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Diagnosis architecture reconfiguration for a networked mobile robot

I. Sassi, A. Gouin & JM. Thiriet
Univ. Grenoble Alpes, CNRS, Gipsa-Lab, F-38000 Grenoble, France

ABSTRACT: Wireless networked robots are mobile systems communicating to a control station via a wire-
less network. These robots move in a distributed infrastructure while receiving orders from control stations
to reach their target. A distributed and collaborative diagnosis architecture is a good solution to monitor and
diagnose the different components behavior of such distributed system due to the unreliability of wireless net-
works. Modular Bayesian Network (MBN), as a distributed Bayesian Network, can manage causal uncertain
factors (stochastic failures dependencies) and infer information coming from different environments and from
devices having memory and calculation limitations. MBN was proposed in our previous work for distributed
and collaborative diagnosis. However, the robots can receive orders to switch to autonomous operating mode
or to a good performing network (a new control station) to avoid system performance degradation. The robot
is no more connected to the station of origin. The diagnosis strategy must consequently be updated. This paper
proposes a procedure to reconfigure the diagnosis architecture and the MBN when the mobile robot changes its
operating mode i.e, switching from embedded controller to distant controller.

1 INTRODUCTION

Distributed control and diagnosis have become essen-
tial for systems having memory and calculation lim-
itations and energy consumption constraints like in
the case of mobile robotic systems. Networked mo-
bile robots have been increasingly deployed in a large
number of applications. A wireless network provides
the communication between the mobile robot and the
control station where the diagnosis and decision mak-
ing results are made. Using wireless networks offers
advantages like flexibility, lack of wiring, mobility
and fast deployment (Li et al. 2015). However, the
stochastic behavior of such networks does not guar-
antee a reliable information transmission, which can
lead to problems that affect the Wireless Networked
Control System (WNCS) performance as proved in
(Simon et al. 2010).
A Bayesian Network (BN) for diagnosis of wireless
networked mobile robot was consequently proposed
in our previous work (Sassi et al. 2016) to avoid per-
formance degradation. The proposed BN multilayer
structure was inspired from many BN for diagnosis
such as Przytula and Choi (2007) model. Besides,
we introduced a Modular Bayesian Network (MBN)
as a distributed diagnosis method to reduce the on-
board processing overhead (i.e. load calculations) on
the robot and because of the incomplete vision about
the environment from both robot and station sides.
The proposed MBN permits to determine the cause

of Quality of Control (QoC) degradation for a net-
worked mobile robot, whether it comes from the robot
internal state, the network or the controller. Based
on the QoC state and the network Quality of Service
(QoS) state, the remote station can order the robot to
switch to its embedded controller to maintain the sys-
tem in an operational state. In this case, the robot is
no more connected to the station. It becomes totally
independent of the station until it finds a new one that
guarantees a good QoS and potentially a better QoC.
The network state does not impact the system perfor-
mance after switching to embedded controller. The di-
agnosis architecture must thus be updated. There are
three Bayesian modules, in the proposed MBN, com-
municating via virtual linking between shared nodes
(Hwang and Cho 2009): the control module, the op-
erative module and the network module as explained
in (Sassi et al. 2016). When the robot becomes au-
tonomous, the network module does not take part
in the diagnosis procedure anymore. Once it finds
a new control station, the network module must be
reintegrated. Our study objective is to define a pro-
cedure to switch from a monolithic BN (singly con-
nected Bayesian structure) to a distributed BN (modu-
larized Bayesian structure). Besides, BN modules can
be included in the global Bayesian network (or re-
moved) and consequently shared nodes are added (or
removed) in a Bayesian module. Conditional proba-
bilities tables must be updated in order to adjust the
new BN structure. The extension of the probability ta-



