -y) ⇐⇒ -prox f (y) ∈ ∂(g * • L x )(y).
Moreover, since dom(M f * ) = H and from Remark 2.6, we have

-prox f (y) ∈ ∂(g * • L x )(y) ⇐⇒ 0 ∈ ∇M f * (y) + ∂(g * • L x )(y) ⇐⇒ 0 ∈ ∂(M f * + g * • L x )(y).
Finally,

-prox f (y) ∈ ∂(g * • L x )(y) ⇐⇒ prox f * (y) ∈ y + ∂(g * • L x )(y) ⇐⇒ y = prox g * •Lx • prox f * (y).
This concludes the proof from Lemma 3.1.

Proof of Lemma 2.14. Let x ∈ D(prox f g ). In particular prox f g (x) is not empty. From Proposition 3.2, we have prox

f g (x) = argmin (M f * + g * • L x ). Since M f * + g * • L x ∈ Γ 0 (H),
one can easily deduce that prox f g (x) is closed and convex.

A weakly convergent algorithm that computes prox f g numerically

Let f , g ∈ Γ 0 (H). In this section, our aim is to derive from Proposition 3.2 an algorithm, that depends only on the knowledge of prox f and prox g , allowing to compute numerically an element of prox f g (x) for all x ∈ D(prox f g ). We refer to Algorithm (A 1 ) in Theorem 3.3. Moreover, if the additivity condition ∂(f + g) = ∂f + ∂g is satisfied, it follows from Theorem 2.8 that Algorithm (A 1 ) is an algorithm allowing to compute numerically prox f +g (x) for all x ∈ H with the only knowledge of prox f and prox g . Theorem 3.3. Let f , g ∈ Γ 0 (H) and let x ∈ D(prox f g ) be fixed. Then, Algorithm (A 1 ) given by y 0 ∈ H,

y k+1 = DR f,g (x, y k ), ( A 1 ) 
weakly converges to an element y * ∈ prox f g (x). Moreover, if dom(f ) ∩ dom(g) = ∅ and ∂(f + g) = ∂f + ∂g, it holds that prox f (y * ) = prox f +g (x).

Proof. From Lemma 3.1, DR f,g (x, •) coincides with the composition of two firmly non-expansive operators, and thus of two non-expansive and • prox f * ) = ∅. We conclude from [2, Theorem 5.23 p.100] that Algorithm (A 1 ) weakly converges to a fixed point y * of DR f,g (x, •). From Proposition 3.2, it holds that y * ∈ prox f g (x). Finally, if dom(f )∩dom(g) = ∅ and ∂(f + g) = ∂f + ∂g, we conclude that prox f (y * ) = prox f +g (x) from Theorem 2.8. Remark 3.4. As already mentioned in the introduction, it turns out that Algorithm (A 1 ) was already considered, up to some translations, and implemented in previous works (see, e.g., the socalled dual forward-backward splitting in [4, Algorithm 3.5]), showing that the f -proximal operator prox f g is already present (in a hidden form) and useful for numerical purposes in the existing literature. However, to the best of our knowledge, it has never been explicitly expressed in a closed formula such as [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] and neither been deeply studied from a theoretical point of view. Remark 3.5. Let us discuss with more details the relationship between the present work and the one proposed in [START_REF] Combettes | Dualization of signal recovery problems[END_REF]. Let x ∈ H. In [START_REF] Combettes | Dualization of signal recovery problems[END_REF]Proposition 3.4], the authors prove

that if v ∈ H is a solution to argmin (M f * • L x + g * ) (7) 
then prox f (x -v) = prox f +g (x). Combining this result with Proposition 3.2 easily constitutes an alternative proof of the new decomposition formula (6) derived in this paper. Moreover, in [4, Algorithm 3.5], the authors consider the so-called dual forward-backward splitting given by

v k+1 = prox g * (v k + prox f (x -v k )),
which is related to Algorithm (A 1 ) by setting y k = x -v k . From Proposition 3.2, the present work points out that the operator given in [START_REF] Ekeland | Analyse convexe et problèmes variationnels[END_REF] actually coincides, up to a translation, with a generalization of the classical proximal operator, that is exactly the f -proximal operator introduced and studied from a theoretical point of view in this paper. In this section we also prove that Algorithm (A 1 ) actually coincides with a fixed-point algorithm associated to a generalized version of the classical Douglas-Rachford operator.

