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Convergence rate for the λ-Medial-Axis estimation under

regularity conditions

C. Aaron

June 26, 2018

Abstract

Let X = {X1, . . . Xn} ⊂ Rd be a random sample of observations drawn with a probability
distribution supported on S satisfying that both S and Sc are r0-convex (r0 > 0). In this
paper we propose an estimator of the medial axis of S based on the λ-medial axis and the
r-convex hull. Its convergence rate is derived. An heuristic to tune the parameters of the
estimator is given and a small simulation study is performed.

Keywords: Manifold Learning, Geometric Inference, Skeleton.

1 Introduction

The medial axis of a set S was introduced in [5] as the set of points that has at least two different
projections on ∂S. It was proposed as a tool for biological shape recognition and became popular
in image compression and image analysis (see [11] for instance). More recently it has also been
applied to wireless networks [20].

In this paper we will focus on the inner medial axis, that is, the intersection of the medial
axis and S which carries all the information for set estimation and image analysis.

More precisely we are interested in M(S) = {x ∈ S, diam(Γ(x)) > 0} where Γ(x) = {y ∈
∂S, ||y − x|| = d(x, ∂S)}.

There exists another object, the skeleton, that can be defined, following [21] or [15], by the
set of the centers of the maximal balls included in S. More precisely, if B(x, r) denotes the open
ball centered in x and of radius r and if S̊ denotes the interior of S we consider:

M∗(S) = {x, ∃r(x) such that B(x, r(x)) ⊂ S̊ and B(x, r(x)) ( B(x′, r′) ⇒ B(x′, r′) * S̊}. (1)

It can be proved (see [15]) that M(S) ⊂ M∗(S) ⊂ M(S) and an example where the last
inclusion is strict can be found in [8]. Nevertheless in this work we will assume that M(S) is
closed which directly implies that M(S) = M∗(S).

Let Xn = {X1, . . . , Xn} be a random sample of observations drawn with a probability distri-
bution supported on an unknown support S. Being able to estimate M(S) has various statistical
applications. First of all, the knowledge of (x, d(x, ∂S)) for all x ∈ M(S), known as the “medial
axis transformation”, allows one to reconstruct S (see [21]). Being able to estimate M(S) and
d(x, ∂S) provides a natural plug-in estimator of the support.

In [12] the author proposed to apply the medial axis to filament estimation (one dimen-
sional curves embedded in Rd. The same kind of idea can be applied in any dimension for
manifold estimation. Suppose that we observe the random variable X that is drawn “close
to” a d′-dimensional manifold i.e. X = Y + rU where Y is a hidden random variable whose
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distribution is supported by M , a d′-dimensional manifold embedded in Rd, r is a positive real
number, and U is a random variable uniformly drawn on the d-dimensional unit ball. Then the
support S of the random variable X is M ⊕ rB = {x, ∃y ∈ M, ||x − y|| ≤ r}. Under some
regularity assumptions (namely that M has a positive reach r0 > r) we have M = M(M ⊕ rB)
and medial axis estimation based on the observations of X allows us to estimate the underly-
ing unknown lower dimensional structure. Note that the minimax bounds for the estimation of
M has been obtained in [13], the estimator proposed in Section 3.1. is minimax when the co-
dimension is 1 (when when d′ = d− 1) and not optimal when d′ < d− 1 (this seems reasonable,
as noticed in [13], because we should use the knowledge of d′ to build a minimax estimator).
More generally suppose that X = Y + r(Y )U where the distribution of the unknown Y is sup-
ported by a d′-dimensional sub-manifold of Rd and U is a random variable uniformly drawn on
the d-dimensional unit ball. Manifold estimation consists of estimating M by observing X . Let
S = {x, ∃y ∈ M, ||x−y|| ≤ r(y)} be the support of X . In a more general setup, since M = M(S)
(which can be interpreted as an identifiability condition for the estimation of M) manifold es-
timation and medial axis estimation amount to the same problem. Remark that M = M(S)
allows non-constant radius r if the variations are slow enough. Also remark that, in this context,
the assumption that M(S) is closed is naturally satisfied. In Section 3.4 some simulations are
performed for d = 2 and d = 3. The three dimensional case illustrates the use of the medial axis
as a manifold-estimator.

Unfortunately, the medial axis is not continuous with respect to the Hausdorff distance dh (see
pages 217−238 of [15] for topological properties of the medial axis). This implies that estimating
the medial axis using a finite sample of points Xn = {X1, . . . , Xn} is unstable and provides a
challenging problem that has been investigated in various papers (see [3] for a state-of-the-art
report).

