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Abstract—Security is a major issue nowadays for the embedded
systems community. Untrustworthy authorities may use a wide
range of attacks in order to retrieve critical information. This
paper introduces ARMHEx, a practical solution targeting DIFT
(Dynamic Information Flow Tracking) on ARM-based SoCs (e.g.
Xilinx Zynq). Current DIFT implementations suffer from two
major drawbacks. First, recovering required information for DIFT
is generally based on software instrumentation leading to high time
overheads. ARMHEx takes profit of ARM CoreSight debug compo-
nents and static analysis to drastically reduce instrumentation time
overhead (up to 90% compared to existing works). Then, security
of the DIFT hardware extension itself is not considered in related
works. In this work, we tackle this issue by proposing a solution
based on ARM Trustzone.

I. INTRODUCTION

During the last decade, several software security vulnerabili-
ties have been discovered. Even if patches were delivered, there
is always a game of cat and mouse between security developers
and hackers on such systems containing confidential data and
services which require a high level of integrity. A first solution
to tackle this issue consists in using different techniques such as
patch management, careful code reviews, static analyses or by
choosing managed languages such as Java that are considered
more robust. However, none of these techniques are sufficient in
practice to get rid of all vulnerabilities.

Access control or cryptography can be used to limit access
to confidential data or to enforce integrity. However, such tech-
niques do not provide any guarantees once access is granted
or data decrypted. Therefore, hardware manufacturers are more
and more inclined to integrate specific security features in their
CPUs: for instance, ARM has proposed Trustzone and Intel
has recently proposed SGX. Such solutions are mainly used
to isolate trusted software from other untrusted applications.
They cannot protect untrusted software which is the goal of
this work. Monitoring applications at runtime to check their
behavior is a complementary solution. Among the different
existing approaches, IFT (Information Flow Tracking) is an
appealing solution that consists in tracking the dissemination of
data inside the system. Two approaches can be defined:

• SIFT (Static Information Flow Tracking). This is an offline
analysis of the application aiming to check that all branches
of the control flow graph are trustworthy. SIFT is mainly
used for testing an application binary.

• DIFT (Dynamic Information Flow Tracking). DIFT is per-
formed at runtime: it monitors data flow of the application
binary in order to check if the execution is safe. DIFT
is used to protect against software attacks (such as buffer

overflows, format-string attacks, SQL injection, cross-site
scripting, etc.) or used for data leakage prevention.

This work is based on an hybrid approach combining SIFT
and DIFT [1]: both dynamic and hybrid IFTs will be cited as
DIFT in this work. DIFT consists of performing three operations:

1) Tag initialization: it consists in attaching tags to informa-
tion containers (e.g. file, variable, memory word, etc). Those
tags corresponds to the security level or the type of data they
contain.

2) Tag propagation: tags need to be propagated from source
operands to destination operands to track information flows
resulting from the execution of each CPU instruction.

3) Tag Check: tags are checked with a security policy, at
runtime and on a regular basis, to ensure that critical
information is not handled by untrusted functions or entities.

Solutions relying on software methods are penalized by high
time overheads: even if system security is preserved, software
DIFT is unusable in practice. Recently, an interest has arisen in
heterogeneous architectures (including a hardcore processor and
reconfigurable logic) for DIFT mechanisms: hardware modules
are used to improve DIFT performance while keeping strong
security properties. Furthermore, recent technologies combining
hardcore processors with reconfigurable logic open interesting
features in the context of hardware/software information flow
tracking.

This paper is organized as follows. Section II introduces the
main contributions regarding DIFT solutions. The threat model
and assumptions are described in Section III. Our proposed
approach, ARMHEx, is presented in Section IV. ARMHEx
design and its implementation are discussed in Section V.
Then, implementation results are given in Section VI. Finally,
Section VII gives some conclusions and future perspectives for
ARMHEx.

