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Stable Medial-Axis estimation under regularity conditions

C. Aaron

July 7, 2017

Abstract

The medial axis of a geometrical set S ∈ Rd carries a lot of information on the shape

of S and is a popular tool in image analysis. The aim of this paper is to stably estimate

the medial axis using only a finite sub-sample of S. We are going to prove that, under

some regularity conditions, it can be done using only one pruning parameter. A general

deterministic result will be given, then applied to three different cases. Firstly these is the

usual one where the information is given by a finite sub-sample of ∂S. Secondly, these is the

classical one where the set is given by its pixelated image. Finally, we can also apply the

general theorem to the case where the information is given by a randomly drawn sample of

S. In this more challenging case we also detail the algorithm, the choice of the parameter

and give some simulation results as illustration.

Keywords: Manifold Learning, Geometric Inference, Skeleton.

1 Introduction

The medial axis of a set S was introduced in [4] as the set of points that has at least two different
projections on ∂S. It was proposed as a tool for biological shape recognition and became popular
in image compression and image analysis (see [12] for instance). More recently it has also been
applied to wireless networks [20]. In section 3.3 we will see that it can also be applied in statititics
for data analysis and regression (see [13] where this kind of application is detailed). In this paper
we will mainly focus on the inner medial axis which is the intersection of the medial axis and S
which is sufficient for S reconstruction and analysis.

There exist various definitions of the inner medial axis that may differ slightly. Following [21]
or [14] we choose to define the medial axis of S as the set of the centers of the maximal balls
included in S. More precisely, if B(x, r) denotes the open ball centered in x and of radius r and
if S̊ denotes the interior of S we consider:

M(S) = {x, ∃r(x) such that B(x, r) ⊂ S̊ and B(x, r(x)) ( B(x′, r′) ⇒ B(x′, r′) * S̊}. (1)

Notice that the knowledge of (x, r(x)) for all x ∈ M, known as the “medial axis transformation”,
allows one to reconstruct S (see [21]). It is well known that the medial axis is not continuous with
respect to the Hausdorff distance dh (see [14] pages 217 − 238 for topological properties of the
medial axis). One of the best illustrations of this phenomenon may be the following: suppose
that d = 2 and S = B(O, 1) (its medial axis being {O}) and that Sn is the interior of the
convex hull of {x1, . . . , xn} with xi = (cos(2iπ/n), sin(2iπ/n)). We clearly have dh(Sn, S) → 0
while M(Sn) = ∪i[0, xi[ and dh(M(S),M(Sn)) → 1. This phenomenon implies that estimating
the medial axis using a finite sample of points Xn = {X1, . . . , Xn} is unstable and provides a
challenging problem that has been investigated in various papers (see [2] pages 109− 125 for a
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state-of-the-art report). Two different approaches have been investigated, the first one consists
of pruning the medial axis of an estimation of S (see [18]); the second one consists of estimating
the λ−medial axis instead of the medial axis (see [6],[8]). Our work aims at investigating the
pruning option. To our knowledge there are three different ways of pruning the medial axis.
The first one investigates how far the reconstructed set is from the initial one (see [5] or [7]
for instance). This idea is difficult to exploit here because the original may be unknown, but
we will use an idea based on this one when considering the practical problem of the choosing
the parameter. The second idea is to prune according to stability parameter as in [3], in which
the authors consider two pruning parameters. Recently, in [15], the authors proposed pruning
according to a level of estimation of the boundary (to our knowledge this is only valid for d = 2).
We are also going to prune the medial axis but according to a shape hypothesis (we will see at
the end of the introduction that this pruning parameter is linked to the one proposed in [3]). To
understand the idea note that if x ∈ M(S) then x ∈ S and there exists (y, z) ∈ ∂S and ρx > 0
such that:

{

||x− y|| = ||x− z|| = d(x, ∂S)

||y − z|| ≥ ρx

The idea is to restrict to sets Sρ smooth enough to have the existence of ρ > 0 such that, for
all S ∈ Sρ the medial axis M(S) is the set of points x in S such that there exists (y, z) ∈ Rd such
that

{

||x− y|| = ||x− z|| = d(x, ∂S)

||y − z|| ≥ ρ
.

To plug in an estimator of the medial axis in Sρ we first need to extract a subset Y =
{Y1, . . . YN} ⊂ Xn of observations “close” to ∂S then we build Sn “close” to S, and estimate the
medial axis as follows:

M̂ρ,Sn
(Y) =

{

x ∈ VorY(y) ∩ VorY(z) ∩ Sn, (y, z) ∈ Y2, ||y − z|| ≥ ρ
}

, (2)

where VorY(y) = {z, ||z − y|| ≤ d(z,Y)} is the Voronoi cell of y with respect to the set Y.

