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Uncertainty management of situations in a housing
use context

Cedric DEFFO SIKOUNMO
Univ. Savoie Mont Blanc
LISTIC, F-74000 Annecy, France
Email: cedric.deffo-sikounmo @univ-smb.fr

Abstract—This paper proposes a new contribution to manage
uncertainty in the context of a situation recognition. It gives
an application to the measurement of housing use situations. It
extends a previous communication that proposes an ontological
based model of situations. In this model, a situation is a
set of entities linked by relationships themselves determined
using sensors. However, such model doesn’t allow to manage
uncertainty. In order to take into account an uncertainty related
to the identification of some entities, we propose to model the
set of possible eligible entities, called the universe of discourse,
by an anonymous instance in the ontology. This anonymous
instance is linked with a ‘‘same as” relationships with all possible
eligible entities. In addition, we propose to complete this model
by the association of a mass with each “same as” relationship.
This paper presents a probabilistic semantic to these masses. A
simple didactic example on a housing use situations measurement
illustrates the presented approach.

I. INTRODUCTION

The Tot field sees the raise of sensible objects that are
able to perceive their close environment. By the way, in a
community of sensible objects, any object might be able to
perceive the other close objects or more generally any physical
or biological entity close to it. As a projection of the global
state of the entity community on a subset of entities, a situation
gives a higher vision of a given environment. In this paper, we
focus on the recognition of situations in a housing use context.
In this case the biological entities are peoples, children or
pets and the physical objects are furniture units and household
appliances. The sensible objects are then intelligent connected
furniture units [1] and connected appliances. The goal of the
situation recognition in a housing use context is to identify the
human uses of the house in order to improve their day-to-day
experience. The application fields of the presented study are
the assistance to people not only for comfort but also for home
support of elderly persons and disabled persons. Indeed, the
dynamic identification of human uses allows to detect changes
in daily routines as it appends when an underlying medical or
health issue appears.

In a previous study, we presented the advantage of repre-
senting the global state of the entity community with a factual
ontology [2]. With this approach, a situation is considered
to be realized when the ontology that defines this situation
is aligned with the factual ontology. In other words, it is
realized if one or more instances of this situation definition
exists in the factual ontology that describes the global state.
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This approach supposes that the facts that define the global
state are perfectly known. But in a context of a community
of objects including sensible objects, some facts are deduced
from objects perceptions and are rarely perfectly known.
Indeed, as a fact is deduced from measurement results given by
low cost sensors. In this case the uncertainty introduced by the
measurement is significant. The identification of the situation
is provided by a fusion process that uses these measurement
results as inputs. Therefore the management of uncertainty is
a critical point in the situation identification process.

The final goal of the study presented in this paper is to
produce an information on the uncertainty on the realization
of a situation. A first chapter will remind the concept of on-
tologies and its application to the definition of situations then
its application to the identification of the realized situations. A
second chapter will present the limits of the usual approaches
used to consider uncertainty in the factual ontologies. The
third chapter is devoted to the presentation of our approach
including the method to represent a universe of discourse on
the factual ontology and the method to model the uncertainty
according several theories.

II. SITUATION IN A HOUSING USE CONTEXT

Let us define an environment made of humans and of
household objects including smart connected furniture units.
Let us note the various entities describing or influencing the
different states of our environment. As an example, a living
room can be chosen as a context for the environment. In the
same example, the room can be made up of a sofa, chairs, a
coffee table, a TV cabinet, a television and living occupants.
We remind that the intelligent connected furniture units are
sensible objects that hold embedded sensors: the sofa and
the chairs may have sensors that allow them to detect if a
human sit on them or that allow to perceive the proximity
of other objects or of humans. It is also assumed that the
sofa dialog with the coffee table itself in communication with
the television, which allows an occupant to manage the TV
from the sofa. Let admit that the following states can be
detected: "occupants watch a movie", "an occupant sits on
the couch”, "an occupant is watching TV", "occupants are
discussing”. From the above, we can describe our environment
as a community of actors of various natures who interact. We
first propose to split the actor category into the human category



and the object category. The object category generalizes the
smart connected object category that generalizes the smart
connected furniture unit category. To find the best way to
represent the knowledge of our environment, we need a
representation that must be structured, portable, scalable and
dynamic while keeping the semantics that corresponds to the
environment. To perform this representation we choose the
ontologies that already apply in different fields of research
namely: knowledge engineering, automatic natural language
processing, cooperative information systems and many others.

