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Laboratoire de Mathématiques Blaise Pascal

UMR6620-CNRS
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Abstract

Let Xn = {X1, . . . Xn} ⊂ Rd be a iid random sample of observations
drawn with a probability distribution supported by S a compact set satis-
fying that both S and Sc are r0-convex (r0 > 0). In this paper we study
some properties of an estimator of the inner medial axis of S based on the
λ-medial axis. The proposed estimator depends on the choices of Y ⊂ Xn

an estimator of ∂S and Ŝn an estimator of S. In a first general theorem we
prove that our medial axis estimator converges to the medial axis with a rate
O(maxy∈Y d(y, ∂S), (maxy∈∂S d(y,Y)2). A corollary being that the choice of
Y as the intersection of the sample and its r-convex hull, Y = Cr(Xn) ∩ Xn,
allows to estimate the medial axis with a convergence rate O((lnn/n)2/(d+1)).
In a practical point of view, computational aspects are discussed, algorithms
are given and a way to tune the parameters is proposed. A small simulation
study is performed to illustrate the results.

Keywords: Geometric Inference, Medial-Axis, Skeleton, r0-convexity

1 Introduction

Let S ⊂ Rd be a compact set, its medial axis, introduced in [6] as the set of points in
Rd that has at least two different projections on ∂S (see Figure 1) has been initially
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proposed as a tool for biological shape recognition. Note that the medial axis can be
decompose into two parts: its inner part, that is M(S)∩S and its outer part that is
M(S) ∩ Sc (see Figure 1).

Figure 1: A set, its inner medial axis (blue) and its outer medial axis (green). Some
points of the medial axis are presented together with some of there projection onto
the boundary

When dealing with compact sets we can only focus on M(S) the inner part of the
medial axis.

Definition 1.

M(S) = {x ∈ S, diam(Γ(x)) > 0}
where Γ(x) = {y ∈ ∂S, ||y−x|| = d(x, ∂S)} and diam(A) = max{||x−y||, (x, y) ∈

A2}.

When S is compact the knowledge of S is equivalent to the knowledge of medial
axis transform that is the medial axis and the function r(x) = d(x, ∂S) because we
have:

S =
⋃

x∈M(S)

B(x, r(x)) (1)

with B(x, r) the closed ball centered in x and of radius r.
The main field of application of this tool is image analysis and compression (see

[15] for instance). Roughly speaking: because M(S) has a lower dimension than
S the storage of (x, r(x)) is lighter than the one of S. The summary of the shape
contained in M(S) is also useful for shape analysis and pattern recognition.
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This two image analysis applications can be transposed to a statistical point of
view. The analogous of the image compression being support estimation and the
analogous of pattern recognition being the manifold estimation.

Support Estimation: Suppose that we are able to obtain Z = {Z1, . . . Zk} a set
of points that estimates the medial axis and that we can estimate d(Zi, ∂S) by some
r̂i then Ŝ = ∪iB(Zi, r̂i) provides a natural estimator of the support. We are going to
see, in the Application section, that we can find Z and r̂ such that Ŝ has minimax
convergence rate (under some shape and distribution hypotheses), as the r-convex
hull [23] or [1] but with Ŝ it is computationally much more easy to decide whether a
new points belongs to the support or not.

Manifold estimation: Suppose that data are, in fact drawn with the following
process. Y is drawn on M a compact d′ < d dimensional manifold but we observe X
a noisy version of Y with a noise U |Y that is uniform on a ball and we aim to esti-
mate M . See [16] for a study in the “filament case” (that is d′ = 1) and [17] for the
derivation of minimax bounds for M estimation. With infinitely many observations,
the manifold estimation problem can be seen as the problem of estimating M through
the observation of S = ∪x∈MB(x, rx) with rx = d(x, ∂S) (indeed if rx < d(x, ∂S) the
problem appear to have infinitely many solution and so is not well-posed). It appears
to be very close to the medial axis transform equation (1) and, in Section Applica-
tions we are going to give some condition that ensures M = M(∪x∈MB(x, rx)) so
that the manifold estimation problem can be solved using the medial axis estimation.

More recently some more new application of the medial axis appears (for instance
in [29] it is applied to wireless networks, In [21] it was applied to endoscopy as the
medial axis naturally find a path along the central line of the intestinal system).

Unfortunately, the medial axis is difficult to estimate because it is not continuous
with respect to the Hausdorff distance dh (recall that for A and B two sets dh(A,B) =
max{supa∈A d(a, B), supb∈B d(b, A)}). This is detailed in [19] (see pages 217 − 238)
and illustrated in Figure 2 part a)). This implies that estimating the medial axis
using a finite sample of points Xn = {X1, . . . , Xn} can not be solved using classical
plug-in methods (see Figure 2 part b)) and so provides a challenging problem that
has been investigated in various papers (see [4] for a state-of-the-art report).

Mainly two different approaches have been investigated. The first one consists in
pruning the medial axis of an estimation of S (see [25], [7], [10],[5] or [20]); the second
one consists in estimating the λ-medial axis defined as Mλ(S) = {x ∈ M(S),Γ(x) ⊂
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Figure 2: Two sets close to S the one of Figure 2 and their medial axis. (a) S∪B(x, r0)
with x ∈ ∂S: a parasite branch appear whatever is the value of r0 that illustrates
the non continuity of the medial axis with regard to the Hausdorff distance. (b)
plug-in estimator of the medial axis computed on a sample points there exist a lot
of parasite branches

B(a, r) ⇒ r ≥ λ} instead of the medial axis. The λ-media axis has been intro-
duce and studied in [8] where it has been proved to be stable with respect to the
Hausdorff distance. More precisely the Authors prove that, if dh(S

′c, Sc) = O(ε)
then dh(Mλ(S),Mλ(S

′)) = O(
√
ε), then they propose an algorithm to estimate the

λ-medial axis given sample points located near the boundary and prove that it con-
verges.

Later on, given a sample point Xn drawn on S (instead of “near ∂S”), it is
proved in [11], under no more shape hypothesis than regularity, that given a sup-
port estimator Ŝn such that dh(Ŝn, S) → 0 a.s. and dh(∂Ŝn, ∂S) → 0 a.s. then
dh(Mλ(Ŝn),Mλ(S)) → 0 a.s.

We are going to introduce a new medial axis estimator M̂λ(Xn) that is morally
very close to the one introduced in [8]. We give conditions on S so that, on one hand
we can derive the convergence rates and on the other hand we have convergence
toward the medial axis (because, under such hypothesis, the medial axis is the λ-
medial axis)

Namely, introduce M′
λ(S) = {x ∈ S, diamΓ(x) > λ} instead of λ-medial axis

(that looks a bit more natural with regard to definition (1)). Notice that we can also
write M′

λ(S) = {x ∈ S, ∃(y, z) ∈ ∂S2, d(x, y) = d(x, z) = d(z, ∂S), ||y − z|| > λ} so
that, if Ŝn is a support estimator and if Y = {Y1, . . . YN} ⊂ Xn is an estimator of ∂S
the plug-in estimator or M′

λ is:

M̂λ(Sn,Y) =
{

x ∈ VorY(y) ∩ VorY(z) ∩ Ŝn, (y, z) ∈ Y2, ||y − z|| > λ
}

(2)
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where VorY(y) = {z, ||z − y|| ≤ d(z,Y)} is the Voronoi cell of y with respect to the
set Y.

In a first section we detail the shape hypotheses made on S. then we give the
principal theoretical results, the first theorem being a general and deterministic the-
orem that we applied to the medial axis estimator of type (2) where Y is obtained
by intersection of the observations and there r−convex hull and where Ŝn is the
Devroye-Wise estimator of S with a well chosen radius. Discussion on application
for set estimation and manifold estimation is provided then we give the proofs of the
results.

A second section focuses on the practical aspects. First we discuss the algorith-
mic point of view and provide the algorithm. We also propose a way to tune the
parameters. And finally we provide a small simulation study.

2 Shape Hypothesis and main results

2.1 Shape Hypothesis

As mentioned in the introduction the medial axis is not continuous with regard to the
Hausdorff distance. This morally implies that the plug-in estimator of the medial
axis: M̂0(Sn,Y) has some “parasite branch”, that are expected to be suppressed

considering M̂λ(Sn,Y). When the support has “corners” there is a conflict between
the recognition of the branches induced by the corners and the attempt to erase the
parasite branches. See Figure 3 to observe that phenomena.
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Figure 3: S = [0; 3]× [0; 1], M(S) is the union of 5 segments represented in thin red
lines, we plot the estimated λ medial axis for some values of λ. If λ = 0 the corners
belong to the estimated medial axis but there is a lot of parasite branches, when
λ > 0 there is no points in the estimated medial axis closer than λ to the corner but
the central part of the estimated medial axis looks good
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To avoid the corner situation we will requires a rolling ball type condition on S,
here and in all the following B(x, r) denotes the open ball of radius r and centered
at x.