II. RELATED WORK

In order to overcome high time overheads of software solu-
tions for DIFT (at least 300% [8]–[10]), hardware mechanisms
were implemented. We can distinguish four main approaches:

1) Filtering hardware accelerator ([11], [12]). Instead of
computing tags for each CPU instruction (as done in other
approaches), this approach proposes to filter monitored
events (e.g. system calls) before computing tags to lower
DIFT time overhead.

2) In-core ([13], [14]). This approach relies on a deeply
revised processor pipeline. Each stage of the pipeline is



TABLE I: Features comparison with related work (Off-core approaches)

Related work Experimental
Target

Hardcore
portability Communication interface Interface

simulated
Coprocessor

isolated
Kannan et al. [2] Softcore No Signals No No
Deng et al. [3],[4]
Heo et al. [5] Softcore Yes System bus No No
Davi et al. [6]
Lee et al. [7] Softcore Yes CDI(Core Debug Interface) Yes No

ARMHEx Zynq SoC
(ARM + FPGA) Yes EMIO (Extended Multiplexed

I/Os) and System bus No Yes

duplicated with a hardware module in order to propagate
tags all along the program execution. In [15], PUMP
architecture modifies the CPU architecture to make DIFT
computations in the processor pipeline. This in-core ap-
proach is not feasible with hardcore CPU such as ARM
Cortex-A9 considered in this work.

3) Offloading ([16], [17]). In this case, DIFT operations are
computed by a second general purpose processor. The
required information for DIFT (i.e. PC register value, in-
struction encoding and load/store memory addresses)
is sent by the processor running the application.

4) Off-core ([2]–[7]). This approach seems similar to the
offloading one. However, DIFT is performed on a dedicated
unit instead of a general purpose processor. ARMHEx is
based on this approach but differs in its implementation:
the application runs on a hardcore (rather than a softcore as
in previous works) and the information required for DIFT
is recovered through debug components, static analysis and
instrumentation.

Table I compares features in existing works that are based
on the same off-core approach as our proposed architecture
ARMHEx. [2]–[4] implemented DIFT using a softcore processor.
In these works, the CPU pipeline is modified in order to
export information needed for DIFT. The required information is
recovered from existing CPU signals which makes this approach
not portable on hardcore (such as ARM Cortex-A9 as considered
in our work). The other related works mentioned in Table I are
hardcore portable but present high time overheads due to the
communication interface used between the CPU and the DIFT
coprocessor.

In [5], [6], binary is instrumented to recover required infor-
mation for DIFT. Instrumentation has the advantage of being
flexible and portable on hardcore CPUs. However the overhead
introduced by such a technique is too high: it may account for
up to 86% of total DIFT performance overhead (as reported
in [5]). To lower the overall DIFT performance penalty, the
instrumentation overhead must be lowered.

Lee et al. [7] use CDI (Core Debug Interface) to extract
information required for DIFT. Their considered debug com-
ponent is ARM CoreSight ETM (Event Trace Macrocell) trace
component which can provide information for each CPU in-
struction. For each instruction executed by the CPU, ETM
generates an execution trace. This trace component has been
replaced for performance purposes by CoreSight PTM (Program
Trace Macrocell) which can provide information only on some
instructions that modify the PC (Program Counter) register
value. In this work, the main goal is to implement DIFT on
a Xilinx Zynq SoC containing a PTM. The approach proposed

in [7] cannot be used with PTM as all the information required
for DIFT cannot be recovered. In addition to PTM, this work
proposes to use static analysis and instrumentation to retrieve
missing information.

No related work takes care of the DIFT coprocessor security.
In existing works, components used by the DIFT coprocessor can
be accessed from the CPU through unauthorized channels. We
propose to secure ARMHEx by isolating it from the CPU and its
memory. Furthermore, all implementations done in related works
target a softcore CPU which explains their lack of deployment in
industry. This work extends ideas presented in [18] and proposes
the following contributions:

• It proposes to use CoreSight PTM, static analysis and binary
instrumentation to recover information required for DIFT.
It is shown that the proposed approach has a very low
overhead mainly because PTM is a non-invasive compo-
nent. Depending on the strategy, the instrumentation time
overhead can be as low as 5.4% in average instead of more
than 60% in related work.

