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This paper describes the fabrication of circular micro-mirrors with diameters between 50 and 150 µm with 
controlled amplitude and phase. Design, manufacturing and characterization method are presented. 
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1. Introduction Optical coatings play a key role in most of the optical systems as they offer an efficient and versatile way to control the spectral properties of an incoming radiation. With the recent improvements of the deposition and optical monitoring techniques [1,2], it is now possible to fabricate more complex multilayer structures having up to several hundreds of layers. Most of the focus on the recent developments has been placed on the precise control of the intensity transmitted or reflected by these elements, but very little efforts has been placed in the control of the reflected phase except for the control of group delay dispersion, especially for short pulse laser applications [3] or for a few specific applications including bandpass filters or mirrors [4-7]. In addition, there is higher demand for larger optical elements, which required large efforts in order to improve the uniformity of optical coatings [8]. However, the decrease of the size of the coated area is also challenging and presents wide interest for example for the development of striped filters (e.g. for bolometers [9]), pixelated filters [10] or for laser beam shaping [11]. In this paper, we present the design, fabrication and characterization of mirrors deposited on half of a fused silica, with high reflectivity (>99%) and a phase shift between the mirror and the uncoated substrate equal to π/2 at 1064 nm [12]. We also show how this approach can be transferred to micro-mirrors with diameters between 50 and 150 µm and study the influence of decreasing the size of the micro-mirrors on the quality of the fabricated elements. 
2. Design, fabrication and characterization of mirrors 
with controlled phase and amplitude The simplest and fastest way to design and fabricate a mirror is the use of a metallic layer on top of a glass substrate. The advantage of such a solution is the fact that a single layer is sufficient. But when it comes to high energy laser applications, such an approach is not optimal and the use of dielectric materials appears as a better solution [13]. Such dielectric mirrors are then obtained using a stack of quaterwave layers with alternated high and low refractive indices. A quarterwave-based mirror made out of Nb2O5 as a high refractive index material (H, 

nH = 2.20) and SiO2 as a low refractive index material (L, nL = 1.47) was designed. Based on the refractive index of these two materials, achieving a reflectivity higher than 99% at 1064 nm requires depositing at least 15 layers. In addition, we wanted to control the reflected phase, i.e. the difference between the reflected phase on the mirror and the phase reflected by the glass substrate on top of which the mirror is coated, and make it equal to π/2. The need of such π/2 phase shift is commonly required for several applications including phase contrast microscopy that was developed by Zernike [14]. By introducing a π/2 phase between the incident and the scattered components of the image field, it is possible to convert a phase information into an amplitude image. Such plates can also be used for passively coupling of lasers [15]. To achieve such a phase difference, the design of the mirror had to be optimized.  

 Fig. 1.  Definition of the phase reflected by a dielectric mirror and its substrate. Phase is calculated at the level of the dashed line. H are high refractive index layers, L are low refractive index layers and C the phase control layer. As a matter of fact, a regular quaterwave dielectric mirror exhibits a 0 or π phase shift at reflection at its central wavelength depending whether the last layer is a low refractive index material layer (L) or high refractive index material layer (H). In addition, it is possible to obtain any intermediate reflected phase value, between 0 and 2π, by adjusting the thickness of the last layer of the dielectric mirror (L or H). In our specific case, a second phase term also appears: the phase 
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incursion in air over the mirror-equivalent thickness. To mathematically express this problem and model these phase terms, let us define φ1, the phase reflected by the mirror at 1064 nm and φ2, the phase reflected by the uncoated substrate at the level of the last layer of the coating (Fig. 1). We can write that: 
 (1) where B and C denote the appropriate normalized electric and magnetic fields at the air/coating interface and η0 is the incident substrate admittance [16]. We have also: 

 (2) where ΣtH is the sum of the physical thicknesses of the high refractive index layers, ΣtL is the sum of the physical thicknesses of the low refractive index layers, and tC is the physical thickness of the last phase controlling layers. By adjusting the thickness of this layer, both φ1 and φ2 are modified. We plotted in Fig. 2, the evolution of the φ1, φ2 and φ1 - φ2 on the total thickness of the coating. 

 Fig. 2. Figure 2-a. Evolution of the phase reflected by the dielectric mirror (red) and the substrate (blue) on total thickness of the coated mirror (for the last 6 layers of the mirror). Figure 2-b. Evolution of the difference of phase φ1 - φ2 (red) and the reflected amplitude (blue) on total thickness of the coated mirror. For both Figures, green rectangles show the low refractive index layers position and the orange rectangles show the position of the high refractive index materials, starting from a 13-layer mirror and ending with a 19-layer mirror. One can see that achieving a reflection higher than 99% on the mirror combined with a π/2 phase shift difference (φ1 - φ2) is achieved only once in the graph of Figure 2, i.e. after deposition of a 17-layer 