Definition 2. Balls of radius r0 roll freely outside and inside S if, for each x ∈ ∂S
there exists Oout

x and Oin

x such that B(Oout

x , r0) ⊂ Sc and B(Oin

x , r0) ⊂ S. In this

case, we introduce ux = Oout

x −x
r0

the unit vector, normal to ∂S and pointing outward
from S.

According to Walther [28], it is equivalent to have balls of radius r0 freely rolling
inside and outside S and the r0-convexity of S, Sc and S̊ 6= ∅, it is also equivalent to
∂S is a C1

1 manifold. Nevertheless the ball vision of such a notion is the most helpful
for the proofs as it allows to give geometric proofs based on euclidean geometry
avoiding all the differential geometry tools.. If S is a compact set such that balls roll
freely inside and outside S then it is regular enough to have a medial axis satisfying
some good properties described in the following lemma.

Proposition 1. If S is a compact set such that balls of radius r0 roll freely inside

and outside S then S = (S̊) (one then says S is regular which is a common condition
when considering the medial axis);

Proof. The inclusion (S̊) ⊂ S comes from the closeness of S. Considering the second

inclusion S ⊂ (S̊), for any x ∈ S, on one hand if x ∈ S̊ then x ∈ (S̊); on the other
hand if x ∈ ∂S, introduce xn = x − r0

2n
ux. The rolling ball property implies that

xn ∈ S̊ and as xn → x we have x ∈ (S̊).

In addition to the regularity of the support we need additional assumptions to
obtain our results. All the geometric assumptions made on S are listed in Definition
3

Definition 3. Let r0 > 0 and K < 1 be two numbers, S be a compact set in Rd. We
say S is (K, r0)-regular if:

1. balls of radius r0 roll freely inside and outside S;

2. M(S) is closed;

3. for all (x, y) ∈ M(S)2, |d(x, ∂S)− d(y, ∂S)|/||x− y|| ≤ K
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The second assumption, that M(S) is closed, ensures that medial axis and skele-
ton are the same object. The skeleton, that can be defined, following [30] or [19], by
the set of the centers of the maximal balls included in S. More precisely, if B(x, r)
denotes the open ball centered in x and of radius r and if S̊ denotes the interior of
S the skeleton is defined by:

M∗(S) = {x, ∃r(x) such that B(x, r(x)) ⊂ S̊ and B(x, r(x)) ( B(x′, r′) ⇒ B(x′, r′) * S̊}.
(3)

It can be proved (see [19]) that M(S) ⊂ M∗(S) ⊂ M(S) and an example where
the last inclusion is strict can be found in [9]. Nevertheless in this work we will
assume that M(S) is closed which directly implies that M(S) = M∗(S). This will be
extremely useful in the proof that leads on some properties of the maximal balls.

The third assumption appears necessary in the proof. Notice that it is not so
restrictive since the maximality of the balls B(x, d(x, ∂S)) and B(y, d(y, ∂S)) and
the triangular inequality imply that |d(x, ∂S)−d(y, ∂S)| < ||x−y|| so that we impose
only something a bit more restrictive than a natural property. Moreover it is possible
to prove that, when d = 2 the third point derives from the first one (closeness of
the medial axis being allays satisfied when d2). In higher dimension we did not any
counter examples of set S satisfying the rolling ball condition and the closeness of
the medial axis with the third point not satisfied.

Now recall that we aim to estimate the medial axis of a set S via an estimation
based on a finite number of points. It will be seen later that, when dealing with the
medial axis, the two parts of the Hausdorff distance between the boundary and its
estimator don’t have the same importance. This leads us to define (ε, h)-estimations
as follows.

Definition 4. Let S and S̃ be two sets in Rd. Then S̃ is an (ε, h)-estimation of S
if:

max
y∈S̃

d(y, S) ≤ ε and max
x∈S

d(x, S̃) ≤ h.

2.2 Main results

The behavior of the estimated medial axis is made explicit in the following theorem.
Note that the smoothness conditions on the boundary are close to the one used in [3]
where a similar theorem is obtained for a sufficiently dense sample of the boundary
that is a (0, εn)-estimation of the boundary. Nevertheless, here we can just observe
points close to the boundary that is a more realistic assumption in a statistical
purpose.
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Theorem 1. Let S be a (K, r0)-regular compact set. Introduce µS = diam(S)/r0
Suppose that there exists two positive sequences (εn)n and (ε′n)n such that εn → 0,
ε′n → 0, εn ≤ max(1, r0

8
, 5r0
8
√
1+µS

) and ε′n < r0/2. Suppose that we can find Y ⊂ Xn

and Ŝn ⊂ S such that

1. Y ⊂ Xn is a (ε2n, εn)-estimation of ∂S

2. dh(Ŝn, S) ≤ ε′n and dh(∂Ŝn, ∂S) ≤ ε′n

There exists an explicit constant λ0 such that for all λ < λ0 there exist a constant
C, such that, for n large enough:

dh(M̂λ(Ŝn,Y),M) ≤ Cε2n

In the case where the points are randomly drawn on S satisfying the regularity
conditions of Theorem 1 and assuming additional hypothesis on the probability dis-
tribution, the following corollary proposes a ways to practically estimate the inner
medial axis. For this we use Cr(Xn), the r-convex hull estimator of S (see [23]), to
identify the subset Y of sample points located close to the boundary. We also use
the basic Devroye Wise estimator (see [13]) estimator of the Support. This choices
has been done to provide an easy to compute algorithm.

Corollary 1. Let Xn = {X1 . . .Xn} be an iid sample of points, drawn on S a (K, r0)-
regular compact set. Assume that the density f of the sample satisfies f(x) ≥ f0 > 0
for all x ∈ S. For all r < r0 denote by Ĉr(Xn) the r-convex hull of Xn and put
Yr = ∂Ĉr(Xn) ∩ Xn.

Let Ŝn be Ŝn =
⋃

i B(Xi, rn) with rn = (41/d maxi(minj 6=i ||Xi −Xj ||))
There exists λ0 such that, for all λ < λ0 there exists Bρ such that

dh(M, M̂λ(Ĉr(Xn),Yr)) ≤ Bρ

(

lnn

n

)
2

d+1

e.a.s.

2.3 Applications

Support Estimation First let us give a general theorem that gives the conver-
gence rate of the support estimation that directly derives from the medial axis es-
timation. In a computational purpose we do not propose to estimate the support
with

S◦ = {x, ∃z ∈ M̂λ(Ŝn,Y), d(x, z) ≤ d(z,Y)}
but on a Monte-Carlo type estimation of S◦ based on a finite subset Z = {Z1, . . . Zk} ⊂
M̂λ(Ŝn,Y).
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Theorem 2. Under the hypothesis of Theorem 1, for λ < λ0, if Z = {Z1, . . . Zk} is

a (0, ε2n) estimation of M̂λ(Ŝn,Yr) then there exits a constant C ′ such that:

dh(S,
⋃

i

B(Zi, d(Zi,Y)) ≤ C ′ε2n and dh(∂S, ∂
⋃

i

B(Zi, d(Zi,Y)) ≤ C ′ε2n.

As in the previous section we can derive from this theorem a corollary giving the
convergence rate of the support estimator based on a medial axis estimation lying
on the r-convex hull to estimate the boundary points. Recall that the interest of
such a result consist in the computational easiness of deciding whether a new point
belongs to the support or not. This is closely related to k the number of points
on the estimated medial axis that should be as small as possible. To control that
number introduce a packing definition.

Definition 5. Let A be a subset of Rd, a finite subset of A Z = {Z1, . . . Zk} ⊂ A is
said to pack A with a radius r if

∀i 6= j : B(Zi, r) ∩ B(Zj, r) = ∅ and A ⊂
⋃

i

B(Zi, 2r)

A consequence of well known properties of smooth enough compact d′-dimensional
manifold is the following property.

Proposition 2. If A ⊂ Rd is a compact d′-dimensional C1manifold then it admits
packing subsets Z = {Z1, . . . Zk} with a radius r and there exists DA a constants such
that k ≤ DAr

−d′

The following results says that it is sufficient to obtain O(n
2d′

d+1 ) on M̂λ(Ŝn,Yr) to
have an estimation of S as good as the r-convex hull. That is specially useful when
d′ ≪ d.

Corollary 2. Under the hypothesis of Theorem 1, Suppose that M(S) is a C1 d′-
dimensional manifold. For a given λ < λ0 the constant of Theorem 1. Let Z =

{Z1, . . . Zk} be a packing subset of M̂λ(Ŝn,Yr) for a radius ρn = ρ0
(

lnn
n

)
2

d+1 then
there exits a constant C ′ such that, eventually almost surely:

dh(S,
⋃

i

B(Zi, d(Zi,Y)) ≤ C ′
(

lnn

n

)
2

d+1

and dh(∂S, ∂
⋃

i

B(Zi, d(Zi,Y)) ≤ C ′
(

lnn

n

)
2

d+1

.