Recall that M̂0,Ŝ(Y) is just a plug-in estimator of the medial axis (see [16] for the link be-

tween Voronoi cells and medial axis). One of the most popular pruning methods (see [7]) con-
sists of considering two “stability” parameters: rx = ||x − y1|| and θx = maxi,j ∠yixyj where
{y1, . . . yk} = {Yi ∈ Y, x ∈ Vor(Yi)} and, since empirical observations show that small values for
rx or θx are related to points x in an “instable” branch of the estimated medial axis; it has been
proposed to keep only points with rx ≥ R0 and θx ≥ θ0. Later, in [11], it has been proved that
such a pruning method allows one to obtain a consistent medial axis estimation when we can
access a finite subsample of ∂S. Notice that, even if the initial idea that led us to introduce our
pruning parameter is different we have that ρx = 2rx sin(θx/2), so that our pruning parameter is
strongly linked with the usual pruning method. This has two advantages: we have a theoretical
proof of the consistence of our estimator in any dimension, and in practice, tuning one parameter
is much easier than two.

Section 2 is dedicated to the theoretical study of our medial axis estimator. We give explicit
regularity conditions and bound the error in a general (deterministic) theorem. In section 3 we
derive different corollaries of the main theorem depending on assumptions on the sample. First,
we give the convergence rate for a deterministic sample on ∂S (that is the classical hypothesis
in discrete geometry). Then we present the image analysis point of view where the data is
discretized on pixels, and, finally we give a way to estimate the medial axis when the points are
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randomly drawn on S (to our knowledge this case had only been studied in [13] under stronger
asumption and with a slowler convergence rate).

Section 4 is dedicated to give more details in this last case. We discribe the algorithm and the
choice of the parameter, then finally illustrate our method with some simple numerical results.

2 Shape Hypothesis and main result

Throughout all the paper we consider subsets of Rd. Let us first start with some definitions
and notation. Let A be an open set and C a closed set such that A ∩ C = ∅ and introduce
B(A,C) = {B(x, r), x ∈ A,B(x, r) ∩ C = ∅}, Cmax(A,C) the set of the maximal balls (for the
inclusion) of B(A,C) and M(A,C) the set of the centers of the balls of B(A,C). In the following
S(x, r) denotes the sphere of radius r centered at x.

Let S be a compact set. As defined in (2) we haveM(S) = M(S̊, ∂S). For any point x ∈ M(S)
let us introduce r(x) = d(x, ∂S), i.e. B(x, r(x)) is a maximal ball of B(S̊, ∂S). As noted in [14],
the medial axis may have various “bad” properties, and we are going to restrict our study to
regular enough sets, namely we will require that balls of radius r0 roll freely inside and outside
S and that S has a K−regular medial axis for some K < 1.

Definition 1. Balls of radius r0 roll outside and inside S if, for each x ∈ ∂S there exists Oout

x

and Oin

x such that B(Oout

x , r0) ⊂ Sc and B(Oin

x , r0) ⊂ S.

Definition 2. S has a K-regular medial axis, M(S), if for all (x, y) ∈ M(S)2 we have: |r(x) −
r(y)| ≤ K||x− y||.

Notice that if x and y are two different points of the medial axis such that B(x, r(x))
and B(y, r(y)) are the associated maximal balls, as B(x, r(x)) * B(y, r(y)) and B(y, r(y)) *
B(x, r(x)) then |r(x) − r(y)| < ||x − y||. Our K-regular condition for the medial axis is thus a
bit stronger but, we believe, quite reasonable.

Now recall that the aim is to estimate the medial axis of a set S via an estimation based on a
finite number of points. It will be seen later that, regarding the medial axis, the two parts of the
Hausdorff distance don’t have the same importance. This leads us to define (ε, h)-estimations as
follows.

Definition 3. Let S and S̃ be two sets in Rd. Then S̃ is an (ε, h)-estimation of S if:

max
y∈S̃

d(y, S) ≤ ε and max
x∈S

d(x, S̃) ≤ h.

The behaviour of the estimated medial axis is made explicit in the following theorem. Note
that the smoothness conditions on the boundary are close to the one used in [1] where a similar
theorem is obtained for a sufficiently dense sample of the boundary. Nethertheless, here we can
just observe points close to the boundary and we avoid the heavy computation of a weighted
Delaunay tesselation.

Theorem 1. Let S be a compact set such that balls of radius r0 roll freely inside and outside
S. Also assume that S has a K-regular medial axis. Let introduce rS = diam(S)/2. Let α

and ε be positive numbers such that α ≤ ε ≤ r0/4 and ∆S = r20 − rSh
2

r0
− 4εrS − h2

2 > 0. If

Y = {y1, . . . , yk} ⊂ S is an (ε, h)-estimation of ∂S and if Ŝ is a (0, α)-estimation of S, then
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there exist positive constants A,B,C,D,E, F such that, for all e such that:














e ≥ 2ε+ h2

r0
√

Ah2 +B ε
e + C h2

e +D h2ε
e2 + E h4

e2 + F ε3

e2 ≥ 2
√

( h2

2r0
+ 2ε)2 + h2 + ( h2

2r0
+ 2ε)h

2

r0
√

Ah2 +B ε
e + C h2

e +D h2ε
e2 + E h4

e2 + F ε3

e2 ≤
√

(1−K)r20ε
2(1+K)(2r0ε+3h2)

and for all ρ such that
√

Ah2 +B ε
e + C h2

e +D h2ε
e2 + E h4

e2 + F ε3

e2 ≤ ρ ≤
√

(1−K)r20ε
2(1+K)(2r0ε+3h2) we

have:
M̂ρ,Ŝ(Y) is a (e, A′ε+B′h2)-estimation of M.