Relations with the Forward-Backward operator

Let f , g ∈ Γ 0 (H) such that g is differentiable on H. In that situation, note that the additivity condition ∂(f + g) = ∂f + ∂g is satisfied from Remark 2.6, and that Proposition 2.18 implies that prox f g is single-valued. In that framework, the classical Forward-Backward operator FB f,g : H → H associated to f and g is usually defined by FB f,g (y) := prox f (y -∇g(y)), for all y ∈ H. We refer to [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]Section 10.3 p.191] for more details. Let us introduce the extension FB f,g : H × H → H defined by

FB f,g (x, y) := prox f (x -∇g(y)),
for all x, y ∈ H. In particular, it holds that FB f,g (y) = FB f,g (y, y) for all y ∈ H. The following result follows from the decomposition formula (6) in Theorem 2.8.

Proposition 4.1. Let f , g ∈ Γ 0 (H) such that g is differentiable on H. Then prox f +g (x) = Fix(FB f,g (x, •)),
for all x ∈ H.

Proof. Let x ∈ H. Firstly, let z = prox f +g (x) and let y = prox f g (x). In particular, we have x = y + ∇g(prox f (y)). From the decomposition formula (6), we get that z

= prox f (y) = prox f (x - ∇g(prox f (y))) = prox f (x -∇g(z)) = FB f,g (x, z). Conversely, let z ∈ Fix(FB f,g (x, •)), that is, z = prox f (x -∇g(z)
). Considering y = x -∇g(z), we have z = prox f (y) and thus x = y + ∇g(prox f (y)), that is, y = prox f g (x). Finally, from the decomposition formula (6), we get that z = prox f • prox f g (x) = prox f +g (x).

From Proposition 4.1, we retrieve the following classical result (see, e.g., [2, Proposition 26.1]).

Proposition 4.2. Let f , g ∈ Γ 0 (H) such that g is differentiable on H. Then

argmin f + g = Fix(FB f,g ). Proof. Let x ∈ H. It holds that x ∈ argmin f + g ⇐⇒ x = prox f +g (x) ⇐⇒ x ∈ Fix(FB f,g (x, •)) ⇐⇒ x = FB f,g (x, x) = FB f,g (x) ⇐⇒ x ∈ Fix(FB f,g ).
The proof is complete.

Let f , g ∈ Γ 0 (H) such that g is differentiable on H. The classical Forward-Backward algorithm x n+1 = FB f,g (x n ) is a powerful tool since it provides an algorithm, only requiring the knowledge of prox f and ∇g, that weakly converges (under some conditions on g, see [2, Section 28.5 p.522] for details) to a fixed point of FB f,g , and thus to a minimizer of f + g.

From Proposition 4.1, and for all x ∈ H, one can consider the algorithm (potentially weakly convergent) given by y 0 ∈ H, y k+1 = FB f,g (x, y k ), (A 2 ) in order to compute numerically prox f +g (x), with the only knowledge of prox f and ∇g. Convergence proof (under some assumptions on f and g) of Algorithm (A 2 ) should be the topic of a future work.

Application to sensitivity analysis for variational inequalities

As a conclusion of the present paper, we turn back to our initial motivation, namely the sensitivity analysis, with respect to a nonnegative parameter t ≥ 0, of some parameterized linear variational inequalities of second kind in a real Hilbert space H. More precisely, for all t ≥ 0, we consider the variational inequality which consists of finding u(t) ∈ K such that u(t), z -u(t) + g(z) -g(u(t)) ≥ r(t), z -u(t) , for all z ∈ K, where K ⊂ H is a nonempty closed and convex set of constraints, and where g ∈ Γ 0 (H) and r : R + → H are assumed to be given and smooth enough. The above problem admits a unique solution given by u(t) = prox f +g (r(t)), where f = ι K is the indicator function of K.

Our aim is to provide from Theorem 2.8 a simple and compact formula for the derivative u (0) under some assumptions (see Proposition 4.3 for details). Following the idea of F. Mignot in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] (see also [8, (i) r is differentiable at t = 0;

(ii) g is twice differentiable on H;

(iii) O v(0) is dense in C v(0) ;

(iv) u is differentiable at t = 0; 

for all f , g ∈ Γ 0 (H), where denotes finite composition of operators.

Then, let us consider the one-dimensional setting H = R with f (x) = g(x) = γ 2 x 2 for all x ∈ R and all γ ≥ 0. In that case prox f +g is the linear function with slope for all γ ≥ 0. We deduce from Equality (8) that

1 1 + 2γ = m i=1 λ i   n j=1 (b ij + c ij ) + a ij (1 + γ) + (d ij + e ij )(1 + γ) 2 1 + γ   ,
for all γ ≥ 0, where denotes now the classical finite product of real numbers. We get that

(1 + γ) n = (1 + 2γ) m i=1 λ i n j=1 (b ij + c ij ) + a ij (1 + γ) + (d ij + e ij )(1 + γ) 2 ,
for all γ ≥ 0. We easily deduce that the above polynomial equality can be extended to all γ ∈ R, and thus it raises a contradiction for γ = -1 2 .