Remark that this corollary is a direct consequence of Theorem 2 so that we will
omit the proof.
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Manifold estimation Another application of the estimation of the medial axis is
that, under some hypothesis it can be used for manifold estimation. Let us recall that
manifold estimation deals with the following problem. Suppose that Y is a random
variable drawn with a probability PY supported by M a compact d′-dimensional
manifold. Suppose, now that we can not observe Y but X = Y + U . The manifold
estimation problem consists in estimating M .

The following theorem stands that, if M is smooth enough and, if the noise is
such that S the support of X is

⋃

x∈M B(x, ρ1) then the manifold estimation problem
and the medial axis estimation problem are the same. Namely, smoothness being
characterized by the reach see [14] or [27] defined as follows:

reach(M) = sup{r ∈ R, d(z,M) < r ⇒ ∃!z∗ ∈ M, ||z − z∗|| = d(z,M)} (4)

we have

Proposition 3. Let M ⊂ Rd be a closed manifold with a positive reach ρ1, for all
ρ0 < ρ1 M(

⋃

x∈M B(x, ρ0)) = M

The Following results, stands that, under the same hypothesis than in [17] the
medial axis estimator based on the r−convex hull is a manifold estimator and that
it is minimax when d′ = d− 1.

Corollary 3. Let M be a compact d′-dimensional manifold without boundary with
positive reach ρ1. Suppose that Y = {Y1, . . . Yn} is a iid sample drawn with a prob-
ability PY supported by M with a density fY such that, for all y ∈ M, fY (y) ≥
f0 > 0. Suppose that we can not observe the random variable Y but that we
observe X = Y + U such that the distribution of U |{Y = y} is supported by
Sy = {y + ρu, u ∈ NyM, ||u|| = 1, 0 ≤ ρ ≤ ρ0} and has a constant density fU |Y=y on
Sy. Finally suppose that ρ0 < ρ1 we have:

There exists λ0 such that, for all λ < λ0 there exists B such that

dh(M, M̂λ(Ĉr(Xn),Yr)) ≤ Bρ

(

lnn

n

)
2

d+1

e.a.s.

Under a different noise hypothesis we conjecture the following result (in section
proof we will present the arguments that make us strongly believe that it is true).

Conjecture. LetM be a compact d′-dimensional manifold. Suppose that reach(M) =
ρ1 > 0. Suppose that Y = {Y1, . . . Yn} is a iid sample drawn with a probability PY

supported by M with a density fY such that, for all y ∈ M, fY (y) ≥ f0 > 0. Suppose
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that we can not observe the random variable Y but that we observe X = Y +U such
that the distribution of U |{Y = y} is supported by B(y, ρ0) and has density fU |y.
Suppose that there exists c > 0 such that for all y ∈ M , for all x ∈ Sy we have
fU |y(x) ≥ c. Finally suppose that ρ0 < ρ1 we have:

There exists λ0 such that, for all λ < λ0 there exists B such that

dh(M, M̂λ(Ĉr(Xn),Yr)) ≤ Bρ

(

lnn

n

)
2

d+1+2d′

e.a.s.

2.4 Proofs

Before setting the proof let us first introduce some definitions and notations. Let A
be an open set and C a closed set such that A ∩ C = ∅ and introduce B(A,C) =
{B(x, r), x ∈ A,B(x, r) ∩ C = ∅}, Cmax(A,C) the set of the maximal balls (for the
inclusion) of B(A,C) and M(A,C) the set of the centers of the balls of B(A,C). In
the following, S(x, r) denotes the sphere of radius r centered at x, let A and C be
two sets A∆C = (A \ C) ∪ (C \ A) is there symmetric difference.

Proof of theorem 1

Proof. First note that for all x ∈ M we have r(x) ≤ diam(S) ≤ µSr0. Second remark
that the inner rolling ball condition implies that for all x ∈ M, r(x) = d(x, ∂S) ≥ r0.

Notice that, for any x ∈ M(S) we have that x ∈ Ŝn. Indeed suppose the reverse.
As there exists x′ ∈ Ŝn with ||x′−x|| ≤ ε′n, there exists x

′′ ∈ [x, x′]∩∂Ŝn, ||x−x′′|| ≤
ε′n. As B(x, r(x)) ⊂ S we also have B(x′′, r(x)−ε′n) ⊂ S and d(x′′, ∂S) ≥ r(x)−ε′n ≥
r0 − ε′n. Thus 0 ≥ r0 − ε′n that is impossible because ε′n < r0/2. We also have that
B(x, r(x)− 2ε2n) ∩ Y = ∅. Thus B(x, r(x)− 2ε2n) ∈ B(Ŝn,Y) and there exist x′ ∈ Ŝn

and r′ such that:

B(x, r(x)− 2ε2n) ⊂ B(x′, r′) with B(x′, r′) ∈ Cmax(Ŝn,Y). (5)

We are now going to prove that for all (x′, r′) such that B(x, r(x)−2ε2n) ⊂ B(x′, r′)
and B(x′, r′) ∈ Cmax(Ŝn,Y) we have :

||x− x′|| ≤ 1 +K

1−K

(

2 +
8(1 + µS)

5r0

)

ε2n. (6)

Introduce x′∗ a point of ∂S such that d(x′, ∂S) = ||x′ − x′∗|| and γ = r′ − ||x′ − x′∗||.
Notice that
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1. Because x′∗ ∈ ∂S, there exits yi ∈ Y such that ||yi−x′∗|| ≤ εn. Thus B(x′, ||x′−
x′∗||+ εn) /∈ B(Ŝn,Y) and we obtain : r′ ≤ ||x′ − x′∗||+ εn thus γ < εn.

2. Conversely, because B(x′, r′) is in Cmax(Ŝn,Y) there exists y ∈ Y such that
||x′ − y|| = r′ thus there exists z ∈ ∂S such that ||y − z|| ≤ ε2n so we have
||x′ − x′∗|| ≤ r′ + ε2n so that γ ≥ −ε2n.

Finally, we have that
− ε2n ≤ γ ≤ εn (7)

Remark now that there exists yi ∈ Y such that:

1. ||yi − x′∗|| ≤ εn, because Y is a (ε, ε2n)-estimation of ∂S;

2. ||yi − Oout
x′∗ || ≥ r0, indeed yi /∈ B(Oout

x′∗ , r0), because yi ∈ S;

3. ||yi − x′|| ≥ r′, because B(x′, r′) is a ball of B(Ŝn,Y).

Notice that x′, x′∗ and Oout
x′∗ are on a same line directed by u = x′∗−x′

||x′∗−x′|| . We so

have x′ = x′∗ − (r′ − γ)u and Oout
x′∗ = x′∗+ r0u. Let us write yi −x′∗ = au+ bw where

and w is a unit vector of u⊥. Notice that w can be chosen such that b ≥ 0. See
Figure 4 for the position of the different points.

Figure 4: Let B(x′, r′) ∈ Cmax(Ŝn,Y) and x′∗ be a point of ∂S such that such that
d(x′, ∂S) = ||x′ − x′∗||. Then there exists a yi ∈ Y in the green dashed area.

The previous considerations on the location of yi gives:










a2 + b2 ≤ ε2n
b2 + (r0 − a)2 ≥ r20
(r′ − γ + a)2 + b2 ≥ r′2
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That, in turns gives:










a2 + b2 ≤ ε2n
2ar0 ≤ ε2n
γ2 − 2(r′ + a)γ + (1 + r′

r0
)ε2n ≥ 0

Now we focus mainly on the last inequality. Notice first that r′ + a ≥ r′ − εn ≥ r0 −
2ε2n−εn ≥ 5r0/8. Notice second that r′ ≤ diam(S) so that, since ε2n(1+µS) ≤ (5r0/8)

2

that is guaranteed by the hypotheses, the discriminant is positive and we must have

γ ≤ r′ + a−
√

(r′ + a)2 − (1 + r′

r0
)ε2n or γ ≥ r′ + a +

√

(r′ + a)2 − (1 + r′

r0
)ε2n.

We are now going to prove that the second case is impossible. Indeed, if γ ≥
r′ + a +

√

(r′ + a)2 − (1 + r′

r0
)ε2n we also have γ ≥ r′ + a ≥ r′ − εn ≥ r0 − 2ε2n − εn

(because |a| ≤ εn by the first inequality and because r′ ≥ r(x)− 2ε2n ≥ r0 − 2ε2n by
initial inclusion. Thus, by (7) we have r0−2ε2n ≤ 2εn so r0 ≤ 2εn+2ε2n ≤ 4εn ≤ r0/2
(because εn ≤ 1 then because εn ≤ r0/8) that is impossible.