Two different approaches have been investigated. The first one consists of pruning the medial
axis of an estimation of S (see [18], [6], [9],[4] or [16]); the second one consists of estimating the
λ-medial axis instead of the medial axis Mλ(S) = {x ∈ M(S),Γ(x) ⊂ B(a, r) ⇒ r ≥ λ}, the
latter object being stable with respect to the Hausdorff distance (see [7]). More precisely the
Authors prove that, if dh(S

′c, Sc) ≤ ε then dh(Mλ(S),Mλ(S
′)) ≤ CS

√
ε, then they propose an

algorithm to estimate M̂(S) given sample points located near the boundary, that is, given En a
sequence of finite set of points such dh(En, ∂S) → 0 they propose a function M̃λ(En) and prove
that dh(M̃λ(En),Mλ(S)) → 0.

Later, given a sample point Xn drawn on S (instead of “near ∂S”), it is proved in [10],
under no more shape hypothesis than regularity, that given a support estimator Ŝn such that
dh(Ŝn, S) → 0 a.s. and dh(∂Ŝn, ∂S) → 0 a.s. then dh(Mλ(Ŝn),Mλ(S)) → 0 a.s.

We are going to introduce a new medial axis estimator M̂λ(Xn) that is morally very close to
the one introduced in [7]: we just restrict our medial axis to be the inner part of the medial axis
and we consider the diameter of Γ(x) instead of the radius of the smallest ball containing Γ(x)
(which is a bit more quick to compute).

Namely suppose that one can extract from Xn a subset Y = {Y1, . . . YN} ⊂ Xn of observations
“close” to ∂S and that we can estimate S by Ŝn. We propose the following medial axis estimator:

M̂λ,Sn
(Y) =

{

x ∈ VorY(y) ∩VorY(z) ∩ Ŝn, (y, z) ∈ Y2, ||y − z|| ≥ λ
}

, (2)

where VorY(y) = {z, ||z − y|| ≤ d(z,Y)} is the Voronoi cell of y with respect to the set Y.
In this paper we aim to prove that, under some shape hypothesis on S, there exists suit-

able values of λ such that, if dh(Yn, ∂S)
a.s.→ 0, dh(Ŝn, S)

a.s.→ 0 and dh(∂Ŝn, ∂S)
a.s.→ 0 then

dh(M̂λ(Xn),M(S))
a.s.→ 0 almost surely (convergence rates are also given). This means that,

under shape hypotheses, the λ can be seen as a pruning parameter for the estimation of M(S).
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This improves the results given in [10] in which the authors proved that we can estimate Mλ(S)
without giving convergence rates.

Let Cr(Xn) be the r-convex hull of the observations (see [17]). For some r < r0, we will prove

the choice of Y = ∂Cr(Xn) ∩ Xn and Sn = Cr(Xn) allows us to obtain dh(M̂λ,Ŝn
(Y),M(S)) ≤

(lnn/n)2/(d+1) for suitable values of λ.
Finally we propose an empirical way to choose the tunning parameters, and we perform a

small simulation study.

2 Shape Hypothesis and main result

Throughout the paper we consider subsets of Rd. Let us start with some definitions and notation.
Let A be an open set and C a closed set such thatA∩C = ∅ and introduce B(A,C) = {B(x, r), x ∈
A,B(x, r) ∩ C = ∅}, Cmax(A,C) the set of the maximal balls (for the inclusion) of B(A,C) and
M(A,C) the set of the centers of the balls of B(A,C). In the following, S(x, r) denotes the sphere
of radius r centered at x.

Let S be a compact set. As defined in (1) we have M∗(S) = M(S̊, ∂S). For any point
x ∈ M∗(S) let us introduce r(x) = d(x, ∂S), i.e. B(x, r(x)) is a maximal ball of B(S̊, ∂S). As
noted in [15], the medial axis may have various “bad” properties, and we are going to restrict our
study to regular enough sets, namely we will require that balls of radius r0 roll freely inside and
outside S, that M(S) is closed and that the radius r(x) = d(x, ∂S) for x ∈ M(S) is a K-Lipschitz
continuous function for some K < 1.

Definition 1. Balls of radius r0 roll freely outside and inside S if, for each x ∈ ∂S there
exists Oout

x and Oin

x such that B(Oout

x , r0) ⊂ Sc and B(Oin

x , r0) ⊂ S. In this case, we introduce

ux =
Oout

x
−x

r0
the unit vector, normal to ∂S and pointing outward from S.