ble in the reconfiguration procedure is inspired from
the extension and combination phase of the BNs con-
sensus procedure in (Hu and Wang 2013). The joint
probabilities distributions extension is studied in or-
der to define the combination procedure.
The case study is a simulated networked mobile robot
moving toward a target position. The mobile system
can be autonomous or connected to a control station.
In this work, when the networked robot switches to
the embedded controller (autonomous behavior), the
QoS node is removed from the control Bayesian sub-
net. The control Bayesian module and the operative
Bayesian module are assembled and combined in one
Bayesian structure implemented on the robot. The
network Bayesian module and the QoS node are rein-
tegrated once the robot finds a new station. The rein-
tegration method will be detailed in this work.
The paper is organized as follows. Section 2 presents
some review basics of BNs and MBN. Section 3 de-
scribes the procedure of BNs quantitative and qualita-
tive extension. Section 4 is dedicated to diagnosis ar-
chitecture reconfiguration procedure. A combination
and diagnosis reconfiguration scenario is presented in
section 5. Finally, conclusions and perspectives are
given in section 6.

2 BACKGROUND

2.1 Bayesian Networks

BNs are directed acyclic graphs that represent causal
relationships between a set of random variables
(Pearl 1988). The causal dependencies are presented
by edges between the nodes corresponding to dis-
crete/continuous variable. Each node is associated
with a probability distribution. The causal relation-
ship is represented by the conditional probability table
of a variable knowing the state of its parents nodes.
Let G = (V,E) be a directed acyclic graph (DAG)
where V is the set of variables and E is the set of
edges in the BN. The joint probability distribution
corresponding to the BN variables can be written as
follows:

P (V1, V2, .., Vn) =
n∏

i=1

p(Vi|pa(Vi)) (1)

where pa(Vi) is the set of Vi parents.
The d-separation in a BN is a rule to describe the con-
ditions where the information is blocked between two
distinct variables (nodes) X and Y . There are three
types of connections between BN nodes (Naı̈m et al.
2007): serial, converging and diverging connections.
X and Y are d-separated by Z means that Z blocks
the information path between X and Y . It implies that
knowing the state of X (apply a hard evidence on X)
does not change our knowledge about Y state. For all
paths between X and Y in serial or diverging con-
nection, if Z is instantiated, the information circuit

between X and Y is blocked. Meanwhile, in case of
converging connection, if neither Z nor any of its de-
scendants has received evidence, the information path
is not open between X and Y . The d-separation prop-
erty is useful to optimize the computation complexity
in the inference procedure in MBNs as explained later
in section 2.2.

2.2 Modular Bayesian Networks

Hwang and Cho (2009) proposes a MBN as a solu-
tion for complex and large scale systems in order to
reduce computational complexity. It is designed for
mobile environment and devices with resource lim-
itations. MBN, as defined in (Lee et al. 2015) and
(Lim et al. 2016), guarantees more extensibility and
efficiency. Besides, it is possible to reuse BN mod-
ules in different applications. MBN is a distributed
Bayesian structure obtained by dividing one large BN
into several Bayesian modules using the modulariza-
tion procedure detailed in (Hwang and Cho 2009).
The modularization consists in defining the modules
by selecting the corresponding variables to each do-
main. An acyclic sub-graph is then built for each mod-
ule based on the global acyclic graph of the mono-
lithic BN. Each obtained BN module is thus a sub-
graph of the monolithic BN. Bayesian Modules has
the same conditional probability tables (CPTs) def-
inition as the monolithic BN. Every Bayesian mod-
ule (Bayesian sub-net) presents a sub-domain of the
global system and shares variables (set of nodes) with
other Bayesian subnets. Finally, MBN Ω is defined as
following (Lee et al. 2015):

• 2-tuple (Ψ,R) where Ψ is the set of BN modules
in Ω and R represents the causality between the
BN modules.

• Two modules Ψi = ((Vi,Ei), Pi) and Ψj =
((Vj,Ej), Pj) have influence on each other if
there is a link R = {(Ψi,Ψj)|i 6= j, Vi ∩ Vj 6= ∅}
representing a causal-effect dependency between
two modules.