Now we have γ ≤ r′+a−
√

(r′ + a)2 − (1 + r′

r0
)ε2n. Let us recall that 1−

√
1− x ≤

x when x ∈ [0, 1] so that γ ≤ 1+ r′

r0

r′+a
ε2n ≤ 8(1+µS )

5r0
ε2n. Introduce cS = 8(1+µS )

5r0
we

have B(x′, r′ − cSε
2
n) ⊂ B(S̊, ∂S), so there exists B(x′′, r(x′′)) ∈ Cmax(S̊, ∂S) with

B(x′, r′ − cSε
2
n) ⊂ B(x′′, r(x′′)), that is:

∃x′′ ∈ M such that B(x′, r′ − cSε
2
n) ⊂ B(x′′, r(x′′)). (8)

Now, by (5) and (8) it follows that B(x, r(x)− (2 + cS)ε
2
n) ⊂ B(x′′, r(x′′)). As a

consequence, by the triangular inequality, we obtain r(x′′) ≥ ||x′′ − x||+ r(x)− (2 +
cS)ε

2
n. Thus, using now the K-regularity: (2 + cS)ε

2
n ≥ ||x′′ − x|| + r(x) − r(x′′) ≥

(1−K)||x− x′′|| and we finally obtain:

||x− x′′|| ≤ (2 + cS)ε
2
n

1−K
. (9)

By (5) we also have r′ ≥ ||x − x′|| + r(x) − 2ε2n and by (8) we have r(x′′) ≥
||x′′ − x′|| + r′ − cSε

2
n. Summing these two inequalities gives: r(x′′) ≥ r(x) + ||x −

x′||+ ||x′ − x′′|| − (2 + cS)ε
2
n so

||x− x′|| ≤ r(x′′)− r(x) + (2 + cS)ε
2
n

So again using the K-regularity of the support and (9) we obtain ||x − x′|| ≤
1+K
1−K

(2 + cS)ε
2
n. This concludes the proof of (6).
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Assuming that, if B(x′, r′) is a ball of Cmax(Ŝn,Y), then the maximality impose
that there exists at least two points in B(x′, r′)∩Y and so x′ ∈ M0,Ŝn

(Y). That is not
sufficient since we want to guarantee the existence of a x′ in some MC,Ŝn

(Y), with C

large enough and close to x. Namely, introduce λ0 = min{
√

1−K
(1+K)(1+2cS)

r0,
r0
2
}. We

now aim to prove that, for all x ∈ M(S) there exits x′ and r′x such that

x′ ∈ Mλ0,Ŝn
(Y) , B(x′, r′x) ∈ Cmax(Ŝn,Y) , and B(x, r(x)− 2ε2n) ⊂ B(x′, r′x). (10)

More precisely we will show that this is realized for x′, such that B(x′, r′x) is a
ball of Cmax(Ŝn,Y) that has a maximum radius, that is such that:

r′x = max{r′, B(x, r(x)− 2ε2n) ⊂ B(x′, r′), B(x′, r′) ∈ Cmax(Ŝn,Y)}.

Clearly there exists y ∈ S(x′, r′x)∩Y. Suppose that max{||y−z||, z ∈ S(x′, r′x)∩Y} =
l ≤ r0/2. Introduce a point z0 ∈ S(x′, r′x) ∩ S(y, l), u = x′−y

||x′−y|| , x
′′
t = x′ + tu and

r′′t = ||z0 − x′′
t || (See Figure 5).

Figure 5: Construction of x′′
t .

Note first that 〈x′ − z0, u〉 = 2(r′x)
2−l2

2r′x
≥ 3

4
> 0 (because l2 ≤ r20/4 ≤ (r′x)

2). Thus,
when t > 0 we have:

(r′′t )
2 = ||x′− z0+ tu||2 = (r′x)

2+ t2+2t〈x′− z0, u〉 = (r′x)
2+ t2+ t

2(r′x)
2 − l2

r′x
> (r′x)

2

(11)
and

B(x′′
t , r

′′
t ) ∩ Bc(x′, r′x) ∩B(y, l) = ∅ (12)
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Indeed, consider x ∈ B(x′′
t , r

′′
t ) ∩Bc(x′, r′x) ∩B(y, l), x = x′ + au+ bw with w a unit

vector of u⊥, we have:










a2 + b2 ≥ (r′x)
2

(a− t)2 + b2 < (r′x)
2 + t2 + t2(r

′

x)
2−l2

r′x

(a+ r′x)
2 + b2 < l2

combining first and second inequalities, then first and third inequalities gives:
{

a > l2

2r
− r

a < l2

2r
− r

That is impossible.
Consider now ρ(t) = d(x′′

t ,Y∩Bc(y, l))− r′′t . For t = 0 we have ρ(0) > 0 so that,
using continuity arguments, there exists t0 > 0 such that, for all t ∈ [0, t0] we have
ρ(t) > 0 and thus, by (12) B(x′′

t , r
′′
t )∩ Y = ∅. Observe that, because x′ is far enough

from the boundary of S, we can can choose t0 such that for all t < t0 we have x
′′
t ∈ Ŝn

and B(x′′
t , r

′′
t ) ∩ Y = ∅.

As B(x′, r′x) is a ball containing B(x, r(x)− 2ε2n), in Cmax(Ŝn,Y) that has a max-
imal radius we must have that, for all 0 < t < t0 there exists yt ∈ Bc(x′′

t , r
′′
t ) ∩

B(x, r(x)−2ε2n). Observe that we also have yt ∈ (Bc(x′′
t , r

′′
t )∩B(x′, r′))∩B(x, r(x)− 2ε2n).

So, taking t → 0 and using compactness arguments we obtain that there ex-
ists y′ ∈ S(x′, r′) ∩ B(y, l) ∩ B(x, r(x)− 2ε2n). Notice also that, if y′ ∈ S(x′, r′) ∩
B(x, r(x)− 2ε2n), the inclusion B(x, r(x) − 2ε2n) ⊂ B(x′, r′) implies that x′, x and
y′ are on the same line and that ||x − y′|| = r(x) − 2ε2n. Introduce now γ =
||x − y|| − (r(x) − 2ε2n) and θ = ∠yx′y′. See Figure 6 for the general configura-
tion of x, x′, y, y′, γ and θ .

Recall that y ∈ Y so that there exists z ∈ ∂S such that ||y − z|| ≤ ε2n, recall also
that B(x, r(x)) ⊂ S so that ||z − x|| ≥ r(x) thus ||x− y|| ≥ r(x)− ε2n and γ ≥ ε2n.

By ||y− y′||2 = ||y− x||2 + ||x− y′||2+2〈y−x, x− y′〉 it follows that ||y− y′||2 =
(r(x) − 2ε2n)

2 + (r(x) − 2ε2n + γ)2 − 2(r(x) − 2ε2n)(r(x) − 2ε2n + γ) cos(θ). Thus we
have:

cos(θ) =
(r(x)− 2ε2n)

2 + (r(x)− 2ε2n + γ)2 − ||y − y′||2
2(r(x)− 2ε2n)(r(x)− 2ε2n + γ)

. (13)

We also have x′ − x = ||x′ − x||(cos(θ),− sin(θ)). Thus

||x′ − y||2 = (r(x)− 2ε2n + γ + ||x′ − x|| cos(θ))2 + (||x′ − x|| sin(θ))2. (14)
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Figure 6:

But we also have ||x′ − y||2 = ||x′ − y′||2 = (r′)2 = (r(x)− 2ε2n + ||x′ − x||)2. Thus,
from (14) we obtain:

(r(x)−2ε2n+γ)2+2||x′−x||(r(x)−2ε2n+γ) cos(θ) = (r(x)−2ε2n)
2+2||x′−x||(r(x)−2ε2n),

and thus :

||x′ − x|| = 1

2

2γ(r(x)− 2ε2n) + γ2

(r(x)− 2ε2n)− (r(x)− 2ε2n + γ) cos(θ)
.

That, combined with (13) gives

||x′ − x|| = 2γ(r(x)− 2ε2n)
2 + γ2(r(x)− 2ε2n)

||y − y′||2 − 2γ(r(x)− 2ε2n)− γ2
. (15)

Finally, recall that r(x)−2ε2n ≥ r(x)−2εn ≥ 3r0/4 and γ ≥ ε2n so that (15) gives:

||x− x′|| ≥ r2
0
ε2n

||y−y′||2 . Observe that because of (6) we have ||x′ − x|| ≤ K+1
1−K

(2 + cS)ε
2
n.

Therefore we finally obtain:

||y − y′|| ≥
√

1−K

(1 +K)(1 + 2cS)
r0

As, we have l ≥ ||y − y′|| we have finally proved that, if l ≤ r0/2 we have

l ≥
√

1−K
(1+K)(1+2cS)

r0. This concludes the proof of (10).
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Now from (6) and (10) we have that, for all λ < λ0 :

for all x ∈ M(S) there exists x′ ∈ M̂λ(Ŝn,Y) such that ||x−x′|| ≤ K + 1

1−K
(2+cS)ε

2
n.