Proof. First note that the inner rolling ball condition implies that for all x ∈ M, r(x) ≥ r0.
For any x ∈ M∩S we have we have B(x, r(x)− 2ε) ⊂ B(x, r(x)− ε) ∈ B(Ŝ,Y). Indeed x ∈ Ŝ

because α < r0 and d(x,Y) ≥ r(x) − ε because Y us a (ε, h)-estimation of ∂S. Thus there exist
x′ ∈ Ŝ and r′ such that:

B(x, r(x) − 2ε) ⊂ B(x′, r′) with B(x′, r′) ∈ Cmax(Ŝ,Y).

We are now going to prove that for all (x′, r′) such that B(x, r(x)−2ε) ⊂ B(x′, r′) and B(x′, r′) ∈
Cmax(Ŝ,Y) we have :

||x− x′|| ≤ 1 +K

1−K
(2r0ε+ 3h2). (3)

Introduce x′∗ a point of ∂S such that such that d(x′, ∂S) = ||x′ − x′∗|| = r′ − γ (γ may be
negative). Then there exists a point yi ∈ Y such that:

1. ||yi − x′∗||2 ≤ h2, because Y is a (ε, h)−estimation of ∂S;

2. yi /∈ B(Oout
x′∗ , r0), because yi ∈ S;

3. ||x′ − yi|| ≥ r′, since otherwise B(x′, r′) is not a ball of B(Ŝ,Y).

Let us write yi = au+ bw where u = x′∗−x′

||x′∗−x′|| and w is a unit vector of u⊥. Notice that a ≥ 0

and that w can be chosen such that b ≥ 0 (see Figure 1).

Figure 1:

We have:










a2 + b2 ≤ h2

b2 + (r0 − a)2 ≥ r20
||x′ − yi||2 = (r′ − γ + a)2 + b2

⇒











a2 + b2 ≤ h2

2ar0 ≤ h2

||x′ − yi||2 ≤ r′2 + γ2 − 2(r′ + a)e + h2(1 + r′

r0
)
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The last unequatlity gives γ ≤ r′+a−
√

(r′ + a)2 − h2(1 + r′

r0
) or γ > r′+a+

√

(r′ + a)2 − h2(1 + r′

r0
).

This second case is impossible because γ ≤ r′ so we must have:

γ ≤ r′ + a−
√

(r′ + a)2 − h2(1 +
r′

r0
) ≤

h2(1 + r′

r0
)

r′ + a
≤ h2

(

1

r′
+

1

r0

)

.

Thus, observing now that r′ ≥ r(x) − 2ε ≥ r0/2, we have γ ≤ 3h2/r0. This, in turn
guarantees that B(x′, r′ − 3h2/r0) ⊂ B(S̊, ∂S), so there exists B(x′′, r(x′′)) ∈ Cmax(S̊, ∂S) with
B(x′, r′ − 3h2/r0) ⊂ B(x′′, r(x′′)), that is:

∃x′′ ∈ M such that B(x′, r′ − 3h2/r0) ⊂ B(x′′, r(x′′)). (4)

Now, as we have B(x, r(x)−2ε) ⊂ B(x′, r′) and (4) it follows that B(x, r(x)−2ε−3h2/r0) ⊂
B(x′′, r(x′′)). As a consequence, r(x′′) ≥ ||x′′ − x|| + r(x) − 2ε − 3h2/r0. Thus 2ε + 3h2/r0 ≥
||x′′ − x||+ r(x) − r(x′′) ≥ (1−K)||x− x′′|| and we finally obtain:

||x− x′′|| ≤ 2r0ε+ 3h2

1−K
. (5)

Consider again B(x, r(x) − 2ε) ⊂ B(x′, r′). Then r′ ≥ ||x − x′|| + r(x) − 2ε and (4) give
r(x′′) ≥ ||x′′ − x′|| + r′ − 3h2/r0. Summing the two unequalities (and finally using the K-
regularity of the medial axis) we obtain:

2ε+3h2/r0 ≥ ||x′ −x||+ ||x′′ − x′||+ r(x′′)− r(x) ≥ ||x′ −x||+ r(x′′)− r(x) ≥ (1−K)||x′′ − x||.

Thus, combining with (5) we get ||x− x′|| ≤ 1+K
1−K (2r0ε+ 3h2). This concludes the proof of (3).

