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Abstract—Mobile networked robots are distributed systems
controlled by a distant station i.e, the controller is implemented
on a control station. The main mission of the mobile robot is
reaching a target position starting from an initial one while
receiving the instructions from the control station via a wireless
network. The wireless network is characterized by a stochastic
behavior and is sensitive to perturbations. The unreliability
of wireless networks does not guarantee data transmission
between system components (the robot and the station) which can
cause system performance degradation. A distributed Bayesian
Network (BN) was proposed in previous work to monitor and
diagnose the system performance and to model causal uncertain-
ties between failures. The developed BN is a modular Bayesian
Network (MBN) which is composed of three Bayesian modules
shared between the robot and the control station. In the case of
system performance degradation because of a bad network state,
the robot switches to embedded controller implemented on-board
(autonomous behavior). The distributed diagnosis architecture
must be updated and the diagnosis tool becomes embedded on
the robot. A procedure of BNs assembly is described in this
work in order to implement one monolithic BN on-board. The
obtained monolithic BN is the result of combining two Bayesian
modules from the modular Bayesian Network: the control and
the operative Bayesian modules.

I. INTRODUCTION

A Wireless Networked Control System (WNCS) is com-
posed of a number of distributed nodes (controllers, sensors
and actuators), each of which collaborates in order to ac-
complish a mission. The communication between the WNCS
components is insured by a wireless network. Such a network
presents a number of advantages such as flexibility, lack
of wiring, mobility and fast deployment [6]. However, the
stochastic behavior of such networks does not guarantee a
reliable communication between nodes, which can lead to
problems that affect the Wireless Networked Control System
(WNCS) performance as proved in [17]. Placing a wireless
network between the WNCS nodes i.e, integrating it into the
control loop, can generate performance and quality of control
(QoC) degradation and instability because of the network
quality of service (QoS) degradation [17], [8]. Networked
mobile robots, as WNCS, have been increasingly deployed in
a large number of applications. Such systems add more chal-
lenges like loss of connectivity because of the robots mobility,
memory and calculation limitations and energy consumption
constraints. A distributed diagnosis has become essential for a
system having the constraints and problems explained above.
A Bayesian Network (BN) for diagnosis of wireless networked
mobile robot was consequently proposed in our work [14] to

avoid performance degradation. The mobile robot is controlled
via a wireless network by a control station in order to achieve
a target solution. The developed BN is characterized by a
multilayer structure that many works [1], [2], [13], [16] have
proved its efficiency in a diagnosis procedure. Besides, the BN
is distributed between the system nodes to have a Modular
Bayesian Network (MBN). This distributed architecture is
adopted to reduce the on-board processing overhead (i.e.
load calculations, memory consumption) on the robot and
because of the incomplete vision about the environment from
both robot and station sides. The developed MBN is able to
determine the cause of Quality of Control (QoC) degradation
for a networked mobile robot, whether it comes from the
robot internal state, the network or the controller. Based on
the QoC state and the network Quality of Service (QoS)
state, the remote station can order the robot to switch to its
embedded controller to maintain the system in a good state.
In this case, the robot is no more connected to the station. It
becomes independent of the station until it finds a new one
that guarantees a good QoS and potentially a better QoC. The
network state does not impact the system performance after
switching to embedded controller. The diagnosis architecture
must be updated to be conform to the system structure and
behavior. There are three Bayesian modules, in the proposed
MBN, communicating via virtual linking between shared
nodes [4]: the control module, the operative module and the
network module as explained in [14]. When the robot becomes
autonomous, the network module does not take part in the
diagnosis procedure anymore.