(16)
Consider points x ∈ S such that d(x,M) ≥ e. In this last part of the proof we

put l = d(x, ∂S). Consider a point x′∗ ∈ ∂S such that ||x− x′∗|| = l. As B(x, l) ⊂ S̊
one can introduce B(x′, r(x′)), a ball of Cmax(S̊, ∂S) containing B(x, l). Recall that
the regularity condition on S allows the existence of Oout

x′∗ such that B(Oout
x′∗ , r0) ⊂ Sc

and observe that x, x′, x′∗ and Oout
x′∗ are on the same line, and that r(x′) = ||x′−x||+ l

with e′ = ||x′ − x|| ≥ e.
Because Y is a (ε2n, εn)-estimation of ∂S there exists y ∈ Y such that ||x′∗−y|| ≤ εn.

As d(y, ∂S) ≤ ε2n, we also have ||y − x′|| ≥ r(x′) − ε2n, and since y ∈ S we have
||y−Oout

x′∗ || ≥ r0, that is y ∈ B(x′∗, εn)∩Bc(x′, r(x′)− ε2n)∩Bc(Oout
x′∗ , r0). See Figure

7 for the construction (y being in the blue zone).
Let us write y = x′∗+au+bw, where u = x−x′

||x−x′|| and w ∈ u⊥, since ||x′∗−y|| ≤ εn
and ||y − Oout

x∗ || ≥ r0 we have:
{

a2 + b2 ≤ ε2n
a2 − 2r0a+ b2 ≥ 0

Thus

a2
(

1− r(x′)− e′

r0 + r(x′)− e′

)

+ 2
r0(r(x

′)− e′)

r0 + r(x′)− e′
a+ b2

(

1− r(x′)− e′

r0 + r(x′)− e′

)

≤ ε2n.

That is
r0

r0 + r(x′)− e′
(

(a+ r(x′)− e′)2 + b2 − (r(x′)− e′)2
)

≤ ε2n.

And Finally

||x− y||2 ≤ (r(x′)− e′)2 +
r0 + r(x′)− e′

r0
ε2n ≤ (1 + µS)ε

2
n.

Thus, for all yi ∈ Y such that x ∈ Vor(yi), we have : yi ∈ B(x,
√

(r(x′)− e′)2 + (1 + µS)ε2n).
Because, yi ∈ Y we also have ||yi − x′|| ≥ r(x′) − ε2n. One can introduce Ex =
B(x,

√

(r(x′)− e′)2 + C1ε2n) ∩ Bc(x′, r(x′) − ε2n). See Figure 7 again (the possible
location for the yi being in he brown zone).

For all yi = x′∗ + au+ bw, where u = x−x′

||x−x′|| and w ∈ u⊥, y ∈ Ex we have

{

(a− r(x′) + e′)2 + b2 ≤ (r(x′)− e′)2 + (1 + µS)ε
2
n

(a− r(x′))2 + b2 ≥ (r(x′)− ε2n)
2.
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Figure 7: As there exists an observation in the blue crosshatched domain, all the yi
such that x ∈ VorY(yi) are in Ex, the brown crosshatched domain.

By subtraction we have: 2ae′ ≤ (1 + µS + 2r(x′))ε2n, thus considering the first in-
equality it comes that: a2 + b2 ≤ (1 + µS)ε

2
n + 2a(r(x′)− e′) ≤ (1 + µS)ε

2
n + (r(x′)−

e′)(1 + µS + 2r(x′)) ε
2
n

e′
Thus:

diam(Ex) ≤ 2

√

(1 + µS)ε2n + µSr0(1 + µS + 2µSr0)
ε2n
e′

And, for all µ < λ
2
we have that obtained that, for all x ∈ S, if d(x,M) ≥

µSr0(1+µS+2µSr0)ε
2
n

µ2 then x /∈ M̂
2
√

µ2+(1+µS)ε2n,Ŝn
(Y)), and for n large enough, x /∈

M̂λ(Ŝn,Y). Choosing µ = λ/4 it comes that, for n large enough for all x ∈
S ∩ M̂λ(Ŝn,Y), d(x,M) ≤ 4µSr0(1+µS+2µSr0)ε

2
n

λ2 .
To conclude the proof it only remains to prove that, for n large enough, Sc ∩

M̂λ(Ŝn,Y) = ∅ that is easy since, if x ∈ ScM̂λ(Ŝn,Y) then x ∈ Sc∩Ŝn so d(x, ∂S) ≤ ε′n
and there exists yi ∈ Y such that ||x− yi|| ≤ εn + ε′n, so that, for all y ∈ Y such that
x ∈ Vor(yi) we have ||x− yi|| ≤ εn + ε′n and thus diam{y, x ∈ Vor(yi)} ≤ 2(εn + ε′n)
that is impossible, for n large enough because we should have diam{y, x ∈ Vor(yi)} ≥
λ as x ∈ M̂λ(Ŝn,Y).

We so obtain that, for n large enough, for all x ∈ M̂λ(Ŝn,Y), d(x,M) ≤ 4µSr0(1+µS+2µSr0)ε
2
n

λ2 .
that, combined to (10) concludes the proof.

Proof of Corollary 1

Proof. We refer the reader to [23] to be convinced that there exist constants ar, br and

cr such that, eventually almost surely Yr is (eventually almost surely) a (ar(lnn/n)
2

d+1 , br(lnn/n)
1

d+1 )-
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estimation of S. Considering the Devroye Wise estimator we refer the reader to [12].
Roughly our shape hypothesis implies standardness with δ = f0/2, it also implies
partly expandable hypothesis so that by application of theorems 2 and 3 the choice
of rn = (4 lnn/(nf0ωdf0))

1/d allow to have convergent estimator for the support and
the boundary. By application of result of Jansen in [22] the proposed data driven rn
sequence ensures that, eventually almost surely, dh(Ŝn, S) and dh(∂Ŝn, ∂S) converge
to 0.

Proof of Theorem 2

Proof. We are going to prove that, for all (Zi, x) ∈ M̂λ(Ŝn,Yr)×M(S) such that||Zi−
x|| ≤ Aε2n we have ri = d(Zi,Y) that satisfies:

r(x)− (A+ 1)ε2n ≤ ri ≤ r(x) + (A+ r−1
0 )ε2n. (17)

Consider first the part r(x) − (A + 1)ε2n ≤ ri. Recall that B(x, r(x)) ⊂ S so
Y ∩ B(x, r(x) − ε2n) = ∅ (otherwise there exists Yi with d(Yi, ∂S) > ε2n). Thus
d(x,Y) ≥ r(x)− ε2n and, by triangular inequality ri ≥ r(x)− (A+ 1)ε2n.

Second Consider the part ri ≤ r(x) + (A + r−1
0 )ε2n.

i. there exists x∗ ∈ ∂S such that d(x, ∂S) = r(x) = ||x − x∗|| and there exists
y ∈ Y with ||y − x∗|| ≤ εn (because Y is a (ε2n, εn)-estimation of ∂S);

ii. by the rolling ball condition, y /∈ B(Oout
x∗ , r0) with Oout

x∗ = r0
x∗−x

||x∗−x|| ,

iii. if ri > r(x′) + (A+ r−1
0 )ε2n then y /∈ B(x, r(x) + r−1

0 ε2n)

Introduce u = x∗−x
||x∗−x|| , if z = x∗ + au+ bw with w ∈ u⊥ then the previous conditions

give;










a2 + b2 ≤ ε2n
(a+ r(x))2 + b2 > (r(x) + r−1

0 ε2n)
2

(a− r0)
2 + b2 > r20

Combining inequalities 1 and 2 and inequalities 1 and 3 we obtain:

{

a >
(

1
r0
− 1

2r(x)

)

ε2n +
ε2n
r2
0

≥
(

1
r0
− 1

2r0

)

ε2n ≥ ε2n
2r0

a < ε2n
2r0

That is impossible that concludes the proof of Equation (17).
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We are now going to prove that:

⋃

i

B(Zi, d(Zi,Y))∆S ⊂ ∂S ⊕ C ′′ε2nB with C ′′ = max(2C + r−1
0 , 2C + 3) (18)

Suppose that x ∈ ⋃

i B(Zi, d(Zi,Y))\S then there exists i such that x ∈ B(Zi, d(Zi,Y))

and, because Zi ∈ M̂λ and dh(M̂λ,M) ≤ Cε2n there exists z ∈ M with ||z−Zi|| ≤ Cε2n
so that by (17) (with A = C) and triangular inequality x ∈ B(z, r(z)+(2C+r−1

0 )ε2n)
and x /∈ S. Consider x′ = S(z, r(z)) ∩ [z, x] we have [x′, x] ∩ ∂S 6= ∅ (indeed
B(z, r(z)) ⊂ S so or x′ ∈ ∂S or x′ ∈ S̊ and ]x′, x] ∩ ∂S 6= ∅). From which we can
deduce that there exits x∗ ∈ ∂S such that ||x− x∗|| ≤ (2C + r−1

0 )ε2n).
Suppose now that x ∈ S \ ⋃

iB(Zi, d(Zi,Y)) for all z ∈ M(S) such that x ∈
B(z, r(z)) and there exits Zi ∈ Z such that ||Zi−z|| ≤ (C+1)ε2n, as x /∈ ⋃

i B(Zi, d(Zi,Y))
we also have ||x−Zi|| > ri so that, by (17) (with A = C+1) ||x−Zi|| > r(z)−(C+2)ε2n
and, finally triangular inequality implies that ||x−z|| > r(z)−(2C+3)ε2n. If x /∈ ∂S,
let us now introduce l = d(x, ∂S) and x∗ ∈ ∂S such that ||x − x∗|| = l we have
B(x, l) ⊂ S̊ and one can introduce B(z0, r(z0)) be a ball of Cmax(S̊, ∂S) containing
B(x, l) (obviously x ∈ B(z0, r(z0)). Notice that the regularity condition implies that
there exists a unique z0 and that x ∈ [z0, x

∗] so that ||x − z0|| = r(z0) − l. Finally,
this and previous consideration gives that, if x /∈ ∂S then d(x, ∂S) ≤ (2C+3)ε2n that
concludes the proof of (18).