Now we are going to prove that there exists x̄′ ∈ M(Ŝ,Y) ∩ M√

r2
0
(1−K)ε

4(K+1)(2r0ε+h2)
,Ŝ
(Y) and r′x

such that B(x, r(x) − 2ε) ⊂ B(x̄′, r′x) with B(x̄′, r′x) ∈ Cmax(Ŝ,Y). More precisely we will show
that this is realized for r′x = max{r′, B(x, r(x) − 2ε) ⊂ B(x′, r′), B(x′, r′) ∈ Cmax(Ŝ,Y)} and x̄′

a point such that B(x, r(x) − 2ε) ⊂ B(x̄′, r′x) and B(x̄′, r′x) ∈ Cmax(Ŝ,Y). Clearly there exists
y ∈ S(x̄′, r′x) ∩ Y. Suppose that max{||y − z||, z ∈ S(x̄′, r′x) ∩ Y} = l ≤ r0/2. Introduce a point

z0 ∈ S(x̄′, r′x) ∩B(y, l), u = x̄′−y
||x̄′−y|| , x

′′
t = x̄′ + tu and r′′t = ||z0 − x′′

t || (See Figure 2).

Figure 2:

Note first that 〈x̄′ − z0, u〉 = 2(r′x)
2−2l2

2r′x
≥ 1

2 (because l2 ≤ r20/4 ≤ (r′x)
2). Thus:
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1. For t > 0 : r′′t = ||x̄′ − z0 + tu|| =
√

(r′x)
2 + t2 + 2t〈x̄′ − z0, u〉 > r′x.

2. For t > 0 : B(x′′
t , r

′′
t ) ∩ Bc(x̄′, r′x) ∩ B(y, l) = ∅, so d(x′′

t ,Y ∩ B(y, l)) ≥ r′′t and, because
d(x̄′,Y∩Bc(y, l)) > r′x, there exists t1 such that, for all 0 < t < t0 we have B(x′′

t , r
′′
t )∩Y = ∅.

Now because Ŝ is open there exists t0 such that, for all t < t0 x′′
t ∈ Ŝ and B(x′′

t , r
′′
t )∩Y = ∅.

As B(x̄′, r′x) is a ball of Cmax(Ŝ,Y) with maximal radius we have that for all 0 < t < t0,
B(x′′

t , r
′′
t ) /∈ Cmax(Ŝ,Y)} and, because of previous observations there exists yt ∈ B(x′′

t , r
′′
t ) ∩

Bc(x, r(x) − 2ε). Now, because for t > 0,

B(x̄′, r′x) ∩ {z, 〈z − x̄′, u〉 ≥ 〈x̄′ − z0, u〉} ⊂ B(x′′
t , r

′′
t ) ∩ {z, 〈z − x̄′, u〉 ≥ 〈x̄′ − z0, u〉}

and because B(x, r(x) − 2ε) ⊂ B(x′, r′x) we have that for all 0 < t < t0 there exists:

yt ∈ B(x′′
t , r

′′
t ) ∩Bc(x, r(x) − 2ε) ∩ {z, 〈z − x̄′, u〉 ≤ 〈x̄′ − z0, u〉}.

So, passing to the limit t → 0 we obtain that there exists

y′ ∈ S(x̄′, r′) ∩Bc(x, r(x) − 2ε) ∩ {z, 〈z − x̄′, u〉 ≤ 〈x̄′ − z0, u〉}.

This finally implies that there exists y′ ∈ S(x̄′, r′)∩Bc(x, r(x)− 2ε) with ||y′− y|| ≤ l. Introduce
γ = ||x−y||−(r(x)−2ε) (notice that γ > ε because Y is a (ε, h)-estimation of ∂S) and θ = ∠yx̄′y′

(see Figure 3).

Figure 3:

By ||y − y′||2 = ||y − x||2 + ||x − y′||2 + 2〈y − x, x − y′〉 it follows that ||y − y′||2 = (r(x) −
2ε)2 + (r(x) − 2ε+ γ)2 − 2(r(x) − 2ε)(r(x) − 2ε+ γ) cos(θ). Thus we have:

cos(θ) =
(r(x) − 2ε)2 + (r(x) − 2ε+ γ))2 − ||y − y′||2

2(r(x) − 2ε)(r(x) − 2ε+ γ)
. (6)

We also have x̄′ − x = ||x̄′ − x||(cos(θ),− sin(θ)). Thus

||x̄′ − y||2 = (r(x) − 2ε+ γ + ||x̄′ − x|| cos(θ))2 + (||x̄′ − x|| sin(θ))2. (7)
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But we also have ||x̄′ − y||2 = ||x̄′ − y′||2 = (r′)2 = (r(x) − 2ε+ ||x̄′ − x||)2. Thus, with (7) we
finally obtain:

(r(x)−2ε+γ)2+2||x̄′−x||(r(x)−2ε+γ) cos(θ)+||x̄′−x||2 = (r(x)−2ε)2+2||x̄′−x||(r(x)−2ε)+||x̄′−x||2

and thus :

||x̄′ − x|| = 1

2

2γ(r(x) − 2ε) + γ2

(r(x) − 2ε)− (r(x) − 2ε+ γ) cos(θ)
.