The d-separation property between BN modules is
similar to the d-separation concept between nodes in
a BN for the three types of connection. Ψi and Ψj

are d-separated by the shared node S means that any
changes in Ψi or Ψj do not affect the other connected
module. BN inference algorithm is used for inference
in MBN structure. The inference in MBN is a two-
step inference. The first step consists in applying hard
evidence in every Bayesian Module. The result of the
first step inference is then communicated between the
connected modules. Virtual nodes are added as a child
to every shared node to pass information between the
BN modules as explained in (Hwang & Cho 2009).
The virtual node has two possible states; yes and no
and its CPT is defined according to the received soft
evidence of the shared variable. A hard evidence is



then applied on the virtual node and the BN mod-
ule performs a second inference. If two connected
modules Ψi and Ψj are d-separated, there is no need
to re-inference the other module e.g Ψj because the
changes in Ψi do not affect Ψj .

3 BAYESIAN NETWORKS COMBINATION
PROCEDURE

Consensus BNs is the result of combining several
BNs learned from different experts or data bases.
Combination in consensus consists in combination of
graph models and aggregation of probability distribu-
tions (Del Sagrado and Moral 2003). Hu and Wang
(2013) propose a combination method to obtain a con-
sensus BN to model the reactive oxygen species reg-
ulatory pathway. It consists in joining a set of graph-
ical models for qualitative combination and aggrega-
tion of probability distributions for quantitative com-
bination. Their algorithm can be applied to the com-
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Figure 1: Bayesian Network extension: qualitative extension

bination of BNs defined over different variables. The
extension phase in aggregation and combination algo-
rithm is used in the diagnosis reconfiguration proce-
dure. Let BN1 and BN2 be two BNs to be combined
by extending BN1 into BN1⊕BN2 and V1 and V2 be
their variables sets verifying the following conditions:

• V1 6= V2

• V1 ∩ V2 6= ∅

The extension procedure is described as following:

• Qualitative extension: Let G1 be the DAG of
BN1 and G2 be the DAG of BN2. G1 is extended
into G1⊕G2 such that G1⊕G2 = {V1∪V2,E1∪
E}where E is the set of edges {(C,A) ∈E2|C ∈
V2−V1,A ∈ V1}. Solid lines in BN1⊕BN2 rep-
resent the edges in BN1 and the dashed lines are
the extended edges as illustrated in figure 1. The
variables in the resulted graph should be consis-
tent with each other which means that G1 ⊕G2

is acyclic.

• Quantitative extension: This step consists in
computing the CPT of each node in G1 ⊕ G2.
If A ∈ V2 − V1 or A ∈ V1 − V2 then the CPT of
A does not change. If A ∈ V1 and C is such as
(C,A) ∈ E2|C ∈ V2 − V1, conditional probabili-
ties of A are computed using equation 2 where
A,B ∈ V1, C ∈ V2 − V1.

P (A = ai|B = bj,C = ck) =

P1(A = ai|B = bj)× P2(C=ck|A=ai,B=bj)

P2(C=ck|B=bj)

n∑
i=1

P1(A = ai|B = bj)× P2(C=ck|A=ai,B=bj)

P2(C=ck|B=bj)

(2)

where we have:

– P1 and P2 are the probabilities distributions
in BN1 and BN2 respectively.

– B and C are independent in BN2 because
there is no dependency between B and C
and because B and A are disconnected.

Given the independence properties between the
variables, equation 2 can be simplified to obtain
equation 3:

P (A = ai|B = bj,C = ck) =

P1(A = ai|B = bj)× P2(C=ck|A=ai)
P2(C=ck)

n∑
i=1

P1(A = ai|B = bj)× P2(C=ck|A=ai)
P2(C=ck)

(3)

where P2(C=ck|A=ai)
P2(C=ck)

= P2(A=ai|C=ck)
P2(A=ai)