Figure 1 :

 1 Figure 1: Example 2.3, graph of prox g in bold line, and graph of prox f g in gray.

Figure 2 :

 2 Figure 2: Example 2.4, graph of prox g in bold line, and graph of prox f g in gray.
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Remark 3.6. Let f , g ∈ Γ 0 (H) and let x ∈ D(prox f g ). Algorithm (A 1 ) consists in a fixed-point algorithm from the characterization given in Proposition 3.2 by prox f g (x) = Fix(DR f,g (x, •)). Actually, one can easily see that Algorithm (A 1 ) also coincides with the well-known Forward-Backward algorithm (see [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]Section 10.3 p.191] for details) from the characterization given in Proposition 3.2 by prox f g (x) = argmin (M f * + g * • L x ). Indeed, we recall that M f * is differentiable with ∇M f * = prox f . We also refer to Section 4.1 for a brief discussion about the Forward-Backward algorithm.

Recovering a classical result from the decomposition formula

Let f , g ∈ Γ 0 (H) with dom(f ) ∩ dom(g) = ∅ and such that ∂(f + g) = ∂f + ∂g. Our aim in this section is to recover in a simple way, with the help of the decomposition formula (6), the well-known equality argmin f + g = prox f (Fix(DR f,g )).

This result can be found for example in [2, Proposition 26.1].

Proof. Let y ∈ Fix(DR f,g ). Then y ∈ Fix(prox f g • prox f ) from Lemma 3.7. Thus y ∈ prox f g • prox f (y). From the decomposition formula (6), we get that prox f (y) = prox f +g (prox f (y)) and thus prox f (y) ∈ argmin f + g.

. The proof is complete.

Some other applications and forthcoming works

This section can be seen as a conclusion of the paper. Its aim is to provide a glimpse of some other applications of our main result (Theorem 2.8) and to raise open questions for forthcoming works. This section is splitted into two parts.

Proof. Note that v is differentiable at t = 0 with v (0) = r (0) -D 2 g(u(0))(u (0)).

Note that prox f g is single-valued from Proposition 2.18 and Remark 2.6. From the decomposition formula (6) in Theorem 2.8, one can easily obtain that v(t) = prox f g (r(t)), and thus

, we use the asymptotic expansion of F. Mignot [10, Theorem 2.1 p.145] and we obtain that

We deduce that

Since g is convex and since C v(0) is a nonempty closed convex subset of H, we deduce that ϕ f , ψ g ∈ Γ 0 (H). Moreover ∂(ϕ f + ψ g ) = ∂ϕ f + ∂ψ g from Remark 2.6 and prox

ψg is single-valued from Proposition 2.18. It also should be noted that ∇ψ g = D 2 g(u(0)). As a consequence, we have obtained that

ψg (r (0)). We conclude the proof from the equality u (0) = prox ϕ f (v (0)) and from Theorem 2.8. Remark 4.4. Proposition 4.3 provides an expression of u (0) in terms of the proximal operator of a sum of two proper, lower semicontinuous and convex functions. Hence, it could be numerically computed from Algorithm (A 1 ), requiring the knowledge of proj C v(0) and prox ψg . Alternatively, if the convergence is proved, one can also consider Algorithm (A 2 ) requiring the knowledge of proj C v(0) and ∇ψ g = D 2 g(u(0)).

Remark 4.5. The relaxations in special frameworks of the assumptions of Proposition 4.3 should be the subject of future works. In particular, it would be relevant to provide sufficient conditions ensuring that u is differentiable at t = 0. A promising idea in this sense is to invoke the concepts of twice epi-differentiability and proto-differentiability introduced by R.T. Rockafellar in [START_REF] Rockafellar | Maximal monotone relations and the second derivatives of nonsmooth functions[END_REF][START_REF] Rockafellar | Proto-differentiability of set-valued mappings and its applications in optimization[END_REF].

The application of Proposition 4.3 in the context of some shape optimization problems with unilateral contact and friction is the subject of a forthcoming research paper (work in progress).

A A nonexistence result for a closed formula

The aim of the present appendix is to prove that there is no closed formula, independent of f and g, allowing to write prox f +g as a linear combination of compositions of linear combinations of I, prox f , prox g , prox -1 f and prox -1 g . For this purpose, let us introduce the elementary operator P µ f,g : H ⇒ H defined by P µ f,g := a I + b prox f + c prox g + d prox -1 f + e prox -1 g ,