This and (6) gives

||x̄′ − x|| = 2γ(r(x)− 2ε)2 + γ2(r(x) − 2ε)

||y − y′||2 − 2γ(r(x) − 2ε)− γ2
. (8)

Finally, recall that r(x) − 2ε ≥ r0/2 and γ ≥ ε, and observe that because of (5) we have
||x̄′ − x|| ≤ K+1

1−K (2r0ε+ 3h2). Therefore, from (8) we obtain

||y − y′||2 ≥
(r0ε+ ε2)(r0/2 +

K+1
1−K (2r0ε+ 3h2))

K+1
1−K (2r0ε+ 3h2)

≥ (1−K)r20ε

2(1 +K)(2r0ε+ 3h2)
.

Introduce C0 = min{
√

(1−K)r20ε
2(1+K)(2r0ε+3h2) ,

r0
2 }. Recall that ||y − y′|| ≤ l so that l = max{||y −

z||, z ∈ S(x̄′, r′x) ∩ Y} ≥ C0. Combining with (3) means that:

For all x ∈ M, there exists x′ ∈ M̂C0,Ŝ
with ||x− x′|| ≤ 1 +K

1−K
(2r0ε+ 3h2). (9)

Now take x ∈ S and consider its distance to M: e = d(x,M) > 0. In this last part of the proof
we put l = d(x, ∂S). Consider now a point x′∗ ∈ ∂S such that ||x− x′∗|| = l. As B(x, l) ⊂ S̊ one
can introduce B(x′, r(x′)) a ball of Cmax(S̊, ∂S) containing B(x, l). Recall that the regularity
condition on S allows the existence of Oout

x∗ such that B(Oout
x∗ , r0) ⊂ Sc and observe that x, x′, x′∗

and Oout
x∗ are on the same line, and that r(x′) = ||x′ − x||+ l with e′ = ||x′ − x|| ≥ e.

Because Y is a (εh)-estimation of ∂S there exists y ∈ Y such that ||x′∗ − y|| ≤ h. Obviously,
as d(y, ∂S) ≤ ε, we have ||y − x′|| ≥ r(x′) − ε and since y ∈ S we have ||y − Oout

x∗ || ≥ r0. See
Figure 4 for the construction.

Since ||x′∗ − y|| ≤ h and ||y − Oout
x∗ || ≥ r0, a short calculation shows that ||x − y||2 ≤

(r(x′) − e′)2 + h2 + (r(x′) − e′)h2/r0. Thus, for all yi ∈ Y such that x ∈ Vor(yi), we have

yi ∈ B(x,
√

(r(x′)− e′)2 + h2 + (r(x′)− e′)h
2

r0
)∩Bc(x′, r(x′)−ε) = Ex. Writing yi = x+au+bw,

where u = x−x′

||x−x′|| and w ∈ u⊥ we have

{

b2 + a2 ≤ (r(x′)− e′)2 + h2 + (r(x′)− e′)h2/r0

b2 + (e′ + a)2 ≥ (r(x′)− ε)2

After calculation we obtain that






−e′2+e′(r(x′)+ h2

2r0
)+ ε2

2 −εr(x′)−h2

2 − r(x′)h2

2r0

e′ ≤ a ≤ l2 + h2 + lh2/r0

b2 ≤ (r(x′)− e′)2 + h2 + (r(x′)− e′)h2/r0 − a2.

Introduce amin(e
′) =

−e′2+e′(r(x′)+ h2

2r0
)+ ε2

2 −εr(x′)−h2

2 − r(x′)h2

2r0

2e′ . Note that
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Figure 4: As there exists an observation in the blue crosshatched domain, all the yi such that
x ∈ VorY(yi) are in Ex, the brown crosshatched domain.

i. If amin(e
′) ≥ 0 then diam(Ex) = 2

√

(r(x′)− e′)2 + h2 + (r(x′)− e′)h2/r0 − amin(e′)2

ii. For all e′: diam(Ex) ≤ 2
√

(r(x′)− e′)2 + h2 + (r(x′)− e′)h2/r0

Introduce now ∆(x′) = r(x′)2 − r(x′)h2

r0
− 4εr(x′) − h2

2 + 2ε2 + h4

4r20
and notice that ∆(x′) ≥

∆S ≥ 0 and that
√

∆(x′) ≥ r(x′)− h2

r0
− 4ε− h2

2r(x′) ≥ r(x′)− 3h2

2r0
− 4ε thus:

i. If h2

r0
+ 2ε ≤ e′ ≤ r(x′)− h2

2r0
− 2ε we have amin(e

′) ≥ 0 and there exists A,B,C,D,E and

F such that: diam(Ex) ≤
√

Ah2 +B ε
e′ + C h2

e′ +D h2ε
e′2 + E h4

e′2 + F ε3

e′2

ii. If e′ ≥ r(x′)− h2

2r0
− 2ε then diam(Ex) ≤ 2

√

( h2

2r0
+ 2ε)2 + h2 + ( h2

2r0
+ 2ε)h

2

r0

Take now e large enough to have

e ≥ h2

r0
+ 2ε (10)

and small enough to have

2

√

(
h2

2r0
+ 2ε)2 + h2 + (

h2

2r0
+ 2ε)

h2

r0
≤

√

Ah2 +B
ε

e
+ C

h2

e
+D

h2ε

e2
+ E

h4

e2
+ F

ε3

e2
(11)