Finally, (18) directly implies that: For all x ∈ ⋃

i B(Zi, d(Zi,Y)) and x /∈ S there
exist x′ ∈ ∂S such that ||x− x′|| ≤ C ′′ε2n.

Now, suppose that n is large enough to have C ′′ε2n < r0, for all x such that
d(x, ∂S) ≤ C ′′ε2n < r0 denote by x∗ its unique (due to the regularity condition)
projection onto ∂S and introduce ux∗ the unit vector, tangent to ∂S pointing outward
S. If x ∈ S and x /∈ ⋃

i B(Zi, d(Zi,Y)) then by (18) x ∈ [x∗, x∗−C ′′ε2nux∗ ] and for all
t ∈]C ′′ε2n, r0] we have xt = x∗ − tux∗ ∈ ⋃

i B(Zi, d(Zi,Y)) so that (doing t → C ′′ε2n)
exists x′ ∈ ∂

(
⋃

i B(Zi, d(Zi,Y))
)

with ||x′ − x|| ≤ C ′′ε2n.
So that it comes that

dh(S,
⋃

i

B(Zi, d(Zi,Y)) ≤ C ′ε2n and dh(∂S, ∂
⋃

i

B(Zi, d(Zi,Y)) ≤ C ′ε2n.

that concludes the proof.

Proof of Proposition 3
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Proof. First let us prove that balls roll freely inside and outside S. Indeed a direct
consequence of Corollary 4.9 in [14] is that reach(S) ≥ ρ0−ρ1 > 0 that balls of radius
ρ0−ρ1 roll freely outside S. Now for all x ∈ ∂S, as d(x,M) ≤ ρ1 ≤ rho0 there exists
(a unique) x∗ ∈ M such that ||x − x∗|| = d(x,M), because x ∈ ∂S we must have
||x − x∗|| = ρ1 and, by definition of S, B(x∗, ρ1) ⊂ S so that balls of radius ρ1 roll
freely inside S. We so have

Balls of radius r0 = min(ρ0 − ρ1, ρ1) > 0 roll freely inside and outsideS. (19)

Introduce n(x,M) the space normal to M at the point x nor(M) = {(x, u), x ∈
M,u ∈ n(x,M), ||u|| = 1} Now, proposition 16 in [27] says that: ϕ : ∂S → norn(M),
ϕ(x) = (x∗, x−x∗

ρ1
), where x∗ is the projection of x ontoM , is bijective. This bijectivity

implies that M(S) = M . Indeed, it first implies the existence of normal vectors, for
x ∈ M , let u be a unit vector of n(x,M) then x+ ρ1u and x− ρ1u are two different
points of ∂S and there is no points of ∂S closer of x than ρ1 so that x has at least
two different projections and x ∈ M(S). Reversely if x ∈ M(S) then there exists x1

and x2 two different projection of x on ∂S so that, by the inside rolling ball property
we have d(x, ∂S) = ρ1 that finally implies that x ∈ M .

M = M(S) (20)

About Corollary 3 and Conjecture 2.3 The corollary 3 is a direct consequence
of Proposition 3, Corollary 1 and section 2.2 in [17] where it is said that S the sup-
port of X as a density bounded away from 0 on its support

⋃

x,∈M B(x, ρ0).

About Conjecture 2.3 we think that the density of X satisfy that fX(x) ≥
Xd(x, ∂S)d

′

for all x ∈ ⋃

x,∈M B(x, ρ0). Indeed we have take x ∈ S̊ such that

B(x, ε) ⊂ S̊ we have PX(B(x, ε)) ≥
∫

y∈M,||x−y||≤ρ1
cωdε

ddy so that PX(B(x, ε)) ≥
|{y ∈ M, ||x − y|| ≤ ρ1}|d′cωdε

d (where ωk is the volume of the k-dimensional unit
ball and |A|k the k-dimensional measure). Now using Pythagoras, introducing x∗

the projection of x onto M we have

PX(B(x, ε)) ≥ |M ∩ B(x∗,
√

ρ21 − ||x− x∗||2)|d′cωdε
d

And because ρ21 − ||x− x∗||2 = d(∂S, x) we obtain

PX(B(x, ε)) ≥ |M ∩ B(x∗, d(∂S, x))|d′cωdε
d
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. when d(∂S, x) is small enough M ∩ B(x∗, d(∂S, x) looks like a part of a d′-
dimensional ball the “worst” case being when x∗ is on the ∂M , but the assumed
regularity of ∂M ensures that in this case |M ∩B(x∗, d(∂S, x))|d′ ∼ ωd′

2
d(∂S, x)d

′

.
Such a density is not sufficient to apply the results on the r-convex hull obtained in

[23] but we really think that the asymptotic is the same than in [1] so that, if fX(x) ≥
Xd(x, ∂S)α we will have Xn ∩ Cr(Xn) is a ((lnn/n)2/(d+1+2α), (lnn/n)1/(d+1+2α)) es-
timation of ∂S.

3 Practical aspects

Now we are going to detail the practical aspect related to the estimator proposed in
Corollary 1 that is we aim to detail the algorithmic point of view and propose some
tools for the choice of the parameters. At the end of each section we propose the
associated algorithms in pseudo-code. Note that they require the use of a program-
ming language that can compute Voronoi cells in any dimension. More precisely
for X = {X1, . . . , Xn} a set of n points in Rd we need to obtain a set of points
V = {V1, . . . Vm} and a set of set of index {J1, . . . Jn} (Jk ⊂ {1, . . .m}) such that
VorX(Xi) = Convex Hull of {Vj; j ∈ Ji}. That is the usual output for such a topic.
For instance, using matlab it is the result of [V, J ] =voronoin(X). Using Python it
can be obtained by V V =VoronoiTess(X), V = V V.vertices, J = V V.regions. In the
proposed algorithm we will choose the matlab denomination: [V, J ] =voronoin(X) .

It also requires a Delaunay triangulation function that allows to obtain from X a
set T = {T1, . . . Tm′}, Ti ∈ {1, . . . n}d+1 where {Xt, T ∈ Ti} is a Delaunay simplex of
X . In matlab it is obtained via T =delaunayn(X), in Python TT =DelaunayTri(X)
and T = TT.vertices. Once again, in the proposed algorithm we will use the matlab
denomination. Notice that: exists k such that {i, j} ⊂ Tk is equivalent to VorX(Xi)∩
VorX(Xj) 6= ∅

It also needs a ncc(G) function that returns the number of connected components
of a graph represented by its adjacency matrix G, Gi,j > 0 if i and j are connected
on the graph.

3.1 Identification of points close to the boundary

Notice that the identification of Yr = Cr(Xn) ∩ Xn can be easily computed. Indeed,
the following proposition stands that points located close to the boundary are the
one that have “large” Voronoi cells.

Proposition 4. Xi ∈ Yr if and only if max{||y −Xi||, y ∈ (VorXn
(Xi)) ≥ r}.
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Proof. Observe that max{||y − Xi||, y ∈ (VorXn
(Xi))} ≥ r. This implies that there

exists x such that B(x, r) ∩Xn = ∅. Thus, by definition of Ĉr, B(x, r) ∩ Ĉr(Xn) = ∅
and xn = (1/n)x+(r−1/n)Xi → Xi ∈ Ĉc

r(Xn) with Xi ∈ Ĉr(Xn), so Xi ∈ ∂Ĉr(Xn).
Conversely, if Xi ∈ ∂Ĉr(Xn) then there exist two sequences xn and yn ∈ Ĉc

r(Xn)
such that xn → Xi, xn ∈ B(yn, r) and B(yn, r) ∩ Xn = ∅. We have yn ∈ S ⊕ rB,
which is compact. Thus, up to an extraction we can suppose that yn → y. As
r < ||yn−Xi|| ≤ r+ ||xn−x|| we have in the limit ||y−Xi|| ≥ r. Moreover, since for
all n, B(yn, r) ∩ Xn = ∅, we have B(y, r) ∩ Xn = ∅ and therefore y ∈ VorXn

(Xi).