• No existing work takes care of the DIFT coprocessor
security. We propose to use ARM Trustzone to isolate
ARMHEx in order to protect against unauthorized accesses.

• A proof-of-concept prototype and its implementation on
Zynq SoC (Zedboard) is detailed. It is shown that the area
and power overhead of proposed implementation is better
than existing approaches.

III. THREAT MODEL AND ASSUMPTIONS

This section describes the threat model and assumptions made
for ARMHEx. Then, we explain how ARMHEx protects from
data leakage.

A. Threat model

Untrusted area

CPU

ARMHExExecution 
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DIFT-related
 data
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components
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Linux OS)

Trusted area
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Secu
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Unauthorized
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Fig. 1: Threat model



Figure 1 presents an overview schematic of an embedded
system where ARMHEx is implemented. A default ARMHEx
implementation is composed of a CPU (possibly multicore) and
the extension ARMHEx which is implemented in the recon-
figurable logic (both with a dedicated memory). We assume
that our adversaries can launch a malicious application that
contains software vulnerabilities. For instance, they can try to
take advantage of buffer overflows, SQL injection, cross-site
scripting or data leakage. Furthermore, adversaries may try to
access the content of ARMHEx components or DIFT memory.
For instance, an attacker can try mapping and writing to DIFT
memory section used by ARMHEx. In this work, we consider
that only following communication channels between CPU and
ARMHEx are secure (Execution trace, Control signals and
instrumented data in Figure 1). Furthermore, physical attacks
are not considered (side-channel attacks, probing, JTAG attacks,
memory attacks such as cold boot, EM injections. . . ) in this
work.

Our first goal is to prevent from user-space software attacks.
ARMHEx uses DIFT to monitor information flows at execution
time to prevent from these software attacks. Our second goal is
to make sure that the specified trusted area is inaccessible from
untrusted area through non-secure channels (colored in red in
Figure 1). As an attacker may read or write to ARMHEx or its
DIFT memory, reads/writes must not be allowed. ARMHEx uses
ARM Trustzone to prevent from unauthorized access (writes or
reads) to trusted area. We do not take into account any attacks
originating from the secure world.

B. Example : DLP (Data Leakage Prevention)

As an introduction about DIFT implementation within the
ARMHEx framework, an example of DLP is shown in Listing
1. It opens a file depending on user type (root or normal user),
copies the file contents in a buffer and prints it. In order to avoid
data leakage, the buffer should not be printed if it contains secret
data as it may be the case if the user is root.

1 char buffer[20]; FILE *fs;
2 if(geteuid() != 0){ // user
3 fs = fopen("welcome", "r"); //public
4 if(!fs) exit (1);}
5 else{ // root
6 fs = fopen("passwd", "r"); //secret
7 if(!fs) exit(1);}
8 fread(buffer, 1, sizeof(buffer), fs);
9 fclose(fs);

10 printf("Buffer Value: %s \n", buffer);

Listing 1: Example code for DLP

ARMHEx operates on assembly instructions which facilitates
DIFT implementation for all programming languages. The exam-
ple code shown in Listing 1 is compiled for Zynq SoC to obtain
the assembly code which is stored in memory used by Linux OS.
System calls (e.g. write system call that is called for printf
function call) need to be modified to send tag related information
to ARMHEx coprocessor. For this purpose, an OS (Operating
System) integrating support for DIFT such as Blare [19] will be
considered in future works.

The first operation in order to implement DIFT is tag initial-
ization. On line 1 of Listing 1, the tags of buffer and fs
need to be initialized. Two levels of security (private and public)
are considered in this work. The OS sends the tag value, address
and size of buffer to the ARMHEx coprocessor. The allocated

space for buffer is marked with a tag that can be of different
size. The fs FILE pointer will be initialized with a tag according
to the executed branch (if or else). The information about which
branch is executed is obtained using PTM. If the user is not root,
lines 3 and 4 are executed. In this case, the tag of fs is set to
public as welcome file is public. Otherwise, lines 6 and 7 are
executed. As passwd file is considered as secret, the tag of fs
is set to secret.