According to Walther, it is equivalent to have balls of radius r0 rolling freely inside and
outside S and the r0-convexity of S, Sc and S̊ 6= ∅ as cited in the introduction. Nevertheless the
ball vision of such a notion is the most helpful for the proofs. If S is a compact set such that
balls roll freely inside and outside S then it is regular enough to have a medial axis satisfying
some good properties described in the following lemma.

Proposition 1. If S is a compact set such that balls of radius r0 roll freely inside and outside

S then S = (S̊) (one then says S is regular which is a common condition when considering the
medial axis);

Proof. The inclusion (S̊) ⊂ S comes from the closeness of S. Considering the second inclusion

S ⊂ (S̊), for any x ∈ S, on one hand if x ∈ S̊ then x ∈ (S̊); on the other hand if x ∈ ∂S,
introduce xn = x− r0

2nux. The rolling ball property implies that xn ∈ S̊ and as xn → x we have

x ∈ (S̊).

In addition to the regularity of the support we need additional assumptions, summarized in
Definition 2

Definition 2. Let r0 > 0 and K < 1 be two numbers, S be a compact set in Rd. We say S is
(K, r0)-regular if:

1. balls of radius r0 roll freely inside and outside S;

2. M(S) is closed;
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3. for all (x, y) ∈ M(S)2, |d(x, ∂S)− d(y, ∂S)|/||x− y|| ≤ K

The second assumption, that M(S) is closed, ensures that medial axis and skeleton are the
same object. The third assumption is a bit more technical and is required in the proof. Notice
that it is not so restrictive since the maximality of the balls B(x, d(x, ∂S)) and B(y, d(y, ∂S))
and the triangular inequality imply that |d(x, ∂S)− d(y, ∂S)| ≤ ||x− y||.

Now recall that we aim to estimate the medial axis of a set S via an estimation based on a
finite number of points. It will be seen later that, regarding the medial axis, the two parts of the
Hausdorff distance don’t have the same importance. This leads us to define (ε, h)-estimations as
follows.

Definition 3. Let S and S̃ be two sets in Rd. Then S̃ is an (ε, h)-estimation of S if:

max
y∈S̃

d(y, S) ≤ ε and max
x∈S

d(x, S̃) ≤ h.

The behavior of the estimated medial axis is made explicit in the following theorem. Note
that the smoothness conditions on the boundary are close to the one used in [2] where a similar
theorem is obtained for a sufficiently dense sample of the boundary. Nevertheless, here we can
just observe points close to the boundary and we avoid the heavy computation of a weighted
Delaunay tessellation.

Theorem 1. Let S be a (K, r0)-regular compact set. Suppose that there exists εn → 0, Y(Xn) ⊂
Xn and Ŝn ⊂ S such that

1. Y(Xn) ⊂ Xn is a (ε2n, εn)-estimation of ∂S

2. dh(Ŝn, S) ≤ ε2n and dh(∂Ŝn, ∂S) ≤ ε2n

There exists an explicit constant λ0 and a constant C such that for all λ < λ0, for n large
enough:

dh(M̂λ,Ŝn
(Y),M) ≤ Cε2n

Proof. First note that the inner rolling ball condition implies that for all x ∈ M, r(x) =
d(x, ∂S) ≥ r0.

For any x ∈ M(S) we have that x ∈ Ŝn for n large enough. Indeed suppose the reverse. As
there exists x′ ∈ Ŝn with ||x′ − x|| ≤ ε2n, there exists x′′ ∈ [x, x′] ∩ ∂Ŝn, ||x − x′′|| ≤ ε2n. As
B(x, r(x)) ⊂ S we also have B(x′′, r(x) − ε2n) ⊂ S and d(x′′, ∂S) ≥ r(x) − ε2n ≥ r0 − ε2n. That is
impossible when n is large enough to have ε2n < r0

2 . We also have that B(x, r(x)−2ε2n)∩Y(Xn) =

∅. Thus B(x, r(x) − 2ε2n) ∈ B(Ŝn,Y) and there exist x′ ∈ Ŝn and r′ such that:

B(x, r(x) − 2ε2n) ⊂ B(x′, r′) with B(x′, r′) ∈ Cmax(Ŝn,Y). (3)

We are now going to prove that for all (x′, r′) such that B(x, r(x) − 2ε2n) ⊂ B(x′, r′) and
B(x′, r′) ∈ Cmax(Ŝn,Y) we have :

||x− x′|| ≤ 1 +K

1−K
(2 + 3/r0)ε

2
n. (4)