4 DIAGNOSIS ARCHITECTURE
RECONFIGURATION PROCEDURE

The distributed modular BN in (Sassi et al. 2016)
is a BN for diagnosis of a networked control sys-
tem which is the networked robot. Three BN mod-
ules are used in order to perform diagnosis and de-
termine the cause of the system degradation as shown
in figure 2. A BN module has a multilayer structure
where we have three types of nodes e.g, Observa-
tions nodes which are used to monitor the system be-
havior and to detect faults occurrence. The operative
module is implemented on the robot while the control
and the network Bayesian modules are on the station
side. Both network Bayesian module and operative
Bayesian module affect the control Bayesian module.
They share QoS and robot state nodes with the con-
trol module. These shared nodes are the communica-
tion tool between the Bayesian modules by adding the
corresponding virtual nodes as child to perform the
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Figure 2: Modular Bayesian Network for diagnosis

diagnosis.
The robot switches to its embedded controller once
the QoC becomes bad because of the QoS degrada-
tion as explained in our previous work (Sassi et al.
2016). It becomes totally autonomous until it finds an-
other control station that guarantees a good service.
The network module does not intervene in the diag-
nosis procedure and the network state does not im-
pact the system performance in this case. The shared
QoS node is removed from the QoC parents set be-
cause it does not affect the QoC state anymore. The
diagnosis architecture should thus be updated to ad-
just the new system architecture. A monolithic BN
is used combining the operative module and the con-
trol module and re-configuring the QoC conditional
probabilities table because only the robot state and the
controller state impact the QoC state as shown in fig-
ure 3. The statistical estimation and observations are
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Figure 3: The embedded Bayesian Network

performed defining the probabilities values in the em-
bedded monolithic BN. Once the robot is connected
to a new control station, the network module takes
action again. Besides, the monolithic BN is modu-
larized using the procedure described in section 2 in
order to re-obtain the distributed modular BN. Once
the monolithic BN is modularized into operative and
control modules, the marginal probability of the robot
state P (robotstate) is computed using the inference
algorithm in the operative module. The control mod-
ule is then adopted by the new station.
The BN1 (the control Bayesian module) is combined
to BN2 as shown in figure 4. The BN combination

procedure, which consists in qualitative and quantita-
tive BN extension as explained in section 3, permits to
reintegrate the QoS node to QoC parents set. The con-
dition probabilities tables of the QoC is extended us-
ing the equation 3 for quantitative extension. The QoS
marginal probability is computed using inference al-
gorithm in the network Bayesian Module.
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5 COMBINATION SCENARIO

The objective of the integration of a consensus step
and the modularization procedure is to find a solu-
tion for diagnosis architecture configuration and up-
date. It consists in configuring the on-board mono-
lithic BN implemented on the robot to have a dis-
tributed Bayesian structure. The distributed BN is a
MBN where we have three modules as explained in
section 4. The simulation scenario of figures 5 and 6
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Figure 5: Robot trajectory

represents the robot behavior during its mission: mov-
ing toward the target position. Truetime toolbox (2.0
version) (Cervin et al. 2010) is used to simulate the
networked system while BNT toolbox (Murphy et al.
2001) is used for MBN implementation. The robot has
a mission to achieve a target position (30,20) start-
ing from its initial position (0,0). The robot receives
control data from the first station whose position is
(1,1). The network conditions in the first network
are bad because of a high packet loss rate (packet



Table 1: CPT of QoC state given the controller and the robot states
R good degraded bad
C good degraded bad good degraded bad good degraded bad
P(QoC=good|R,C) 1 1 0 0 0 0 0 0 0
P(QoC=degraded|R,C) 0 0 0 1 1 0 0 0 0
P(QoC=bad|R,C) 0 0 1 0 0 1 1 1 1

loss rate=80%). This network fault causes QoC degra-
dation which corresponds to posterior probabilities
P (QoC = bad) = 1 and P (QoS = bad) = 0.87 after
setting hard evidences on the corresponding observa-
tions nodes. This degradation is observed when the
robot is in (X,Y ) = (0.68,1.71) in figure 5 and it does
not navigate towards the target position. This devia-
tion from the expected behavior is detected because
the position error does not decrease and the stability is
not guarantee as shown in figure 6. The resulted hard
evidences on observations nodes are P (stability =
no) = 1 and P (positionerror = nodecrease) = 1.
Using the decision making algorithm defined in (Sassi
et al. 2016), the robot switches to embedded con-
troller as shown in figures 5 and 6. The on-board BN
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Figure 6: Robot velocities and orientation during navigation