On line 8, the tag of buffer is set to the tag of fs which can
either be public or secret depending on the executed branch (if or
else). This operation is performed by ARMHEx coprocessor. The
tag check operation happens on line 10 when buffer is sent
outside to the standard output. ARMHEx coprocessor sends tag
value of buffer to the CPU: if it is secret, then a violation has
occurred (a secret information is being sent outside the system)
and an exception is raised. This example shows how ARMHEx
uses the three operations required to implement DIFT described
in Section I. Tag initialization and tag check operations need OS
support while ARMHEx coprocessor alone is responsible for tag
propagation.

IV. PROPOSED APPROACH

A DIFT implementation is efficient when required information
is obtained in the shortest possible time. ARMHEx coprocessor
requires at least three pieces of information to compute tags
propagation:

1) PC register value.
2) Instruction encoding.
3) load/store memory addresses.

PC register value and some memory addresses are partially
recovered using CoreSight components. Missing information
about memory addresses and instruction encoding is obtained
through static analysis and instrumentation.

A. Recovering information required for DIFT
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Fig. 2: CoreSight components in Xilinx Zynq

1) CoreSight components: CoreSight components (Figure 2)
are a set of IP blocks providing hardware-assisted software
tracing. These components are used for debug and profiling
purposes. For instance, they can be used to find software
bugs and errors or even for CPU profiling (number of cache
misses/hits and so on). ARMHEx uses these components to
retrieve information on some instructions committed by the CPU
at runtime. The most important classes of CoreSight components
are detailed in following paragraphs.



a) Source: The PTM 1 generate execution traces for
each waypoint (instructions that modify the program flow). A
waypoint can be any of the following instructions: any indirect
branches, conditional and unconditional direct branches, all
exceptions, any instruction that changes the instruction set state
or security state of the processor. Each time a waypoint occurs,
the PTM generates a trace describing this waypoint. Table II
shows an example of a trace output. The trace always starts
with synchronization packets A-Sync and I-Sync. Then, each
time a waypoint instruction is executed, a trace is generated. For
instance, bl and beq instructions generate trace packets. If a
BAP packet is generated, it means that the branch was taken.
Otherwise, an Atom packet is generated. The PTM generates
11 different types of trace packets which are described in PFT
(Program Flow Trace) specifications [20]. Packets relevant for
ARMHEx are summed up in Table III.

TABLE II: Example code and corresponding trace
Address Assembly code Trace packets type

A-Sync, I-Sync
860c sub r0, r1, r2 -
8610 bl 8480 BAP
8614 mov r3, r0 -
8618 ldr r3, [sp, #-8] -
861c cmp r3, #0 -
8620 beq 864c BAP or Atom
8624 str r1, [r3, r2] -

The most important PTM feature used in ARMHEx is branch
broadcasting which allows to obtain all branch addresses in
the trace. The corresponding Linux driver did not implement
this feature. We developed a patch that enables the use of
branch broadcasting in Linux driver. The patch is currently under
integration in the next Linux kernel release. Furthermore, PTM
can be configured in different modes: it can trace all code or
regions specified by start and end addresses. This feature is
essential in ARMHEx as it needs traces of specific region of
an application. For instance, we trace only .text section of a
binary and its loaded libraries.