Introduce x′∗ a point of ∂S such that d(x′, ∂S) = ||x′−x′∗|| and γ = r′−||x′ −x′∗||. Notice that
1. Because x′∗ ∈ ∂S, there exits yi ∈ Y such that ||yi−x′∗|| ≤ εn. Thus B(x′, ||x′−x′∗||+εn) /∈

B(Ŝn,Y) and we obtain : r′ ≤ ||x′ − x′∗||+ εn.
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2. Conversly, because B(x′, r′) is in Cmax(Ŝn,Y) there exists y ∈ Y such that ||x′, y|| = r′ and
there exists z ∈ ∂S such that ||y − z|| ≤ ε2n so we obtain : ||x′ − x′∗|| ≤ r′ + ε2n.

Finally, we have that
− ε2n ≤ γ ≤ εn (5)

Remark now that there exists yi ∈ Y such that:

1. ||yi − x′∗|| ≤ εn, because Y is a (ε, ε2n)-estimation of ∂S;

2. yi /∈ B(Oout
x′∗ , r0), because yi ∈ S;

3. ||x′ − yi|| ≥ r′, because B(x′, r′) is a ball of B(Ŝn,Y).

Let us write yi = au+ bw where u = x′∗−x′

||x′∗−x′|| and w is a unit vector of u⊥. Notice that a ≥ 0

and that w can be chosen such that b ≥ 0 (see Figure 1).

Figure 1: Let B(x′, r′) ∈ Cmax(Ŝn,Y) and x′∗ be a point of ∂S such that such that d(x′, ∂S) =
||x′ − x′∗||. Then there exists a yi ∈ Y in the green dashed area.

We have:










a2 + b2 ≤ ε2n
b2 + (r0 − a)2 ≥ r20
r′ ≤ ||x′ − yi||2 = (r′ − γ + a)2 + b2

⇒











a2 + b2 ≤ ε2n
2ar0 ≤ ε2n
0 ≤ γ2 − 2(r′ + a)γ + (1 + r′

r0
)ε2n

The last inequality gives γ ≤ r′+a−
√

(r′ + a)2 − (1 + r′

r0
)ε2n or γ > r′+a+

√

(r′ + a)2 − (1 + r′

r0
)ε2n.

The second case is impossible for n large enough because (5) is incompatible with γ > r′+a >
r0 − 2ε2n − ε2n/(2r0), and we must have:

γ ≤ r′ + a−
√

(r′ + a)2 − (1 +
r′

r0
)ε2n ≤

(1 + r′

r0
)ε2n

r′ + a
≤
(

1

r′
+

1

r0

)

ε2n.
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Now as r′ ≥ r(x)− 2ε, when n is large enough we have r′ ≥ r0/2 and thus γ ≤ 3ε2n/r0. This,
in turn guarantees that B(x′, r′−3ε2n/r0) ⊂ B(S̊, ∂S), so there exists B(x′′, r(x′′)) ∈ Cmax(S̊, ∂S)
with B(x′, r′ − 3ε2n/r0) ⊂ B(x′′, r(x′′)), that is:

∃x′′ ∈ M such that B(x′, r′ − 3ε2n/r0) ⊂ B(x′′, r(x′′)). (6)

Now, by (3) and (6) it follows that B(x, r(x)−(2+3/r0)ε
2
n) ⊂ B(x′′, r(x′′)). As a consequence,

by the K-regularity of the support, we obtain r(x′′) ≥ ||x′′ − x|| + r(x) − (2 + 3/r0)ε
2
n. Thus

(2 + 3/r0)ε
2
n ≥ ||x′′ − x||+ r(x) − r(x′′) ≥ (1−K)||x− x′′|| and we finally obtain:

||x− x′′|| ≤ (2 + 3/r0)ε
2
n

1−K
. (7)

By (3) we also have r′ ≥ ||x−x′||+r(x)−2ε2n and by (6) we have r(x′′) ≥ ||x′′−x′||+r′−3ε2n/r0.
Summing these two inequalities gives: r(x′′) ≥ r(x) + ||x− x′||+ ||x′ − x′′|| − (2 + 3/r0)ε

2
n so

||x− x′|| ≤ r(x′′)− r(x) + (2 + 3/r0)ε
2
n

So again using the K-regularity of the support and (7) we obtain ||x− x′|| ≤ 1+K
1−K (2 + 3/r0)ε

2
n.

This concludes the proof of (4).