In this paper, we propose a procedure to assembly two modules
(control and operative modules) of the developed MBN to be
implemented in a monolithic BN structure on the robot after
switching to embedded controller. This diagnosis architecture
update must also take into consideration QoS node elimination
from the QoC parents set as we will explain later. This
structure update is a solution to save the information about
the robot and its mission until it finds a new control station.
The case study is a simulated networked mobile robot moving
toward a target position. When the networked robot switches
to the embedded controller (autonomous behavior), the QoS
node is removed from the control Bayesian subnet. The control
Bayesian module and the operative Bayesian module are as-
sembled and combined in one Bayesian structure implemented
on the robot. The assembly procedure is described in this work.
The paper is organized as follows. Section 2 presents some



basics review of BNs and MBN. Section 3 describes the
procedure of BNs assembly. Section 4 is dedicated to diagnosis
architecture reconfiguration procedure (from distributed to
embedded structure). Finally, conclusions and perspectives are
given in section 6.

II. BACKGROUND
A. Bayesian Networks

Definition: BNs are acyclic directed graphs representing
probabilistic causal dependencies between random variables
[12]. These dependencies are a set of edges linking the nodes
corresponding to a set of variables (discrete/continuous). The
causal relationship is represented by the conditional probabil-
ity of the variable knowing the state of its parents nodes. Let
G = (V,E) be an acyclic directed graph corresponding to
a BN where V is the set of random variables associated to
the graph nodes and F is the set of directed edges. The joint
probability distribution in a BN is expressed as following [10]:

n

P(V1,Va, ., V) = [ [ p(Vilpa(V7)) (D

i=1

where pa(V;) is the set of V; parents.

D-separation property: the D-separation property describes
the conditional independence between the BN variables. Let
X,Y and Z a set of variables in G. X and Y are d-separated
by Z (X L Y|Z) means that Z blocks the information path
between X and Y. It implies that knowing the state of X
(apply a hard evidence on X') does not change our knowledge
about Y state. For all paths between X and Y in serial or
diverging connection, if Z undergoes a hard observation, the
information circuit between X and Y is blocked. Meanwhile,
in case of converging connection, if neither Z nor any of its
descendants has received evidence, the information path is not
open between X and Y.

The d-separation property allows to reduce the computation
time in the inference algorithm in BNs which is useful for
inference optimization in MBNs.

B. Modular Bayesian Network

MBN is the efficient solution for diagnosis of physically
distributed systems and is adequate to model and map between
observations coming from different domains [11]. Local causal
dependencies related to a specific sub-domain can be repre-
sented by local BN which is defined as a BN module. The set
of BN modules, collaborating with each other for the same
objective, is called MBN. The contribution in [11] proposed
a modular bayesian structure whose BN modules communi-
cate with posterior marginal probabilities via shared nodes.
This solution reduces constraints and dependencies between
BN modules in the inference procedure unlike the Multiply
Sectioned Bayesian Network (MSBN) in [19]. However, the
inference policy enforces a unique direction of beliefs sharing
making BN modules in an hierarchical structure [11]: each
BN module is inferred sequentially from the low level to
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Fig. 1. Modular Bayesian Network

the high level [5]. Another work [4] proposes a MBN as
a solution for complex and large scale systems in order to
reduce computational complexity. It is designed for mobile
environment and devices with resource limitations. MBN,
as defined in [4] and then in [5] and [7], guarantees more
extensibility and efficiency. Besides, it is possible to reuse BN
modules in different applications.
MBN is a distributed Bayesian structure obtained by divid-
ing one large BN into several Bayesian modules using the
modularization procedure detailed in [4]. The modularization
consists in defining the modules by selecting the corresponding
variables to each domain. An acyclic sub-graph is then built
for each module based on the global acyclic graph of the
monolithic BN. Each obtained BN module is thus a sub-
graph of the monolithic BN. A Bayesian Module has the same
corresponding conditional probability tables (CPTs) definition
as the monolithic BN. Every Bayesian module (Bayesian sub-
net) presents a sub-domain of the global system and shares
variables (set of nodes) with other Bayesian subnets. Finally,
MBN (2 is defined as following [5]:
o 2-tuple (¥, R) where U is the set of BN modules in §2
and R represents the causality between the BN modules.
e Two modules ¥, = ((V;,E;),P;) and ¥; =
((V}, Ej), P;), where P; and P; correspond to the lo-
cal probability distributions of W; and W; respectively,
have influence on each other if there is a link R =
{(W;,¥;)|i # j,V;NV; # 0} representing a causal-effect
dependency between two modules as shown in figure 1.
The d-separation property between BN modules is similar to
the d-separation concept between nodes in a BN for the three
types of connection. ¥; and ¥, are d-separated by the shared
node S means that any changes in ¥, or ¥; do not affect the
other connected module. BN inference algorithm is used for
inference in MBN structure. The inference in MBN is a two-
step inference. The first step consists in applying hard evidence
in every Bayesian Module. The result of the first step inference
is then communicated between the connected modules. Virtual
nodes are added as a child to every shared node to pass
information between the BN modules as explained in [5].
The virtual node has two possible states; yes and no and its
CPT is defined according to the received soft evidence of the
shared variable. A hard evidence is then applied on the virtual