TABLE III: Relevant PFT packets in ARMHEx
Packet name Packet Description
A-Sync Alignment synchronization
I-Sync Instruction synchronization (contains PC value)
BAP Branch address packet (contains branch address)
Atom Precise whether a branch was taken or not taken

b) Link: Funnel 2 and Replicator 3 are two compo-
nents included in Xilinx Zynq SoCs: they transport the trace
between source and sink components. Funnel takes care of
merging traces from multiple sources into a single one: if both
Cortex-A9 cores need to be traced, both PTMs must be enabled;
furthermore, a source ID is assigned in order to identify each
core from the Funnel point of view: it allows multicore debug
tracing [21]. The Replicator duplicates the trace sent by Funnel
and forwards it to sink components.

c) Sink: Traces can be transmitted to two components: ETB
(Embedded Trace Buffer) is a small 4KB memory where traces
can be stored (not used in this work); otherwise, TPIU (Trace
Port Interface Unit 4 ) is an entity able to export traces towards
the reconfigurable logic.

In order to make sure that each change in the program flow
is contained in trace sent by PTM, conditional execution must

be disabled for instructions other than branches. Almost all
instructions in ARM instruction set can be executed conditionally
and can alter the program flow. However, these instructions are
not traced by PTM. As a result, a LLVM pass has been created
to allow conditional execution only for branch instructions. All
other conditional instructions (e.g. addeq) are converted to
a conditional branch (bne) followed by a normal instruction
(add). This way, each change in program flow is contained in
the execution trace generated by PTM. In other words, ARMHEx
can determine which basic block is currently being executed.
However, it does not know which tags need to be propagated
inside each basic block. Static analysis allows to recover such
information by generating tag dependencies instructions.

2) Static analysis: Table II shows a sample code used to
illustrate how static analysis is used in ARMHEx. Instructions
at address 860c, 8614, 8618, 861c and 8624 do not produce
any trace. In order to recover information about all other instruc-
tions not contained in trace, the source code is statically analyzed
before program execution. The static analysis will generate a tag
dependencies instruction that must be executed by ARMHEx
coprocessor.

TABLE IV: Example tag dependencies instructions
Example Instructions Tag dependencies instructions
sub r0, r1, r2 r0 = r1 + r2
mov r3, r0 r3 = r0
str r1, [PC, #4] @Mem(PC+4) = r1
ldr r3, [SP, #-8] r3 = @Mem(SP-8)
str r1, [r3, r2] @Mem(r3+r2) = r1

(a) (b)

Table IV shows the code which do not produce any trace (a)
and corresponding tag dependencies (b). r is used to denote
the tag of register r. For instance, for the first instruction
in Table IV(a), the corresponding tag dependencies instruction
is to associate tags of operands r1 and r2 towards the tag
of destination register r0. Tag dependencies instructions are
generated by analyzing the assembly representation. For each
instruction, we determine operands type (register, memory or
immediate) and their value. By using the types of operands, we
can determine the information flows that takes place between
the operands. For instance, if the first instruction of Table IV
(a) is considered, we can determine that the three operands are
registers. By determining registers number, we can determine the
information flow. For all instructions that do not produce trace,
we analyze instruction encoding and semantics to generate tag
dependencies instructions. Furthermore, an instruction is added
to keep track of SP value in ARMHEx. It is done for each CPU
instruction that changes SP value directly (e.g. sub SP, SP,
#4) or indirectly (e.g. push).

3) Instrumentation: In Table IV, ldr and str instructions
contain memory addresses. These addresses need to be known to
propagate their associated tags. There are three types of memory
instructions :

(i) PC-relative (e.g. 3rd instruction of Table IV)
(ii) SP-relative (e.g. 4th instruction of Table IV)

(iii) Register-relative (e.g. 5th instruction of Table IV)

We can define two possible strategies to recover addresses
contained in memory instructions. Both these strategies provide
the same coverage as the related work instrumentation.



• Strategy 1. Each memory instruction is instrumented in
order to send memory address(es) to ARMHEx coprocessor.

• Strategy 2. From all memory instructions, only register-
relative instructions (iii) are instrumented. ARMHEx co-
processor knows the value of PC register thanks to the
trace. Therefore, we do not need to instrument PC-relative
memory instructions. Furthermore, the initial value of SP
is sent to ARMHEx coprocessor when the program is
launched which can keep track of SP value changes thanks
to instructions inserted during static analysis. The SP-
relative memory instructions do not need to be instru-
mented.