Introduce C0 = min{
√

(1−K)r3
0

(1+K)(2r0+3) ,
r0
2 }. We now aim to prove that, for all x ∈ M(S) there

exits x′ and r′x such that

x′ ∈ MC0,Ŝn
(Y) , B(x′, r′x) ∈ Cmax(Ŝn,Y) , and B(x, r(x) − 2ε2n) ⊂ B(x′, r′x). (8)

More precisely we will show that this is realized for

r′x = max{r′, B(x, r(x) − 2ε2n) ⊂ B(x′, r′), B(x′, r′) ∈ Cmax(Ŝn,Y)}

and x′ a point such that B(x, r(x)− 2ε2n) ⊂ B(x′, r′x) and B(x′, r′x) ∈ Cmax(Ŝn,Y). Clearly there
exists y ∈ S(x′, r′x) ∩ Y. Suppose that max{||y − z||, z ∈ S(x′, r′x) ∩ Y} = l ≤ r0/2. Introduce a

point z0 ∈ S(x′, r′x) ∩B(y, l), u = x′−y
||x′−y|| , x

′′
t = x′ + tu and r′′t = ||z0 − x′′

t || (See Figure 2).

Note first that 〈x′ − z0, u〉 = 2(r′
x
)2−l2

2r′
x

≥ 3
4 (because l2 ≤ r20/4 ≤ (r′x)

2). Thus:

1. For t > 0 : r′′t = ||x′ − z0 + tu|| =
√

(r′x)
2 + t2 + 2t〈x′ − z0, u〉 > r′x.

2. For t > 0 : B(x′′
t , r

′′
t ) ∩ Bc(x′, r′x) ∩ B(y, l) = ∅, so d(x′′

t ,Y ∩ B(y, l)) ≥ r′′t . Consider now
the function ρ(t) = d(x′′

t ,Y ∩ Bc(y, l)) − r′′t . For t = 0 we have ρ(0) > 0 so that, using
continuity arguments, there exists t0 such that, for all t ∈ [0, t0] we have ρ(t) > 0 and thus
(according to the premiliminary remark) B(x′′

t , r
′′
t ) ∩ Y = ∅. Observe that, because x′ is

far enough from the boundary of S, we can can choose t0 such that for all t < t0 we have
x′′
t ∈ Ŝn and B(x′′

t , r
′′
t ) ∩ Y = ∅.

As B(x′, r′x) is a ball containing B(x, r(x) − 2ε2n), in Cmax(Ŝn,Y) and has a maximal radius we
must have that, for all 0 < t < t0 there exists yt ∈ Bc(x′′

t , r
′′
t ) ∩ B(x, r(x) − 2ε2n). Observe that

yt ∈ (Bc(x′′
t , r

′′
t ) ∩B(x′, r′)) ∩B(x, r(x) − 2ε2n).

So, taking t → 0 and using compactness arguments we obtain that there exists y′ ∈ S(x′, r′)∩
B(y, l) ∩B(x, r(x) − 2ε2n) and finally using again that B(x, r(x) − 2ε2n) ⊂ B(x′, r′) we have

y′ ∈ S(x′, r′) ∩B(y, l) ∩ S(x, r(x) − 2ε2n).
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Figure 2: Construction of x′′
t .

Figure 3:

Introduce γ = ||x−y||−(r(x)−2ε2n) and θ = ∠yx′y′. Notice that γ > ε2n because d(y, ∂S) ≤ ε2n
(see Figure 3).

By ||y − y′||2 = ||y − x||2 + ||x − y′||2 + 2〈y − x, x − y′〉 it follows that ||y − y′||2 = (r(x) −
2ε2n)

2 + (r(x) − 2ε2n + γ)2 − 2(r(x) − 2ε2n)(r(x) − 2ε2n + γ) cos(θ). Thus we have:

cos(θ) =
(r(x) − 2ε2n)

2 + (r(x) − 2ε2n + γ)2 − ||y − y′||2
2(r(x) − 2ε2n)(r(x) − 2ε2n + γ)

. (9)
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We also have x′ − x = ||x′ − x||(cos(θ),− sin(θ)). Thus

||x′ − y||2 = (r(x) − 2ε2n + γ + ||x′ − x|| cos(θ))2 + (||x′ − x|| sin(θ))2. (10)

But we also have ||x′ − y||2 = ||x′ − y′||2 = (r′)2 = (r(x)− 2ε2n + ||x′ − x||)2. Thus, from (10) we
finally obtain:

(r(x) − 2ε2n + γ)2 + 2||x′ − x||(r(x) − 2ε2n + γ) cos(θ) = (r(x) − 2ε2n)
2 + 2||x′ − x||(r(x) − 2ε2n),

and thus :

||x′ − x|| = 1

2

2γ(r(x) − 2ε2n) + γ2

(r(x) − 2ε2n)− (r(x) − 2ε2n + γ) cos(θ)
.