quaterwave mirror followed by a 50 nm thick silica layer. In addition, one can see that the phase difference is close to 90° after depositing the 17-layer mirror and that the 50 nm silica layer allows fine tuning the phase. This adjustment could probably be neglected, but we decided to take it into account in our fabrication process in order to secure a perfect theoretical phase. Also, in this range, as the phase is slowly varying, the precise control of this last layer is not critical and small thickness errors would only result in a few degrees error on the phase difference.  To validate the approach, we fabricated a prototype of such an element by physically masking half of a fused silica substrate and depositing a mirror on the other half. Deposition was achieved using a Bühler SYRUSpro 710 machine associated with an OMS 500 optical monitoring system. As it is critical to be able to precisely control both the total physical and the optical thickness of the mirror, we opted for an optical monitoring of the mirror during deposition. While the parameter controlling the phase reflected by the mirror at 1064 nm is the total optical thickness of the mirror and can be well controlled using a classical turning point optical monitoring strategy due to the well-known compensation of errors phenomenon, such an effect would however affect the total physical thickness of the stack and therefore the phase reflected on the uncoated side. To overcome this problem, we opted for a trigger point monitoring technique on one edge of the mirror (i.e. ~940 nm). This technique allows minimizing the errors on the thickness of each individual layer. In addition, it allows maintaining a large amplitude of the monitoring signal, even when the mirror becomes highly reflective. After fabrication, the spectral dependence of the reflection was characterized using a Perkin Elmer Lambda 1050 spectrophotometer equipped with an URA module that allows absolute measurement of the reflectivity. Accuracy of such high reflection coefficient measurement was tested using a calibration sample having more than 99.95% reflection at 1064 nm. A reflectivity exceeding 99% and equal to 99.7±0.2% was confirmed (Figure 3). One can also see a good theory/experiment agreement. 
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zone appears pretty sharp, not exceeding 5-10 µm. Small defects at the boundary however create small local non-uniformities. 

 Figure 9. Spatial profiles of the 125 µm micro-mirrors as measured by white light profilometry. Phase and amplitude of the reflection at 1064 nm of the micro-mirrors could not directly be measured. However, we first indirectly characterized these properties on the witness sample similar to the one presented in section 2 and that was coated simultaneously with the micro-mirrors. Table 1 presents the performances measured on the witness samples of section 2 and 3.  
Table 1. Performances measured on the witness sample 

Sample name Lambda Rmax Rmax φ1-φ2 Sample section 2 1075 nm 99.7±0.2% 90° ± 3°Witness sample section 3 1076 nm 99.7±0.2% 90° ± 3° 
One can see that due to the high repeatability of the fabrication processes of the SYRUSpro 710 machine associated with the direct optical monitoring, performances of the witness sample are comparable to the one presented in section 2. These result show that the deposited structure was the expected one.  In order to validate that the micro-mirrors have identical properties, transmission spectra was directly measured on the micro-mirrors measured using an internal system based on an optical spectral analyzer that is generally used to characterize the uniformity of optical filters [19]. Using a 50 µm beam diameter, transmission was measured on the 125 µm micro-mirror and compared to the one on the witness sample (Figure 10).  One can see that the two measured transmission spectra are very close. Higher noise is measured on the micro-mirror due to the lower energy level in this measurement. These data prove that masking did not affect the coating at least in the central part and confirm the one of previous studies that showed that the use of a photoresist mask does not affect the spectral properties of the deposited components compared to un-masked one [10,18]. One can wonder if this verification is enough to secure that both amplitude and phase properties are met. However, it is important to note that only dielectric materials with no measurable absorption at 1064 nm were used for the fabrication of the mirrors, securing minimal losses in the mirror and a reflection coefficient equal to 1-T where T is the measured transmission. The low average transmission around 1064 nm below 1% confirms a reflection coefficient larger than 99 %. In addition, it is interesting to note that the very good matching of the transmission spectral measurements over a broad spectrum (Figure 10), also secures an optimal value of the phase φ1-φ2 as any fabrication errors 

that would affect the phase value would also affect the transmitted intensity.  

 Figure 10. Spectral dependence of the transmission. Blue: measurement on the 125 µm micro-mirror, yellow: measurement on the witness sample. As an example, adding a 50 nm thick silica layer on top of the 17-layer mirror as the one used to finely tune the reflected phase shifts the minimum of transmission from 1064 to 1075 nm. These various characterizations therefore demonstrate that we were able to fabricate micro-mirrors with the expected properties. Finally, it is worth noting that the validity of the performances of the components could finally be indirectly verified by integrating the component in a laser system and verifying that it acts as expected. 
4. Conclusions Micro-mirrors with controlled phase and amplitude have been demonstrated. These mirrors were obtained by combining proper design of both the amplitude and the phase reflected by these elements and shaping using photolithographic process. These results pave a way towards more complex elements, especially for laser beam shaping by diffractive optical elements.  
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