B. Security of the hardware extension

The overall architecture is shown in Figure 3. Existing works
do not take into account the security of hardware DIFT exten-
sions. It is important to protect hardware modules and memory
sections from being modified through unauthorized channels. For
instance, if a memory section used by ARMHEx coprocessor
is modified by the software running on the Cortex-A9 core,
ARMHEx coprocessor may produce false negatives or false
positives. To avoid unauthorized access to ARMHEx, we propose
to use ARM Trustzone to ensure that the CPU (untrusted part)
cannot access components used by ARMHEx coprocessor. The
Linux OS runs in non-secure world. In addition, the devices and
memory used by Linux OS are declared as non-secure while
ARMHEx and memory used by ARMHEx are declared as se-
cure. When a non-secure element writes to a secure element, the
operation will fail on check of NS (Non-Secure) bit. Similarly,
if a non-secure element tries to read a secure element, the read
will fail. ARM Trustzone is used to isolate ARMHEx with ARM
CPU core.

V. ARMHEX DESIGN

ARMHEx is quite different from existing solutions, especially
regarding how information needed for DIFT are recovered. This
section explains the ARMHEx components used in this work as
well as the operations done by the ARMHEx coprocessor.

DIFT-related data
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A. ARMHEx components

The PFT decoder 1 is a state machine that decodes trace
packets received from CoreSight components. As the trace is
sent at 250 MHz by the TPIU, it needs to be decoded at the
same frequency to avoid unnecessary storage overhead. The
PTM sends different types of packets to analyze the code being
executed on the CPU. Each type of packet has its own packet

FSM (Finite State Machine) and a global state machine controls
packet FSMs. Finally, decoded traces are stored in AXI Block
RAM.

The TRF (Tag Register File 2 ) is a register file that stores
tags for each of 16 ARM CPU registers and 32 NEON registers.
The Config IP 3 is an AXI slave IP containing a set of registers
that provides a communication channel between the CPU and the
ARMHEx coprocessor: it is used to configure tag propagation
rules, send the initial value of SP and for debug purposes. Buffer
4 is a FIFO (AXI Slave write-only interface and a custom

interface for read channel) that contains instrumented memory
addresses.

Tags for memory addresses are stored in the tag space memory
section a . Tag dependencies ( b in Figure 3) is also a me-
mory section containing tag dependencies instructions obtained
through static analysis (currently implemented with the Capstone
disassembler API [22]). The structure of this memory section
is shown in Figure 4 (inspired from a memory section layout
in [5]). The upper part contains offset/jump addresses used to
locate tag dependencies instructions related to basic blocks. At
each basic block jump address, the header contains information
such as the basic block size, information on how to decode the
instructions. Then, there are instructions to be executed by the
ARMHEx coprocessor.

...

Basic block n JUMP ADDR.

Basic block n+1 JUMP ADDR.

...

Basic block n Header

Instruction 0

Instruction 1

...

Basic block jump table

@ Basic block n Jump addr.
# of instructions in this bb..

Instructions to be executed 
by AMHEx coprocessor

Fig. 4: Tag dependencies structure layout

B. ARMHEx operations

ARMHEx coprocessor computes tags for each tag dependen-
cies instruction and checks the tags to detect a possible attack.
Following steps are done to perform DIFT operations:

1) Reading decoded trace stored in AXI BRAM block.
2) Looking for corresponding basic block in tag dependencies

section by reading the basic block jump table.
3) Reading basic block header, reading the tag dependencies

instruction and decoding it.
4) For each tag dependencies instruction, looking for tags of

source operands either in memory or TRF.
5) Computing tag of destination operand depending on current

propagation rules stored in Config IP.
6) Updating corresponding tag in memory or TRF.
7) Checking for security policy violation and if a violation

occurs raise an interruption.

The ARMHEx coprocessor, running at 100 MHz, need to be
synchronized with the ARM CPU, running at 667MHz, in order
to catch up. The synchronization is done on system calls as in
previous works.