We have:
M̂√

Ah2+B ε
e
+C h2

e
+D h2ε

e2
+E h4

e2
+F ε3

e2
,Ŝ
(Y) ⊂ M⊕ eB

This, combined with (9) and the natural inclusion ρ ≤ ρ′ ⇒ M̂ρ′,Ŝ(Y) ⊂ M̂ρ,Ŝ(Y), ensures

that, since e satisfies the conditions (10), (11) and

√

Ah2 +B
ε

e
+ C

h2

e
+D

h2ε

e2
+ E

h4

e2
+ F

ε3

e2
≤

√

(1−K)r20ε

2(1 +K)(2r0ε+ 3h2)
, (12)
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then for any ρ such that
√

Ah2 +B ε
e + C h2

e +D h2ε
e2 + E h4

e2 + F ε3

e2 ≤ ρ ≤
√

(1−K)r20ε
2(1+K)(2r0ε+3h2) we

have: M̂ρ,Ŝ is a
(

e, 1+K
1−K (2r0ε+ 3h2)

)

-estimation of M This concludes the proof.

3 Applications for different models

Now we can apply Theorem 1 under different sample hypotheses. More precisely we give con-
vergence rates of the estimated medial axis when the information is given at n points. In the
first case we have n points located on the boundary, in the second we consider an n-pixel size
image and in the third case we consider a sample of n points randomly drawn on S. The two
first ones are classical in medial axis estimation but the last one, illustrated with simulations in
the following section, is more challenging.

3.1 Deterministic sample of ∂S

Usually the medial axis estimation is done under the following model: S is “known” and we
want to, computationally plot the medial axis using a finite number of points located on ∂S.
Notice that the rolling balls condition implies that ∂S is a C1

1 (d− 1)-dimensional manifold (see
[19]). Therefor there exists λS such that for all n there exists {x1, . . . , xn} ⊂ ∂S such that

∂S ⊂ ⋃

i B
(

xi, λSn
− 1

d−1

)

. We are considering in this first corollary this kind of sets of points.

Corollary 1. Assume that there exists λ such that Xn is a (0, λn−1/(d−1))-estimation of ∂S, the
boundary of a compact set S that has a K-regular medial axis and such that balls of radius r0
roll inside and outside S. There exist constants ρ0 and ρ1 such that, for all ρ0 < ρ < ρ1 there
exists Cρ such that, for n large enough:

dh(M, M̂ρ,S(Xn)) ≤ Cρn
− 2

d−1 .

Proof. We are under the hypothesese of Theorem 1 with αn = 0 and hn = λn−1/(d−1) and

εn = λ2

r0
n−2/(d−1) (indeed, as Xn is a (0, hn)-estimation of ∂S it is also a (εn, hn)−estimation of

∂S). Chose en = e0n
−2/(d+1) with e0 large enough to have

e0 ≥ 2λ2 + 1

r0
and

√

B
λ2

r0e0
+ C

λ2

e0
+D

λ4

r0e20
+ E

λ4

e20
<

√

(1−K)r0
10(1 +K)

.

Observe that for n large enough all the conditions of Theorem 1 are satisfied and for all ρ with
√

B λ2

r0e0
+ C λ2

e0
+D λ4

r0e20
+ E λ4

e20
< ρ <

√

(1−K)r0
10(1+K) we have:

dh(M, M̂ρ,S(Xn)) ≤ max

(

e0,

(

A′

r0
+ B′

))

λ2n− 2
d−1 .

3.2 Pixelization

In this subsection only we consider S ⊂ [0, 1]d and [0, 1]d is devided into n “cubic” pixels of size
cn = n−1/d ( here, n cannot be an arbotrary integer since we are constrained to have n = pd,
but we choose to express the results with regard to this parameter n that represents the amount
of information given). As in the previous application, we consider here that S is known then
pixelized (that is, Ŝn is a union of pixels) to draw the medial axis. The pixelization method can
one of the following

9



1. Gaussian: a pixel belongs to Ŝn if its center belongs to S;

2. Random Type 1: if a pixel is included in S then it is in Ŝn; if a pixel is included in Sc then
it is in Ŝc

n; otherwise randomly choose between Ŝn or Ŝc
n with a probability 0.5;

3. Random Type 2: a pixel belongs to Ŝn with a probability proportional to the volume of
the intersection between S and the pixel...

Let us say that a pixel is a boundary pixel (a pixel in Y) if it is in Ŝn and has a neighbor in Ŝc
n

or if it is in Ŝn and has a neighbor in Ŝc
n. Observe that for this proposed method we have the

existence of λ such that εn = hn = λcn. Thus, by Theorem 1, there exist suitable values for ρ
such that dh(M, M̂ρ,Ŝn

(Y)) = O(n− 2
d ).

