
HAL Id: hal-01558475
https://hal.science/hal-01558475v1

Submitted on 7 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARMHEx: a framework for efficient DIFT in real-world
SoCs

Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume
Hiet, Vianney Lapotre, Guy Gogniat

To cite this version:
Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah, Guillaume Hiet, Vianney Lapotre, et
al.. ARMHEx: a framework for efficient DIFT in real-world SoCs. Field Programmable Logic (FPL),
Sep 2017, Ghent, Belgium. , 2017. �hal-01558475�

https://hal.science/hal-01558475v1
https://hal.archives-ouvertes.fr


ARMHEx: a framework for efficient DIFT in
real-world SoCs

Muhammad Abdul Wahabα, Pascal Cotretα, Mounir Nasr Allahβ , Guillaume Hietβ

Vianney Lapôtreγ , Guy Gogniatγ
α IETR, SCEE research group, firstname.lastname@centralesupelec.fr

β INRIA, CIDRE research group, firstname.lastname@centralesupelec.fr
γ Univ. Bretagne-Sud, UMR CNRS 6285, Lab-STICC, firstname.lastname@univ-ubs.fr

Abstract—Security in embedded systems remains a major
concern. Untrustworthy authorities use a wide range of software
attacks. This demo introduces ARMHEx, a practical solution
targeting DIFT (Dynamic Information Flow Tracking) implemen-
tations on ARM-based SoCs. DIFT is a solution that consists in
tracking the dissemination of data inside the system and allows
to enforce some security properties. In this demo, we show an
implementation of ARMHEx on Xilinx Zynq SoC. Especially, we
show how the required information for DIFT is recovered with
the help of traces produced by CoreSight components, static
analysis and instrumentation.

I. DESCRIPTION

Software security remains a challenge for users and deve-
lopers. Access control or cryptography can be used to limit
access to confidential data or to enforce integrity. However,
such techniques do not provide any guarantees once access is
granted or data decrypted. DIFT is a promising technique that
monitors information flows to ensure security properties. It
consists in tagging each information container (e.g. variables,
memory address, CPU registers, etc.), propagating tags when
information flows take place and checking the value of tags
according to a security policy. DIFT can successfully detect
an important number of attacks varying from low-level threats
(e.g. memory overflows) to high-level threats (such as data
leakage).

Adding support in software for DIFT has an important
execution runtime overhead [1]. To improve time overhead,
Suh et al. [2] proposed the idea of using hardware acceleration.
Since then, an important amount of work (such as [3]) has
been done to provide acceleration of security features in
FPGA. However, there is no related work that concentrates on
providing these security features in real-world SoCs. There are
two main reasons : the FPGA has limited or no visibility of
executed software on CPU and the amount of time required to
develop such a system. ARMHEx [4] overcomes previous lim-
itations by proposing an efficient way of recovering required
information for DIFT.

ARMHEx requires internal information about the program
that is being executed on the CPU. A common solution in re-
lated work is to instrument software to recover required infor-
mation for DIFT. However, instrumenting all instructions adds
an important runtime overhead. Instead, ARMHEx proposes
to combine static analysis and traces coming out of debug
components to reduce number of instrumented instructions by
90% when compared to related work.

ARMHEx uses CoreSight components to trace the appli-
cation that is being executed. The starting address of each
basic block is known before execution. For instance, it can

be obtained during compilation or by using a disassembler.
By comparing the traces and basic blocks start addresses,
ARMHEx knows which basic block is currently being exe-
cuted. However, what happens inside each basic block remains
unknown. Before executing the application, it is statically
analyzed.

DIFT-related data

ARM 
Cortex-A9 

CPU 0

CoreSight
 components

PFT Decoder AXI 
BRAM

ARMHEx 
Coprocessor

trace

Processing System (PS) Programmable Logic (ARMHEx)
EMIO

interface

TRF

Config

control

interrupt

AXI GP

32 MB

DDR

Memory
(used by Linux OS) Tag dependencies

Tag 
space

Heap and Stack 
(coprocessor)

b a

2

3

1

Buffer
4

AXI GP

Fig. 1: Overall architecture of ARMHEx implemented on Zynq

In this demo, we show an implementation of overall ar-
chitecture (Figure 1) and how it works to implement DIFT.
A simple example ([4]) is considered and the operations done
by ARMHEx coprocessor are shown and explained. The demo
setup is shown in Figure 2.

Fig. 2: Demo Setup

II. ACKNOWLEDGMENTS

This work is done in the frame of HardBlare project which
is funded by CominLabs and Brittany region.

REFERENCES

[1] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information
flow architecture for software security,” SIGARCH Comput. Archit. News,
vol. 35, no. 2, pp. 482–493, Jun. 2007.

[2] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” SIGARCH Comput.
Archit. News, vol. 32, no. 5, pp. 85–96, Oct. 2004.

[3] J. Lee, I. Heo, Y. Lee, and Y. Paek, “Efficient security monitoring with
the core debug interface in an embedded processor,” ACM Trans. Des.
Autom. Electron. Syst., vol. 22, no. 1, pp. 8:1–8:29, May 2016.

[4] M. Abdul Wahab, P. Cotret, M. Nasr Allah, G. Hiet, V. Lapotre, and
G. Gogniat, “ARMHEx: A hardware extenstion for DIFT on ARM-based
SoCs,” in 27th International Conference on Field-Programmable Logic
and Applications (FPL 2017), Sep. 2017, in press.