VI. IMPLEMENTATION RESULTS

Implementations were done with Vivado 2016.4 tools on a
Xilinx Zedboard including a Z-7020 SoC (dual-core Cortex-A9
running at 667MHz and an Artix-7 FPGA). The FPGA logic
has around 85K logic cells and 560 KB of Block RAMs. The
ARMHEx coprocessor is implemented in a Microblaze softcore
for this proof-of-concept. The goal of our evaluation is to prove
the following points:

• Proposed strategies allow to recover required information
for DIFT and reduce instrumentation time overhead (as this
is the major factor of slowdown in existing works DIFT
implementation).

• Security level provided by ARMHEx.
• Efficiency of ARMHEx compared to related works.

A. Time overhead analysis

TABLE V: Average execution time for custom benchmark

MiBench
applications

CoreSight
components

disabled (in ms)

CoreSight
components

enabled (in ms)
bitcount 2.11 2.12

susan 29.29 29.35
jpeg 12.74 12.60

dijkstra 355.51 355.18
patricia 177.92 176.94
blowfish 13.94 13.87
rijndael 37.18 37.12

sha 117.48 117.88
CRC32 4132.31 4131.62

FFT 5.75 5.82
stringsearch 8.58 8.45

1) CoreSight components overhead: MiBench applications
were tested with and without enabling CoreSight components.
The negligible time difference observed in Table V is introduced
by non-deterministic events (such as context switches). Verge et
al. [23] showed that an execution time overhead could occur if
traces are stored in the ETB. In this work, as shown in Table
V, the time overhead of CoreSight components is negligible
for two main reasons. First of all, the CoreSight PTM trace
component is non-intrusive as it operates on a list of committed
CPU instructions in parallel. The second reason is due to the
configuration of CoreSight components: TPIU is used as a trace
sink.

2) Static analysis: The static analysis does not add execution
time overhead as it is performed before executing the application.
However, it adds a static binary size overhead that corresponds
to the storage of dependencies (i.e. output of static analysis).
The communication overhead of ARMHEx is only due to code
instrumentation.

3) Instrumentation overhead: The instrumentation time over-
head is proportional to the number of instrumented instructions.
Figure 5 shows the percentage of instrumented instructions over
different strategies. In [5], in order to recover memory addresses,
each branch instruction (b/beq/bne/..., bl/blx) as well
as memory instructions are instrumented. Furthermore, another
instruction is added for each direct branch in order to detect
changes in the program flow. This strategy is referred as Related
work instrumentation in Figure 5.

In this work, there is no need to instrument branch instructions
thanks to CoreSight components. Then, we have two strategies.
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Fig. 5: Instrumentation overhead

Strategy #1 consists in instrumenting all memory instructions
while strategy #2 only takes care of memory instructions relative
to registers. For both strategies, instructions are added to send
needed information to the buffer implemented in the reconfig-
urable logic.

The average time overhead for strategy #1 is 24.6% while
it reaches 53.7% for related work instrumentation strategy. The
average time overhead for strategy #2 is 5.37% which is better
than the overhead of 60% reported by Heo et al. [5]. For some
applications (such as dijkstra, rijndael or CRC32), the
instrumentation overhead (for strategy #2) is less than 2%: it
is due to the fact that there are few register-relative memory
instructions in these applications.

B. Area

Area results are shown in Table VI. Most of the FPGA area is
filled by the AXI interconnect (5.87%), Config IP (5.20%) and
the Microblaze softcore (4.62%). Other IPs occupy less than 1%
of the FPGA area in terms of slices.