The crucial point when choosing a value for r is to identify observations that are
really close to the boundary of S. In [24] one can find fully data driven way to select r.
Unfortunately this method is based on the fact that the data is uniformly drawn, and,
more annoying it appears very difficult to compute it when the dimension is higher
than two. It is why we will propose a more rough way to choose r. Let us introduce
ri = supx∈Vi

||Xi−x||. One can clearly guess that, for all i such that Xi is far enough
from the boundary, ri is small. For instance, under our last hypotheses (S compact
r0-smooth and f bounded away from 0 on S) the maximal spacing theory ([18] for
the original paper and [2] for the extension to the same hypotheses as in Corollary 1)
ensures that there exists µ such that for all i such that d(Xi, ∂S) ≥ µ(lnn/n)1/d we
have ri ≤ µ(lnn/n)1/d/2. Reversely, by [? ] we now that for all r1 < r0, for n large
enough there exists a Yr1 is an accurate estimation of the boundary. The number of
observationNr1 in Yr1 can be neglected with regard to the total number of observation
n (roughly because E(Nr1/n) ≤ max fµ(lnn/n)1/d) we propose to consider the large
values of ri as outsiders and to detect them using a classical outliers detection based
on quartile. More precisely we propose the following algorithm for the choice of r:

Algorithm 1: Identification of Boundary observations

Data: X = {X1, . . . , Xn} ⊂ Rd the observations
Result: Y=boundaryobs(X) such that Y = X ∩ ∂Cr(X)
[V, J ] =voronoin(X) ;
for i = 1 to n do

ri := maxj∈Jj ||Vj −Xi||
end

R = {r1, . . . , rn}, ;
while max(R) ≥ Q75(R) + 3(Q75(R)−Q25(R)) do

ρ = Q75(R) + 3(Q75(R)−Q25(R)), R = {ri, ri ≤ ρ}
end

Y = {Xi such that ri ≥ ρ} ;
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3.2 Computation of the estimated medial axis

Let us recall that the proposed medial axis estimator is the following:

M̂λ(Sn,Y) =
{

x ∈ VorY(y) ∩VorY(z) ∩ Ŝn, (y, z) ∈ Y2, ||y − z|| ≥ λ
}

.

To get an easy computation of M̂λ(Sn,Y) one have to notice that:

Proposition 5. under the hypothesis of theorem 1, for n large enough, if (y, z) ∈ Y2

such that ||y − z|| ≥ λ we have :

VorY(y) ∩ VorY(z) ∩ Ŝn 6= ∅ ⇐⇒ (VorY(y) ∩ VorY(z)) ⊂ Ŝn

Proof. Proceeding by contradiction, let us suppose that there exists (y, z) ∈ Y2 such
that ||y − z|| ≥ λ with VorY(y) ∩ VorY(z) ∩ Ŝn 6= ∅ and VorY(y) ∩ VorY(z) ∩ Ŝc

n 6= ∅.
Because VorY(y)∩VorY(z) is connected there exists a point x ∈ VorY(y)∩VorY(z) ∩
∂Ŝn. There also exists a point x∗ ∈ ∂S with ||x− x∗|| ≤ ε′n and a point y′ ∈ Y such
that ||y′ − x∗|| ≤ εn so that, if x ∈ VorY(z

′) then ||z′ − x|| ≤ εn + ε′n. That, in turns
imply that λ ≤ 2(εn + ε′n) that is impossible for n large enough.

Thus, one can decide to compute

M̂∗
λ(Sn,Y) =

⋃

(i,j)∈I VorY(Yi) ∩VorY(Yj)

I = {(i, j), ||Yi − Yj|| ≥ λ, All the vertex of VorY(Yi) ∩ VorY(Yj) are in Ŝn}
instead of M̂λ(Sn,Y) since, for n large enough both estimator coincide.

Now, we can detail the proposed algorithm. We propose first algorithm that
returns:

• all the VorY(Yi) ∩VorY(Yj) such that all its vertex are in Ŝn

• the associated value of ||Yi − Yj|| denoted λ(i,j)

So that M̂∗
λ,Sn

(Y) = ∪(i,j),λi,j≥λVorY(Yi)∩VorY(Yj) can be easily computed in a second
step. This is described in Algorithm 2.

3.3 Choice of the λ parameter

The choice of λ is primordial to obtain satisfying results. We so propose different
graphical tools to help the user to, a posteriori, choose λ. Note that, most of this
tools are extremely costly so that we propose to compute them only on 20 different
values of λ. Throughout this section we are going to illustrate our indicators on the
following example. 50000 points has been uniformly drawn on a simplified version
of the Da Vinci Vitruvian man see Figure 8.
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Algorithm 2: Computation of M̂∗

Data: X = {X1, . . . , Xn} ⊂ Rd the observations , Y = {Y1, . . . , Ym} the
boundary observation

Result: Z = {Z1, . . . , Zm} ⊂ Rd a list of point, I = {I1, . . . Ik} a list of sets
with Ij ⊂ {1, . . .m} and Λ = {λ1, . . . λk} ⊂ R such that:

M̂∗
λ(X ∩ ∂Cr(X), Ŝε) =

⋃

i,λi≥λ

Convex Hull of({Zj, j ∈ Ii}).

[Z, J ] =voronoin(Y ), TT =delaunayn(Y );

ε = 41/d mini(maxj 6=i ||Xi −Xj ||);
Initialization: T = ∅, Λ = ∅ and I = ∅ ;
for i = 1 to the number of simplices in TT do

for j = 1 to d do

for k = j + 1 to d do

(i0, j0) = (TTi(j), TTi(k));
if {i0, j0} ∩ T = ∅ then

T = T ∪ {i0, j0};
if maxj∈Ji0∩Jj0 (mini ||Zj −Xi||) ≤ ε then

Λ = Λ ∪ {||Yi0 − Yj0||};
I = I ∪ {Ji0 ∩ Jj0}

end

end

end

end

end
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Figure 8: The original image, S, the sample of points (in black the one identified as
boundary point by our algorithm)

1: Reconstruction performances First recall that the medial axis is linked to
image compression and that one of its property is that S =

⋃

x∈M(S)B(x, r(x)). The
most natural idea should be to consider

DH(λ) = dh(Xn,
⋃

x∈M̂∗

λ

, B(x, d(x,Y)).

Unfortunately that is computationally very expensive. Indeed instead of considering
a infinite union of balls and we propose to consider only points located at the vertices
of the intersections of the Voronoi cells in M̂∗

λ. Moreover the maximum distance from
a point of the reconstructed set to an observation is difficult to compute. Hopefully
it is not the most important part of the distance. We so propose to compute the
following indicator. Let Zλ be the set of vertices of the VorY(Yi) ∩VorY(Yj) that are

a face of of M̂∗
λ. Introduce

S̃λ =
⋃

z∈Zλ

B(z, d(z,Y))

and compute:

C1(λ) = max
i

(

d(Xi, S̃λ)
)

.

See Figure 9 to observe that:

i The part maxx∈S̃λ
(d(x,Xn)) can be neglected.

ii The reconstruction only through the vertex is a good approximation

iii The indicator helps to detect too large values for λ, here clearly λ = 0.07 is
too large but is not that useful to detect the “best” value for λ (here we should
expect a reconstruction with λ ∈ [0.04, 0.05].

The way to compute C1(λ) is given in Algorithm 3.
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Figure 9: For λ ∈ {0, 0.01, . . . , 0.07}; Yellow the associated M̂∗
λ, in red the recon-

structed Sets S̃λ and in black the samples points, when λ is small the reconstructed
set hides the sample points but when λ decreases S̃λ underestimates S

Algorithm 3: Computation of C1(λ)

Data: X = {X1, . . . , Xn} ⊂ Rd the observations, Y = {Y1, . . . , Ym} the
boundary observations Z, I and Λ the outputs of Algorithm 2 and λ
a real number

Result: C1(λ)

Collect the vertices C =
⋃

i,λi>λ

(

⋃

j∈Ii{Zj}
)

;

C1(λ) = max
i

(

min
j

[

max
(

||Xi − Cj|| −max
k

||Cj − Yk||, 0)
)]

)

2: Number of connected components of M̂∗
λ. If we previously said that we

should expect a reconstruction with λ ∈ [0.04, 0.05] it is because we expect that the
estimated medial axis is, not only close, in distance, to the medial axis but, but we
also want it to have topological properties closed to the one of the original medial
axis. For instance we aim to recover the number of connected components of the
medial axis. Throughout our simulation study we observed the following, in general
the number of connected components start to the number of connected components
of S for λ = 0 then slowly increases (or stay constant) to the number of connected
components of M(S) then increases because of suppression of faces, then decreases
when we have only few remaining faces. We so propose to compute C2(λ) the number

of connected components of M̂∗
λ. The way to compute C2(λ) is given in Algorithm
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4.

3: Number of connected components of the “extremities” of M̂∗
λ We also

can compute C3(λ) the number of connected components of the extremities of M̂∗
λ.