A. Ontology

The notion of ontology associated with the artificial intel-
ligence appeared early 1990s. The most cited definition is
the Gruber’s one [3], he defines an ontology as "an explicit
specification of a conceptualization". A conceptualization is
a common vision of an object of the real world that can be
physical or abstract. In 1997, the definition given by [4] is
more refined and specifies that the conceptualization must be
shared. Conceptualization should express a shared vision of the
described object. Therefore that can easily be interpreted by
software. The years after present an ontology as the result of
a modeling by emphasizing the characterization of primitives
for the representation of knowledge. Finally, in [5], Bouquet et
al give the following definition: "Ontologies are shared models
of a domain that encode a view which is common to a set of
different parties". The various and complementary views of
these definitions can be noted. Thus, an ontology defines a
common and shared vocabulary for a particular domain. This
allows communication between agents. The ontologies are
designed to facilitate the exchange and reuse of vocabularies.

Hence, the parts of an ontology are:

o classes modeling the entities of the real world. These
classes named concepts can be organized hierarchically
by a subsomption relation named inheritance. Human,
furniture unit or TV are examples of classes.

« Properties expressing relations and interactions between
classes or describing class attributes.

o Axioms formalizing verified interactions of the real
world. Example : (Woman = Person) and (Sex =
Female) .

« Individuals representing the concrete concept instances.
Example: (Paul is_instance_of Person).

In addition, an ontology must satisfy the principles of
clarity, objectivity, completeness, consistency, extensibility and
modularity as described in [6]. A language must be adopted
to describe the ontologies in a homogeneous way. The most
common one are currently RDFS and OWL (Web Ontology
Language) [7]. In [8], the authors briefly describe the evolution
of these descriptive languages until the completion of the OWL
languages family.

B. Situation recognition

In this study, a situation is defined as a state of a given set of
physical or biological entities called “actors of the situation”.
A situation has an abstract view that we call the reference

situation. The situation recognition is then the identification
of a realization of the reference situation in the real world.

1) Reference situation: In [2], a reference situation is then
defined by the actor types (called concepts), and by a set of
relations between these concepts.

2) Realized situation: A realized situation is the instance
of a reference situation. It’s a state involving a limited set of
actors. In other words, it’s a state involving the actors defined
in the reference situation. A situation is identified as realized
if the factual ontology includes the instances of the concepts
and of the relationships that define the reference situation.

Thus, the truth level of the realization of a situation directly
depends on the truth level of the relationships defined in the
reference situation. As the thruth level of the relationships is
given by the measurement performed by the sensible objects, it
may hold an uncertainty that must be managed in the ontology.

III. A SHORT RESUME OF UNCERTAINTY MANAGEMENT
ON ONTOLOGIES

A. Uncertainty management

Given a smart connected furniture unit embedding sensors
of different natures, these sensors send various information
on quantities like temperature, pressure, vibration, location.
However, the reliability of this information is not always
assured. The imperfections of the information can be:

o ambiguity when the returned information doesn’t enable

to distinguish two different states,

« noise that holds a non-pertinent part of the information,

« bias that reflects the unknown of potential information

sources,

o incompleteness when some information is missing,

e inaccuracy,

e uncertainty,

« inconsistency,

o redundancy.

In order to consider these imperfections, at least the un-
certainty must be managed on the representation introduced
section II-A.