TABLE VI: Area results of ARMHEx on Xilinx Zynq Z-7020
IP Name Slice LUTs Slice Registers Slice (in %) BRAM Tile
Microblaze 1578 1407 614 (4.62) 6
MDM 102 110 40 (0.30) 0
Local memory 14 4 11 (0.08) 32
PFT Decoder 105 211 60 (0.45) 0
AXI TRF 53 105 24 (0.18) 1
Config 914 2141 692 (5.20) 0
AXI Interconnect 1788 2436 781 (5.87) 0
BRAM 2 0 1 (0.01) 2
BRAM Controller 157 168 59 (0.44) 0
Miscellaneous 641 586 171 (1.29) 0

Total Design 5354 7168 2453 41
(10.06%) (6.74%) (18.44%) (29.29%)

Total Available 53200 106400 13300 140

In this work, ARMHEx targets a single Cortex-A9 core.
Implementation results show that a Cortex-A9 dual-core, such as
the one included in the Zynq Z-7020, could be easily protected.
In the current configuration, the ARMHEx infrastructure could
cover up to 5 Cortex-A9 cores simultaneously.

C. Security evaluation

To evaluate ARMHEx, we tested the example presented in
Section III-B. When the application is run as normal user,
the program terminates correctly. However, when it is run as
root user, ARMHEx coprocessor interrupts CPU to stop the
application. It shows that ARMHEx can detect security policy
violations.



SafeG [24] dual-OS monitor has been used to take profit
of ARM Trustzone. The Linux runs in normal world and the
TOPPERS/FMP kernel ([25]) runs in secure world. In order to
evaluate ARMHEx isolation, we tried to access secure memory
region used by ARMHEx coprocessor from Linux (user space),
the access was refused due to a bus error. It shows that un-
like existing approaches, ARMHEx do not allow unauthorized
accesses.

D. Comparison with previous works

TABLE VII: Performance comparison with related work
Approaches Kannan [2] Deng [3] Heo [5] ARMHEx
Hardcore portability No No Yes Yes
Main CPU Softcore Softcore Softcore Hardcore
Communication overhead N/A N/A 60% 5.4%
Area overhead 6.4% 14.8% 14.47% 0.47%
Area (Gate Counts) N/A N/A 256177 128496
Power overhead N/A 6.3% 24% 16%
Max frequency N/A 256 MHz N/A 250 MHz

Table VII shows a performance comparison of ARMHEx with
previous off-core approaches. Unlike previous works, ARMHEx
is based on an ARM hardcore processor: it opens interesting
perspectives as this work is easily portable to existing embedded
systems. Approaches proposed by Heo [5] and Lee [7] are
not portable on Zynq SoC due to CoreSight PTM component.
Furthermore, the time cost for communication between a CPU
and the coprocessor is 5.4% in this work compared to 60% in [5].
In terms of area, ARMHEx has the best coprocessor/processor
ratio: the reason is that the CPU used in our work is a Cortex-
A9 which has around 26 million gates [26]. Other works use
softcores as their main CPU which have a lower number of
gates. If we compare area results (in terms of gate counts), our
approach still performs better. Moreover, regarding the power
ratio of a DIFT-enhanced architecture, ARMHEx is better than
[5] (16 % instead of 24%). However, Deng et al. [3] have a
better power overhead than ARMHEx because they implemented
a dedicated hardware module for DIFT instead of a coprocessor-
based approach as in ARMHEx. ARMHEx is able to operate at
a maximum frequency of 250 MHz (bridled at 100 MHz for
the first implementation because of a Microblaze used for DIFT
computations).

VII. CONCLUSION AND PERSPECTIVES

ARMHEx is the first work to implement DIFT on ARM
hardcore processors. Even though DIFT implementations on
softcores exist, they are not all portable to hardcore CPUs. This
work proposes to use CoreSight components along with static
analysis and instrumentation to recover required information for
DIFT. It is shown that by using our approach, only 6% of
instructions need to be instrumented in an application compared
to 60% instrumented instructions in related works. Furthermore,
we propose to protect ARMHEx and its components by isolating
them using ARM Trustzone. Our proposed approach ARMHEx
has been implemented on a Zynq SoC. Implementation results
show interesting perspectives for ARMHEx in terms of multicore
runtime security. ARMHEx can be implemented in parallel as it
has a moderate impact in terms of area (less than 20% of FPGA
area is currently used).
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