3.3 Sample randomly drawn on S

In the introduction we claimed that the medial axis may be an important tool for statistics,
data analysis and regression. In [13] a regression model that can be solved with the medial axis
is detailed but we are convinced that this object has other possible applications in statistics.
Indeed suppose that the data (in Rd) are drawn on M a d′-dimensional sub-manifold of Rd but
that, due to a noise, we can only access to observations on M⊕rB, when r (the noise amplitude)
is smaller than ρ0, the reach of M . Then M is the medial axis of M ⊕ rB and the estimation of
the medial axis allows us to obtain information of the unknown M . In this case the medial axis
is exactly M and it can be estimated. We can also apply a dimension estimation method on M̂
to estimate the dimension of M which is an important information on the number of “indendant
non-linear components”. Finally, let us observe that the mean distance to M divided by the
mean distance in M can be interpreted as a non-linear correlation coefficient.

In the case where the points are randomly drawn on S satisfying the regularity conditions of
Theorem 1 and assuming additional hypothesis on the probability distribution, the two following
Corollaries shows two ways to practically estimate the inner medial axis. For this we use Cr(Xn)
the r-convex hull estimator of S (see [17]) to estimate S and to identify the subset Y of sample
points located close to the boundary.

Corollary 2. Let Xn = {X1 . . . Xn} be an iid sample of points, drawn on a compact set S that
has a K-regular medial axis and such that balls of radius r0 roll inside and outside S. Assume
that the density f of the sample satisfies f(x) ≥ f0 > 0. For all x ∈ S. for all r < r0 denote by
Ŝr(Xn) the r-convex hull of Xn and put Yr(Xn) = ∂Ŝr(Xn) ∩ Xn. There exist constants ρ0 and
ρ1 such that, for all ρ0 < ρ < ρ1 there exists Cρ such that

dh(M, M̂ρ,Ŝr(Xn)
(Yr(Xn))) ≤ Cρ

(

lnn

n

)
2

d+1

e.a.s.

Proof. We refer the reader to [17] to be convinced that there exists constants ar, br and cr such
that, eventually almost surely:

1. Ŝr(Xn) is (eventually almost surely) a (0, ar(lnn/n)
2

d+1 )-estimation of S

2. Yr(Xn) is (eventually almost surely) a (ar(lnn/n)
2

d+1 , br(lnn/n)
1

d+1 )-estimation of S.

Now taking n large enough to have ar(lnn/n)
2

d+1 ≤ r0/2, we are under the hypothesis of

Theorem 1. Chose en = e0(lnn/n)
2/d+1 and introduce λ0(e0) = Bar

e0
+

Cb2r
e0

+
Db2rar

e20
+

Eb4r
e20

,

λ1 =
(1−K)r20ar

2(1+K)(2r0ar+3b2r)
, λ2 = 1+K

1−K (2r0ar + 3b2r) and µ0 =
r20ar

2λ2
. Take e0 large enough to have

10



λ0(e0) < λ1 so as to ensure that, for n large enough, Conditions (10),(11) and (12) are satisfied.

For all ρ such that
√
λ0 < ρ <

√
λ1 we have that M̂ρ,Ŝ is a

(

e0(lnn/n)
2/(d+1), λ2(lnn/n)

2/(d+1)
)

-
estimation of M for n large enough. That concludes the proof

From a computational point of view it is easier to restrict the estimated medial axis to a
Devroye-Wise (that is, only ∪B(Xi, rn); see [10]) estimator of the support instead of to the
r-convex hull. The following corollary establishes a result on this.

Corollary 3. Let Xn = {X1 . . . Xn} be an iid sample of points, drawn on a compact set S that
has a K-regular medial axis and such that balls of radius r0 roll inside and outside S. Assume
that the density f of the sample satisfies f(x) ≥ f0 > 0 for all x ∈ S. For all r < r0 denote by
Ŝr(Xn) the r−convex hull of Xn and put Yr(Xn) = ∂Ŝr(Xn)∩Xn. Let νn be a sequence such that
νn → 0 and S ⊂ ⋃

i B(Xi, νn). Then, for any given ρ:

M̂ρ,Ŝr(Xn)
(Yr(Xn)) = M̂ρ,∪iB(Xi,νn)

(Yr(Xn)) e.a.s.

Proof. With the condition on νn we clearly have M̂ρ,Ŝr(Xn)
(Yr(Xn)) ⊂ M̂ρ,∪iB(Xi,νn)

(Yr(Xn)).

Let us now prove the reverse inclusion by contradiction. Introduce ν′n = max(νn, dh(Ŝr(Xn), S))

and consider a point in x ∈ M̂ρ,∪iB(Xi,νn)
(Yr(Xn)) \ M̂ρ,Ŝr(Xn)

(Yr(Xn)) then x ∈ ∪iB(Xi, νn) \
Ŝr(Xn). The regularity condition then implies that x ∈ ∂S ⊕ ν′nB and there exists x∗ ∈ ∂S
with ||x − x∗|| ≤ ν′n. Now, eventually almost surely there exists a point Yi ∈ Yr such that
||Yi−x∗|| ≤ br(lnn/n)

1/(d+1) and ||x−Yi|| ≤ br(lnn/n)
1/(d+1)+ν′n so that if x ∈ Vor(Yi)∩Vor(Yj)

then Yi and Yj are in B(x, br(lnn/n)
1/(d+1)+ν′n). Thus ||Yi−Yj || ≤ 2, br(lnn/n)

1/(d+1)+ν′n. But,

as x ∈ M̂ρ,∪iB(Xi,νn)
(Yr(Xn)), we have the existence of i and j such that x ∈ Vor(Yi) ∩ Vor(Yj)

and ||Yi − Yj || ≤ ρ this is impossible for n large enough.