This and (9) gives

||x′ − x|| = 2γ(r(x)− 2ε2n)
2 + γ2(r(x) − 2ε2n)

||y − y′||2 − 2γ(r(x) − 2ε2n)− γ2
. (11)

Finally, recall that r(x) − 2ε2n ≥ r0/2 and γ ≥ ε2n, and observe that because of (4) we have
||x′ − x|| ≤ K+1

1−K (2 + 3/r0)ε
2
n. Therefore, from (11) we obtain:

r20ε
2
n(1 + ε2n/r0)

2||y − y′||2 ≤ ||x− x′|| ≤ K + 1

1−K
(2 + 3/r0)ε

2
n

and thus, for n large enought that εn ≤ √
r0 we have: ||y − y′||2 ≥ (1−K)r30

(1+K)(2r0+3) . Thus, if

l ≤ r0/2 we have l ≥
√

(1−K)r3
0

(1+K)(2r0+3) . This concludes the proof of (8).

Now from (4) and (8) we have that, for all λ < C0 :

for all x ∈ M(S) there exists x′ ∈ M̂λ,Ŝn
(Y) such that ||x− x′|| ≤ K + 1

1−K
(2 + 3/r0)ε

2
n. (12)

Consider points x ∈ S such that d(x,M) ≥ e. In this last part of the proof we put l = d(x, ∂S).
Consider a point x′∗ ∈ ∂S such that ||x−x′∗|| = l. As B(x, l) ⊂ S̊ one can introduce B(x′, r(x′)),
a ball of Cmax(S̊, ∂S) containing B(x, l). Recall that the regularity condition on S allows the
existence of Oout

x∗ such that B(Oout
x∗ , r0) ⊂ Sc and observe that x, x′, x′∗ and Oout

x∗ are on the same
line, and that r(x′) = ||x′ − x||+ l with e′ = ||x′ − x|| ≥ e.

Because Y is a (ε2n, εn)-estimation of ∂S there exists y ∈ Y such that ||x′∗−y|| ≤ εn. Obviously,
as d(y, ∂S) ≤ ε2n, we have ||y − x′|| ≥ r(x′)− ε2n, and since y ∈ S we have ||y −Oout

x∗ || ≥ r0, that
is y ∈ B(x′∗, εn) ∩Bc(x′, r(x′)− ε2n) ∩Bc(Oout

x′ , r0). See Figure 4 for the construction.
Now, since ||x′∗ − y|| ≤ εn and ||y −Oout

x∗ || ≥ r0, a short calculation shows that

||x− y||2 ≤ (r(x′)− e′)2 + 2r0

(

1−
√

1− ε2n
r20

)

(r0 + r(x′)− e),

Thus there exists C1 such that, for n large enough, for all yi ∈ Y such that x ∈ Vor(yi), we have
yi ∈ B(x,

√

(r(x′)− e′)2 + C1ε2n) ∩Bc(x′, r(x′)− ε2n) = Ex. See Figure 4 again.

For all y = x+ au+ bw, where u = x−x′

||x−x′|| and w ∈ u⊥, y ∈ Ex we have

{

b2 + a2 ≤ (r(x′)− e′)2 + C1ε
2
n

b2 + (e′ + a)2 ≥ (r(x′)− ε2n)
2.
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Figure 4: As there exists an observation in the blue crosshatched domain, all the yi such that
x ∈ VorY(yi) are in Ex, the brown crosshatched domain.

After calculation we obtain that
{

amin(e
′) = min{a, y = x+ au+ bw, u = x−x′

||x−x′|| , w ∈ u⊥, y ∈ Ex} ≥ r(x′)− e′ − C1+2r(x′)
2

ε2
n

e′

bmax(e
′) = max{b, y = x+ au+ bw, u = x−x′

||x−x′|| , w ∈ u⊥, y ∈ Ex} ≤
√

(r(x′)− e′)2 + C1ε2n − amin(e
′).

Considering diam(Ex), we have:











diam(Ex) decrease when e′ increases

diam(Ex) ≤ 2
√

(r(x′)− e′)2 + C1ε2n
diam(Ex) ≤ 2bmax when amin ≥ 0

Choose en = (C1+2r0)
r0

ε2n, and note that, for n large enough, amin(en) ≥ 0 therefore for n large
enough, when e′ > en,

diam(Ex) ≤ 2bmax(en) ≤
√

(r(x′)− en)2 + C1ε2n − r(x′) + en +
C1 + 2r(x′)

2

ε2n
en

.