supervises the QoC and the internal robot state. The
QoC depends only on the robot state R and the con-
troller performance C as shown in the CPT of QoC in
table 1. The robot keeps performing statistical param-
eters estimations and observations.
Once the robot detects the second station (25,25),
the robot state marginal probability is P (R) =
[0.9 0.07 0.03] which is sent with the observa-
tions variables values (P (stability = yes) = 1 and
(P (positionerror = decrease) = 1. It switches to
distant controller at 81.7s. The switching process used
to reconnect to the control station (a new distant
controller) guarantees the continuity and the stabil-
ity of the robot performance as shown in figure 6.
The cause-effect dependency between the QoC and
the QoS is quantified in the new network and the
CPT of QoC given QoS state is represented in table
2. The QoS-QoC dependency is integrated in the CPT

Table 2: CPT of QoC state given the QoS
QoS good degraded bad
P(QoC =good|QoS) 1 0 0
P(QoC =degraded|QoS) 0 1 0.25
P(QoC =bad|QoS) 0 0 0.75

of QoC as shown in table 3 (prior CPT) using equa-
tion 3. The prior probabilities of QoS in BN2 and in
BN1 ⊕ BN2 is the result of executing the inference
algorithm in the Bayesian network module such that
P (QoS) = [0.8 ; 0 ; 0.2]. The marginal probabilities
of QoC in BN2 are computed such that P (QoC) =
[0.8 ; 0.05 ; 0.15]. We use equation 3 to calculate each
value in the CPT of table 3 making some approxima-
tions in probabilities values (1' 0.999, 0' 0.0001 or
0 ' 0.0009) to avoid having zero in the denominator
of equation 3:

P (QoC = d|R = g,C = g,QoS = d) =

P1(QoC = d|R = g,C = g)× P2(QoC=d|QoS=d)
P2(QoC=d)∑

s=g,d,b

P1(QoC = s|R = g,C = g)× P2(QoC=s|QoS=d)
P2(QoC=s)

(4)

where g,d and b refer to the variables possible states
which are good, degraded and bad respectively. The
CPT of QoC is partially represented in table 3 where
the robot state is good.

P (QoC = d|R = g,C = g,QoS = d) =

0.0009× 0.999
0.05

0.999× 0.0009
0.8

+ 0.0009× 0.999
0.05

+ 0.0001× 0.0001
0.15

= 0.94

6 CONCLUSION

A diagnosis configuration procedure is proposed in
this paper to guarantee a coherence with system archi-
tecture update. The monolithic BN on-board is used
to collect statistical data about the intern state of the
robot and the causal dependencies. The autonomous
behavior persists until a new control station takes con-
trol of the robot. It implies that the control structure
is no more embedded but it is a distributed one. A
distributed diagnosis architecture becomes a manda-
tory to monitor all the system components in order



Table 3: CPT of QoC state given the robot,the controller and the QoS states
R good
C good degraded bad
QoS good degraded bad good degraded bad good degraded bad
P(QoC=good |R,C,QoS) 1 0.06 0 1 0.06 0 0.16 0 0
P(QoC=degraded |R,C,QoS) 0 0.94 0.9 0 0.94 0.9 0.02 0.96 0
P(QoC=bad |R,C,QoS) 0 0 0.1 0 0 0.1 0.82 0.04 1

to maintain the operational state. This diagnosis up-
date requires the modularization of the monolithic
BN and the integration of new elements: the network
Bayesian module, the inclusion of the dependency be-
tween QoS and QoC in the control module and the
CPT extension of the QoC. CPT update of QoC is
presented in this work to apply the extension steps as
explained previously.
The combination procedure of control and operative
Bayesian modules will be detailed in future work.
The defined procedure and the MBN for diagnosis
will be implemented on the real system. The Bayesian
method will be then adopted for the case of multi-
robots to define a collaborative diagnosis policy.
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