4 Simulations

4.1 Algorithm

Step 1: Detection of boundary points. First we have to identify the set Yr(Xn) =
∂Ŝr(Xn) ∩ Xn. This is an easy task since:

Proposition. Xi ∈ Yr(Xn) ⇔ max{||y −Xi||, y ∈ (VorXn
(Xi))} ≥ r.

Proof. Observe that max{||y − Xi||, y ∈ (VorXn
(Xi))} ≥ r. This implies that there exists

x such that B(x, r) ∩ Xn = ∅. Thus, by definition of Sr; B(x, r) ∩ Sr(Xn) = ∅ and xn =
(1/n)x + (r − 1/n)Xi → Xi ∈ Sc

r(Xn) with Xi ∈ Sr(Xn), so Xi ∈ ∂Sr(Xn). Conversely, if
Xi ∈ ∂Sr(Xn) there exist two sequences xn and yn ∈ Sc

r(Xn) such that xn → Xi, xn ∈ B(yn, r)
and B(yn, r)∩Xn = ∅. yn ∈ S⊕ rB which is compact. Thus, after an extraction we can suppose
that yn → y. As r < ||yn −Xi|| ≤ r + ||xn − x|| we have at the limit ||y −Xi|| ≥ r. Moreover,
since for all n, B(yn, r) ∩ Xn = ∅, we have B(y, r) ∩ Xn = ∅ and therefore y ∈ VorXn

(Xi).

Step 2: Choice of νn and computation of some points of M̂ρ,∪iB(Xi,νn)
(Yr(Xn)) and at-

tribution of a structure. We propose to choose νn = 2maxi(maxj(||Xi−Xj||)) as suggested
in [9]. Now one can compute Yr and then obtain

Zρ,νn = {z ∈
⋂

i1<i2<...<id+1

VorYr
(Yij ),min

i
||z −Xi|| ≤ νn, ∃(k, l)||Yik − Yil || ≥ ρ}

11



This is a clearly a finite subset {z1, . . . , zNρ
} of M̂ρ,∪iB(Xi,νn)

(Yr(Xn)) on which we propose to

compute the graph Gρ such that [zi, zj] is an edge of Gρ if there exists Yk ∈ Yr such that zi and
zj belongs to VorY(Yk).

4.2 Choice of the parameter

We propose to choose the parameter by considering two functions of ρ. The first, named
dis(ρ) represents a distance from Xn to the reconstructed support based on the medial axis
computed with the parameter ρ. More precisely we compute: dis1(ρ) = 1

n

∑

i 1Xi∈S̃ρ
where

S̃ρ = ∪z∈Zρ,νn
B(z, d(z,Y)). We also compute dis2(ρ) = 1

n

∑

i d(Xi, S̃ρ). Then dis1 is the per-

centage of observations that are not in S̃ρ while dis2 is d(X, S̃ρ). A “good” value for ρ is a value
such that dis(ρ) is large enough to reconstruct correctly the set.

We also expect the medial axis to be regular and we propose to measure the regularity with
the function ncc(ρ) that is the number of connected components of Gρ. A suitable value for ρ
should be a large enough value such that ncc(ρ) and dis(ρ) are small enough.

4.3 Some results

The 2−dimensional case. Since the medial axis was originally proposed for biological image
analysis we propose to first test our method on “biological” image. We present some results
on a leaf image and on a sub-image of da Vinci’s Vitruvian Man (see Figure 5 which presents
the original image and the “working” version in black and white). We then test the proposed

Figure 5: Original image and there “working” version

algorithm and choice for the parameters; see results in Figure 6. First notice that the choice of
a suitable parameter is easier in the case of the Vitruvian Man (where the ncc function brings
some information).

The 3−dimensional case. In this section we draw points on M ⊕ rB and observe how M is
recognized via this medial axis approach. We propose two different M : first a Moebus strip then
a trefoil knot. In figure 7 we present the simulation result for n = 10000 points. As previously,
we show the evolution of the functions ncc, dis and the choice of the parameter. Then we present
the observations (the sample on M ⊕ rB (here r = 0.3) on which our algorithm is applied).
Finally we present the original sample on M (the unknown manifold we want to estimate) and
the graph Gρ.
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Figure 6: Estimated medial axis, sample sizes n = 1000, n = 5000 and n = 20000. Blue dots
the sample, black dots Y, thin red graph is G0 and bold black graph is Gρ,a suitable value for ρ
being chosen according to ncc and dis functions (plotted above) and represented by the red line
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[17] A. Rodŕıguez-Casal. Set estimation under convexity type assumptions. Annales de l’Institut
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