node and the BN module performs a second inference. If two
connected modules ¥; and ¥; are d-separated, there is no need
to re-inference the other module e.g W; because the changes
in ¥; do not affect ¥ ;.

III. BAYESIAN NETWORKS ASSEMBLY

In order to assembly BN modules into one monolithic BN,
we have to verify that the assembled BN can satisfy globally
correct inference. Our assembly procedure is inspired from
the work in [11] that consists in checking the global correct
inference to construct its MBN. We use the method of [11]
not to build the MBN but to assembly the BN modules of our
previous work [14] developed using the algorithm construction
of MBN in [5]. The MBN construction procedure as described
in [5] must guarantee that the corresponding monolithic BN
is an acyclic graph and the algorithm in [11] ensures a global
correct inference by constructing a correct inference graph
from the BN modules. The assembly procedure adds the
dependencies constraints that [S] simplifies in the distributed
MBN. Two Bayesian modules can be assembled into one
monolithic BN if they construct an inference graph that
satisfies coherent message passing (inference algorithm). Let
C ={Cy,Cy,...,Cy,} be the set of clusters each corresponding
to a BN module in the MBN and S = {S;;|1 < i <
n,1 < j < n,i # j} devote the set of separators between
the clusters where S; ; = C;NC; # () as defined in [11]. The
Bayesian Modules communicate via the shared nodes (V;NV})
as explained above by passing marginal posterior probabilities.
The inference graph Gip ference = (C, S) is by definition [11]
a graph that contains all the set of separators corresponding
to shared nodes passing the posterior marginal probabilities
between BN modules. Let ¥; and ¥; be two BN modules
to be assembled, corresponding to DAGs G; = (V;, E;) and
G; = (Vj, E;) such that G; NG # (). The inference graph is
composed of the two clusters corresponding to each Bayesian
module and their separators. An important step of the assembly
procedure is to find the cycles set ¥ in the obtained BN and
eliminate them in order to build an acyclic cluster graph that
can support a global inference [11]:

« Elimination of separator: if a set of clusters create a cycle
i.e, ¥ # () because of a redundant separator or variable,
remove the smallest separator between clusters belonging
to X knowing that this separator is contained in all the
set of separators between clusters in cycle. The smallest
separator is composed of one variable shared between
clusters.

o Elimination of the variable: if the cycle is not created
because of a redundant separator or variable, the cycle
is eliminated by removing a variable from all the cycle
separators and clusters.

After eliminating the cycles to obtain the adequate inference
graph, the remaining shared nodes are called d-sepnode in
the monolithic BN because all the parents of the shared node
are defined in one BN module in the MBN structure [11].
Consequently, the conditional probability distributions defined
in the monolithic BN and in the MBN are the same.
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Fig. 2. Modular Bayesian Network for diagnosis of a networked mobile robot
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IV. DIAGNOSIS ARCHITECTURE UPDATE