With the given value of the sequence en we can conclude that there existst C2 > 0 such that, for
n large enough, if d(x,M) ≥ en then diam(Ex) ≤ C2 and as a direct consequence x /∈ M̂C2,Ŝn

(Y).

Finally, choose λ0 = min(C0, C2). Then (12) and previous result allows to conclude that,

for all λ < λ0 exists D = max( (k+1)(2r0+3)
(1−K)r0

, C1+2r0
r0

) such that, for all λ < λ0 there for n large

enough
dh(M(S), M̂λ0,Ŝn

(Y)) ≤ Dε2n.

This concludes the proof.
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3 Practical aspects

3.1 Proposition of an explicit estimator

In the case where the points are randomly drawn on S satisfying the regularity conditions of
Theorem 1 and assuming additional hypothesis on the probability distribution, the following
corollary proposes a ways to practically estimate the inner medial axis. For this we use Cr(Xn),
the r-convex hull estimator of S (see [17]), to estimate S and to identify the subset Y of sample
points located close to the boundary.

Corollary 1. Let Xn = {X1 . . .Xn} be an iid sample of points, drawn on S a (K, r0)-regular
compact set. Assume that the density f of the sample satisfies f(x) ≥ f0 > 0 for all x ∈ S. For
all r < r0 denote by Ĉr(Xn) the r-convex hull of Xn and put Yr(Xn) = ∂Ĉr(Xn) ∩ Xn. There
exists λ0 such that, for all λ < λ0 there exists Bρ such that

dh(M, M̂λ,Ĉr(Xn)
(Yr(Xn))) ≤ Bρ

(

lnn

n

)
2

d+1

e.a.s.

Proof. We refer the reader to [17] to be convinced that there exist constants ar, br and cr such
that, eventually almost surely:

1. Ĉr(Xn) is (eventually almost surely) a (0, ar(lnn/n)
2

d+1 )-estimation of S,

2. Yr(Xn) is (eventually almost surely) a (ar(lnn/n)
2

d+1 , br(lnn/n)
1

d+1 )-estimation of S.

3.2 Algorithm

Step 1: Detection of boundary points. First we have to identify the set Yr(Xn) =
∂Ĉr(Xn) ∩Xn. This is an easy task since:

Proposition. Xi ∈ Yr(Xn) if and only ifmax{||y −Xi||, y ∈ (VorXn
(Xi))} ≥ r.

Proof. Observe that max{||y − Xi||, y ∈ (VorXn
(Xi))} ≥ r. This implies that there exists

x such that B(x, r) ∩ Xn = ∅. Thus, by definition of Ĉr, B(x, r) ∩ Ĉr(Xn) = ∅ and xn =
(1/n)x + (r − 1/n)Xi → Xi ∈ Ĉc

r(Xn) with Xi ∈ Ĉr(Xn), so Xi ∈ ∂Ĉr(Xn). Conversely,
if Xi ∈ ∂Ĉr(Xn) then there exist two sequences xn and yn ∈ Ĉc

r(Xn) such that xn → Xi,
xn ∈ B(yn, r) and B(yn, r) ∩ Xn = ∅. We have yn ∈ S ⊕ rB, which is compact. Thus, up to
an extraction we can suppose that yn → y. As r < ||yn −Xi|| ≤ r + ||xn − x|| we have in the
limit ||y −Xi|| ≥ r. Moreover, since for all n, B(yn, r) ∩ Xn = ∅, we have B(y, r) ∩ Xn = ∅ and
therefore y ∈ VorXn

(Xi).

Step 2: Computation of M̂λ,Cr(Xn)(Yr(Xn)). First recall that

M̂λ,Cr(Xn)(Yr(Xn) = {z ∈ VorYr
(Yi) ∩ VorYr

(Yj), z ∈ Cr(Xn), ||Yi − Yj || ≥ λ}

We claim that, for n large enough, we also have :

M̂λ,Cr(Xn)(Yr(Xn) = {z ∈ VorYr
(Yi)∩VorYr

(Yj),VorYr
(Yi)∩VorYr

(Yj)∩Cr(Xn) 6= ∅, ||Yi−Yj || ≥ λ}

Indeed, our regularity conditions imply that the total medial axis (not constraint to be included
in S) is composed of two distinct parts : M(S), the inside part, which is included in S ⊖ r0B,
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and Mout the outside part which is included in (S⊕r0B)c. Reasoning as in the proof of Theorem
1 for the global medial axis allows us to say that for well chosen λ : VorYr

(Yi) ∩ VorYr
(Yj) is

close to a part of the global medial axis when ||Yi − Yj || ≥ λ and by a connectivity argument it
is either close to the inner part or close to the outer part. It is then sufficient to have a point in
Cr(Xn) to conclude.