Here we define the extremities as a generalization of the boundary in a “manifold”
sense: Let A be a compact set in Rd one can define Ek(A) the set of its k-dimensional
extremities x ∈ A such that, there exists r0 such that B(x, r0)∩A is homeomorphic to
Hk = {(x1, . . . , xk),

∑

x2
i < 1, x1 ≥ 0}. Obviously, if A is a k dimensional manifold

then Ek(A) = ∂A.

Here, as we are interested in M̂∗
λ which is a union of (d− 1)-dimensional convex

compact polygons we propose to compute Ed−1(M̂
∗
λ) the set of its (d−1)-dimensional

extremities.
Ones again consider our example and observe that, when λ is too small the M̂∗

λ

as a lot of “extremities” that roughly counts the number of parasite branch of the
medial axis. Increasing λ we expect, this number decreases to reach a minimum value
for suitable λ then C3(λ) increases as M̂

∗
λ may have different connected components

or because “holes” in M̂∗
λ .

The way to compute C3(λ) is given in Algorithm 4.

Algorithm 4: Computation of C2(λ) and C3(λ)

Data: X = {X1, . . . , Xn} ⊂ Rd the observations, Y = {Y1, . . . , Ym} the
boundary observations Z, I and Λ the outputs of Algorithm 2 and λ
a real number

Result: C2(λ) and C3(λ)
Triangulate the estimated medial axis, initialization: T = ∅ ;
for i = 1 to size(Λ) do

if λi ≥ λ then

t =delaunayn({π(Zi), i ∈ Ii});
t = T ∪ t

end

end

G =graphtri(T ) and C2(λ) =ncc(G);
if d = 2 then

Te =extremities(T ), C3(λ) = #(Te)
else

Te =extremities(T ), Ge =graphtri(Te) and C3(λ) =ncc(Ge)
end
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Algorithm 5: Function graphtri

Data: T = {T1, . . . Tk} a list of d′ dimensional simplex, i.e
Ti ⊂ {1, . . . , N}d′+1

Result: G a graph
N is the maximum integer in T , G0 is the null N ×N matrix, n0 is the null
N vector ;
for i = 1 to k do

for j = 1 to d′ do
for k = j + 1 to d′ do

G0(Ti(j), Ti(k)) = 1; G0(Ti(k), Ti(j)) = 1; n0(Ti(j)) = 1 and
n0(Ti, k) = 1

end

end

end

Npt =
∑

i n0(i), G is the null Npt ×Npt matrix ;
i0=0;
for i = 1 to N do

if n0(i) > 0 then

i0 = i0 + 1, j0 = 0;
for j = 1 to N do

if n0(j) > 0 then
j0 = j0 + 1, G(i0, j0) = 1

end

end

end

end
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Algorithm 6: Function extremities

Data: T = {T1, . . . Tk} a list of d′ dimensional simplices, i.e
Ti ⊂ {1, . . . , N}d′+1

Result: T ′ the list of d′ − 1 dimensional extremity simplices
T ′′ = ∅, nb = ∅ ;
for i = 1 to k do

for j = 1 to d′ do
t = {Ti(1), . . . , Ti(j − 1), Ti(j + 1), . . . , Ti(d

′ + 1)}; if t ∈ T ′ then
find j such that t = T ′

j , nb(j) := nb(j) + 1

else
T ′′ := T ′′ ∪ {t}, nb = (nb, 1)

end

end

end

T ′ = ∅ for i = 1 to #(T”) do
if nb(i) = 1 then

T ′ = T ′ ∪ {T ′′(j)}
end

end
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4: Estimation of the density. The previous algorithm provides Λ, the list of
the different values for λ as output. We can see the points of Λ as the results of
the mixture of two laws, one containing the small values (parasite branches) and the
other one containing the largest values (stable part of the medial axis). Here we
have no a priori idea of the proportion in each part of the mixture and the outliers
detection approach is no more convenient. We propose to estimate the density of the
λ (in the simulation part we used a Kernel density estimator with the Sheater and
Jones [26] procedure for the bandwidth selection that exists in main programming
languages : this bandwidth is the default one in matlab function ksdensity and can
be obtain with hsj function in python). If a multi-modality is observed one can guess
that a suitable value for λ is located near a local minima of the density.

This is clearly the indicator that is the less motivated but, as illustrated by
Figure 10 it gives some accurate results (in this Figure one can observe that the most
significant local minima of the density is located for λ ∼ 0.04 that is a satisfying
value for the estimation of the medial axis).
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Figure 10: Estimated density of on Λ

3.4 Some simulations

The aim of this simulation section is first to illustrate the convergence of the proposed
estimator theoretically obtained, and second to observe how behave the different in-
dicators that has been proposed to help the user in choosing a suitable λ parameter.
This second points being, in our opinion, the most important one. Indeed there ex-
ists other medial axis estimator and ours is closely related to them. It is so expected
to behave as other ones and the novelty is in the theoretical study of the estimator
based on a boundary estimation. But, up to our knowledge, there exits no way to
help in choosing the smoothing parameter which is our main contribution.
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First we present some results related to the manifold estimation. In the three
first examples Y is drawn on M ⊂ Rd then we observe X = Y + 0.5U where U is
uniformly drawn on the d-dimensional unit ball.

a. d = 2 and M is the unit circle in R2, see Figure 11. Since n = 500 we
can observe that the density, the number of connected components and the
number of the connected components of the extremities has a local associated
to a small reconstruction error. The choice of the larger λ such that the two
numbers of connected components are in a local minima then provide a medial
axis estimation that is close to the initial circle. For smaller values of n we have
not reach the convergence. When n = 100 the procedure fails in recognize the
boundary, when n = 200 the choice of a suitable λ according to the number of
connected components of the extremities provides almost good results expect
that there exists a residual part of the outer medial axis.

b. d = 3 andM is a trefoil knot (which is a 1-dimensional manifold), see Figure 12.
Since n = 5.103 we start to observe local minima in the numbers of connected
components and a second mode apparition in the density. Unfortunately if the
different values are quite close they are not located at the same place before
n = 2.104. Nevertheless we chose to select λ such that the sum of the connected
components is locally minimum that gives correct medial axis estimation since
n = 5.103.

c. d = 3 and M is a Moebus ring (which is a 2-dimensional manifold), see Figure
13. The analyze of the different indicators that help in choosing λ is similar
to the trefoil knot case. The difference here is that the medial axis estimator
only gives correct results since n = 2.104.

We also test our program on different images that do not satisfy the regularity
assumption. For such images the choice of the λ parameter is more difficult. It start
to be “easy” for sample size much larger than the one of the disk of Figure 11 and most
of the time we have to neglect one of the indicators. The bird image Figure 14. We
have chosen λ close to the first local minima of the number of connected components.
This number is also a local minima of the number of connected components of the
extremities (or has a small associated number). Its only correspond to a local minima
of the density for sample sizes n ≥ 5000. and it is always associated to a quite large
reconstruction error (due to the sharpness of the wings). The leaf image in Figure
?? example is more or less similar to the bird one. It is a bit easier because angles
are more soft.
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Figure 11: Data drawn on a B(O, 1.5) \ B(O, 0.5). Each column correspond to a
sample size. For each sample size we plot the density estimator computed on Λ (the
red vertical lines are the tested values for λ), the reconstruction error function C1,
the number of connected component of the estimated medial axis function C2 and the
number of connected components of the extremities of the estimated medial axis C3.
The chosen λ is indicated then we plot the data sample, the boundary observations
are highlighted in black, and the medial axis graph is plotted.

4 Future Work

Some various questions are still open, specially dealing with the manifold estimation
problem. Recall that there exists a random variable Y whose distribution is sup-
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Figure 12: Data drawn on a noised Trefoil knot. Each column correspond to a
sample size. For each sample size we plot the density estimator computed on Λ (the
red vertical lines are the tested values for λ), the reconstruction error function C1,
the number of connected component of the estimated medial axis function C2 and
the number of connected components of the extremities of the estimated medial axis
C3. The chosen λ is indicated. The data is plotted. The last graph is the medial
axis estimator for the chosen λ

ported by M a d′-dimensional sub-manifold of Rd and we observe X = Y + U with
U |Y = y that has a support B(y, ρy). We have seen that, when ρy is constant and in-
ferior to a regularity measure then we had M({z ∈ Rd, ∃y ∈ M, ||z− y|| ≤ ρy} = M .
We expect that we can allow smooth variation of ρy and still have this good property
that can be assimilated to the fact that M is identifiable. We are yet almost sure
that when d = 2 the K−Lipschitz continuity (with K < 1) of ρy allows such a good
property. We also wonder if we can find a optimal method (with the rate obtained
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Figure 13: Data drawn on a noised Moebus ring.

in [17]) running preliminary a medial axis algorithm, that allows to estimate d′ then,
use the knowledge of d′ to obtain a optimal method when d′ < d− 1.
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