Our previous work [14] proposed a diagnosis solution for
a distributed system: a networked mobile robot controlled
by a control station. A collaborative and distributed BN
was developed to maintain the robot in an operational state
and lead it to its target position. The MBN developed in
[14] is composed of three Bayesian modules as shown in
figure 2: the control module, the operative module and the
network module. Once the QoC becomes bad because of
a bad QoS (after inferring the diagnosis result), the station
orders the robot to switch to embedded controller. The robot
becomes autonomous and independent of the control station.
The diagnosis architecture must thus be updated to be adequate
to the new system structure and behavior. The network module
does not take part of the diagnosis procedure anymore and
the network state does not affect the system performance. The
causal dependency between QoS and QoC is thus removed
from the control module as shown in figure 3 which imply
eliminating the QoS variable from the QoC parents set. A
monolithic BN, implemented on-board, is then used combining
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the control module and the operative module as shown in
figure 4. The QoC conditional probability distribution must
be reconfigured because the QoC state depends only on the
robot and the controller states. The assembly procedure defined
in the previous section is used to assembly the operative
module and the control module such that the robot state node
(the shared node) becomes the d-sepnode in the monolithic
BN. The simulation scenario in figure 5 represents the robot
mission dynamic. The robot mission is to achieve a target
position (15,15) starting from the initial position (0,0).
Truetime toolbox (2.0 version) [3] is used to simulate the
networked system while BNT toolbox [9] is used for BN
implementation. The robot receives control data from the first
station whose position is (1,1). The network conditions in the
network are bad because of a high packet loss rate (packet
loss rate=90%). This degradation in the network conditions
affects the system behavior as shown in figure 5 i.e, the robot
does not navigate toward the target position (15,15) and it
deviates from the goal. This deterioration in system behavior
is observed in position (X,Y) = (0.01,1.33) (see figure 5).
The control module in the MBN receives hard evidences on
observation nodes such that P(stability = no) = 1 and
P(positionerror = mnodecrease) = 1. This degradation
corresponds to posterior probabilities P(QoC = bad) = 1,
P(QoS = bad) = 0.87 after setting hard evidences on the
corresponding observations nodes. Using the MBN diagnosis
output and the decision making algorithm defined in [14],
the robot switches to embedded controller as shown in figure
5 because the system performance degradation is caused by
a bad QoS. At this point, we have [P(robot = good) =
0.74, P(robot = degraded) = 0.11, P(robot = bad) = 0.15.
Before assembling the control and the operative modules, the
QoS node must be removed from the QoC conditional proba-
bilities table. In order to determine the new QoC conditional
probability distribution from the previous one, we use the
following equation for each QoC state knowing the states of
the robot and the controller:

P(QoC|R,C) =Y P(QoC|R,C,QoS) )
QoS

where R and C refer to the robot state and the controller state
respectively.
The parents of the shared node Robot state are all defined in
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one module corresponding to a cluster. The control module is
the second cluster in the clusters graph and the robot state
is the d-sepnode that guarantee a global inference in the
monolithic BN. Assembling the two clusters corresponding
to the control and the operative modules, we obtain two
clusters C; = {battery level, left motor, right motor, sensor
states, Wlepror, Wrerror, variation values, robot state} and
Cy = {controller type, CPU load, controller, robot state,
QoC, distance robot-obstacle, stability, position error} with
a separator S = {robot state}. No cycle appears in the cluster
graph corresponding to the monolithic BN of figure 4 and
there is not need to use separator or variable elimination.

V. CONCLUSION

A collaborative and distributed diagnosis is the good solu-
tion for distributed systems to optimize the computations and
communications resources. Our system dynamic is susceptible
to change while moving toward its goal. The communication
between the robot and the control station could be interrupted
and the robot switches to its embedded controller (the on-board
controller). Switching from distributed to embedded controller
implies that a diagnosis configuration must be considered in
order to adapt the new system architecture. The proposed
MBN (the distributed BN) is adapted to the new system
architecture and so the diagnosis method is updated so that
we have a monolithic BN. The obtained monolithic BN is the
result of the assembly procedure of two bayesian modules: the
control Bayesian module and the operative one. The assembly
procedure consists in restoring the dependencies between the
bayesian modules by verifying the cluster graph structure. We
check the cluster graph structure to avoid having cycles in
the inference graph of the monolithic BN and to ensure a
global inference which is mandatory. This step is important
to maintain the continuity of the system mission and so its
monitoring. In addition, removing the QoS node from the QoC
parents set is considered in order to have an adequate diagnosis
tool which is conform to the system behavior and architecture.
The switching from embedded to distributed BN has been
studied in another work [15]. Besides, the distributed diagnosis
method will be extended to the case of a system composed of
multiple networked robots controlled by a control station.