3.3 Choice of the parameters

We now have to tune the two parameters r and λ.

The r-convex hull parameter The crucial point when choosing a value for r is to identify
observations that are really close to the boundary of S. Referring to the algorithm (Step 1) let us
introduce ri = supx∈Vi

||Xi − x||. One can clearly guess that, for all i such that Xi is far enough
from the boundary, ri is small. For instance, under our last hypotheses (S compact r0-smooth
and f bounded away from 0 on S) the maximal spacing theory ([14] for the original paper and [1]
for the extension to the same hypotheses as in Corollary 1) ensures that there exists µ such that
for all i such that d(Xi, ∂S) ≥ µ(lnn/n)1/d we have ri ≤ µ(lnn/n)1/d/2. Conversly for points
located on the boundary we have, according to [17], ri ≥ r0. Thus the radii ri associated to
points close to the boundary that should be in Y can (asymptotically) be considered as outliers
in the empirical distribution of the ri (they clearky have greater values and their proportion is
decreasing to 0). According to this empirical consideration, and according to classical outlier
detection based on quartile, we propose the following algorithm for the choice of r:

• R = {ri, i ∈ {1, . . . , n}}, ρ = maxi(ri), r = Q3(R) + 3.IQ(R)

• while ρ > r (while there exists outliers) :

R := R ∩ [0, r], ρ := r, r := Q3(R) + 3.IQ(R).

The λ parameter Once r is chosen we can obtain Cr(Xn) and Y then compute:

Λ = {diam({Yi1 , Yid+1
}), i1 < . . . < id+1,∩VorY(Yi) ∩ Cr(Xn) 6= ∅}

the finite set of all the different values of λ for which the medial axis estimator changes. We can
see the points of Λ as the results of the mixture of two laws, one containing the small values
(parasite branches) and the other one containing the largest values (stable part of the medial
axis). Here we have no a priori idea of the proportion in each part of the mixture and the outlier
detection approach is no more convenient. We propose to estimate the density of the λ (in the
simulation part we used a Kernel density estimator with the Sheater and Jones [19] procedure
for the bandwidth selection) and to select the critical values that are local minima of the density
estimation.

3.4 Some simulations

To conclude, we now present some results. Each of these are based on large samples of 2000
points. For each example we present two graphics that illustrates the automatic procedure for
the choice of the parameter:

1. the estimated density on the ri and the choice r0,

2. the estimated density on the λi and the different choices for λ (one for each local minima
of the density).
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The 2-dimensional case. Since the medial axis was originally proposed for biological image
analysis we propose to first test our method on some “biological” images. We present some
results on a leaf image and on a sub-image of da Vinci’s Vitruvian Man (see Figure 5 which
presents the original image and the “working” version in black and white).

Figure 5: original images and there extracted support

In addition to the figure illustrating the parameter choices we present, for each selected
parameter λ:

1. The data set Xn (yellow points);

2. The boundary points Y (black points);

3. The parasite part medial axis (thin black lines);

4. The stable part of the medial axis (bold red lines).

When considering the Vitruvian man example, we found two local minima in the distribution
of the λ, which leads to two medial axis estimations that are represented in Figure 6. The first
one seems better and identifies the man’s skeleton while the second one only identifies his chest.

When considering the leaf example, we can see that the medial axis fails to recognize the leaf
vein structure. This is not so surprising since we notice that the leaf does not fulfill the required
regularity hypothesis. The choice of the λ parameters looks harder too but the five different
medial axes are not so different.
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Figure 6: Vitruvian man : Estimated density of the ri and chosen r0: estimated density of the
λi and the two different critical values; estimate medial axis for the smaller value; and estimated
medial axis for the larger value.

The 3-dimensional case. In this section we draw points on M ⊕ rB (r = 0.3) for two cases
where M is the medial axis of M ⊕ rB : first a Moebus strip then a trefoil knot.
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Figure 7: Leaf : Estimated density of the ri and chosen r0; estimated density of the λi and the
five different critical values; estimate medial axis for each value (increasing values).
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Figure 8: Moebus strip example : the data; the estimated density of r and λ; the medial axis
estimation
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Figure 9: Trefoil knot example : the data; the estimated density of r and λ; medial axis estimation
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