REFERENCES

[1] Bottone, S., Lee, D., O’Sullivan, M., and Spivack, M. (2008). Failure
prediction and diagnosis for satellite monitoring systems using Bayesian
networks. In Military Communications Conference, 2008. MILCOM
2008. IEEE (pp. 1-7). IEEE.

[2] Cheng, Y., Xu, T., and Yang, L. (2013). Bayesian network based fault
diagnosis and maintenance for high-speed train control systems. In Qual-
ity, Reliability, Risk, Maintenance, and Safety Engineering (QR2ZMSE),
2013 International Conference on (pp. 1753-1757). IEEE.

[3] Cervin, A., Henriksson, D., and Ohlin, M. (2009). TrueTime 2.0Oreference
manual. Technical Report.

[4] Hwang, K. S., and Cho, S. B. (2009). Landmark detection from mobile
life log using a modular Bayesian network model. Expert Systems with
Applications, 36(10), 12065-12076.

[5] Lee, S. H., Yang, K. M., and Cho, S. B. (2015). Integrated modular
Bayesian networks with selective inference for context-aware decision
making. Neurocomputing, 163, 38-46.

[6] Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F,, and Wang, S. (2015).
A review of industrial wireless networks in the context of industry 4.0.
Wireless Networks, 1-19.

[7] Lim, S., Lee, S. H., and Cho, S. B. (2016). A modular approach to
landmark detection based on a Bayesian network and categorized context
logs. Information Sciences, 330, 145-156.

[8] Mechraoui, A. (2010). Co-conception d’un systme command en rseau
sans fil I’aide de rseaux baysiens distribus (Doctoral dissertation, Institut
National Polytechnique de Grenoble-INPG).

[9] Murphy, K. (2001). The bayes net toolbox for matlab. Computing science
and statistics, 33(2), 1024-1034.

[10] Naim, P, Wuillemin, P. H., Leray, P., Pourret, O., and Becker, A. (2011).
Réseaux bayésiens. Editions Eyrolles.

[11] Oude, P. (2010). Modular Bayesian networks: reasoning, verification and
model inaccuracies.

[12] Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Palo Alto.
Morgan Kaufmann. PEAT, J., VAN DEN BERG, R., and GREEN, W..
Changing prevalence of asthma in australian children. British Medical
Journal, 308, 1591-1596.

[13] Przytula, K. W., and Choi, A. (2007). Reasoning framework for diag-
nosis and prognosis. In Aerospace Conference, 2007 IEEE (pp. 1-10).
IEEE.

[14] Sassi, 1., Gouin, A., and Thiriet, J. M. (2016). A Bayesian network
for diagnosis of networked mobile robots. Risk, Reliability and Safety:
Innovating Theory and Practice: Proceedings of ESREL 2016 (Glasgow,
Scotland, 25-29 September 2016), 340.

[15] Sassi, 1., Gouin, A., and Thiriet, J. M. (2017). Diagnosis architecture
reconfiguration for a networked mobile robot. Submitted to ESREL 2017
(Portoroz, Slovenia, 18-22 June 2017).

[16] Schumann, J., Mbaya, T., and Mengshoel, O. J. (2012). Software and
system health management for autonomous robotics missions. Proc. of
i-SAIRAS 2012.

[17] Simon, D., Song, Y. Q., and Aubrun, C. (2013). Co-design approaches
to dependable networked control systems. John Wiley and Sons.

[18] Zhang, L., Gao, H., and Kaynak, O. (2013). Network-induced constraints
in networked control systemsa survey. IEEE transactions on industrial
informatics, 9(1), 403-416.

[19] Xiang, Y., and Lesser, V. (2000). Justifying multiply sectioned Bayesian
networks. In MultiAgent Systems, 2000. Proceedings. Fourth Interna-
tional Conference on (pp. 349-356). IEEE.