B. Uncertainty management on ontologies

Regarding the advance of domains such as data acquisi-
tion and information fusion, it was necessary to find ways
to associate the logical uncertainty management formalisms
with the knowledge representation methods. Indeed, there
are several formalisms to manage incomplete information as
well as information related uncertainty. Some studies aimed
at extending the OWL language and the description logic
to the mathematical formalisms supporting uncertainty. This
is reflected in the advent of languages such as: PR-OWL,
FuzzyOWL, BayesOWL. See for example [9] for a survey on
the methods and languages. In the literature, the probability
theory is the most used for the uncertainty management. In
2006, Da Costa [10] proposed a first version for PR-OWL: a
probabilistic generalization of the OWL language. In PR-OWL
the semantics is based on Multi- Entity Bayesian Networks
(MEBN) [11]. The MEBN are made of fragments denoted



Mfrags that represent the probable information related to a
set of random variables. However, this version specifically
focuses on the MEBN semantics. Hence the proposal of PR-
OWL2 in [12] which places more emphasis on expressiveness
and on OWL semantics. The PR-OWL approach is to create
a meta-ontology where uncertain concepts are defined with
superclasses. In the same context, we can find BayesOWL
[13]. This kind of ontology, based on Bayesian networks,
gives a solution to combine knowledge with observations
and a statistic learning theory. BayesOWL gives a set of
rules and processes to simplify the migration from OWL to
RBs while maintaining the semantics expressed on the initial
ontology. Finally, FuzzyOWL presented in [14] are ontologies
based on the fuzzy subset theory with an extension to the
description logic named fuzzyDL. In this case, each concept
of the ontology is associated to a “fuzzy concept”. Properties
and axioms are also respectively associated to their respective
fuzzy versions.

C. Why a new proposal?

The advantages of these ontology languages lies in their
ability to reason. Indeed, the theories of mathematical logics
on which they are based have proved their advance in the
field of modeling, representation and uncertainty management.
These studies try to make classes and concepts uncertain but
in our approach the concept ontology is stable and only its
instances, the factual ontologies, are subject to the uncertainty.
Indeed, in our approach the facts are permanently moving
and the factual ontology reflects our knowledge on these facts
including the uncertainty on the facts truth.

IV. A NEW PROPOSAL

In the field of description logics, knowledge modelling
of a domain is performed on two levels. The first level
corresponds to the TBox statement that describes the domain
general knowledge. The second level corresponds to the ABox
statement, also called factual level, that represents a fact,
a kind of "instance" related of one configuration. A TBox
component includes definition of concepts and roles, and an
ABox component describes each individuals by naming them
and specifying assertions on individuals that are named using
concepts and roles. Several ABox can be associated with a
same TBox; each ABox represents a configuration based on a
set of individuals and uses concepts and roles included in the
TBox. In this paper, we propose to introduce uncertainty. In
our case, the uncertainty comes from the measurements. Mea-
sures are instanced and therefore are modeled inside ABox.
This section describes our proposal to model uncertainty into
ABox.

A. Problem definition

As shown in section 1, a furniture environment is described
by a factual ontology. This ontology describes both static
knowledge and dynamic one. Our goal is to retrieve realized
situations of our environment and to associate a truth level to
each realized situation. According to this goal, the uncertainty
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Fig. 1. This figure presents a concept ontology (named Tbox), a factual
ontology (named Abox or instance ontology) and the rdf : type relation that
links them. In this factual ontology, we can recognize a situation where a
human is sitting on a chair.

Is_a

Chair

management has to be applied on this ontology based repre-
sentation. Before defining any meaning for this truth level we
will simply call it mass. Depending on the theory chosen to
model the uncertainty, the mass will represent for example a
probability, a possibility or a belief mass.

A situation corresponds to a graph where relations corre-
sponds to services given by nodes. Nodes represent a piece
of furniture or other objects that constitute our environment.
For example, suppose that the presence of two humans and a
chair is detected in a room. Sensors equip chair allowing it to
deliver its state: human is on itself, or is not. Fig. 1 illustrates
the ontology of such environment. Suppose that a chair detects
that a human is sit on it. On one hand, we want to know which
human is sitting on it. More precisely, we want to know the
mass associated to the situation "a human is sitting on" for
each human candidate. On the other hand, the situation "a
human is sitting on" can be uncertainty too. This uncertainty
is also represented by another mass. In our precedent work
[2], we proposed a model for the representation of situations.
But this model does not take into account uncertainty.

B. Representing a universe of discourse in a factual ontology

The preliminary action to take uncertainty into account is
to define the so called universe of discourse that specifies the
set of eligible candidates. Fig. 1 illustrates that Human_1
is sitting on chair_1 and represents a certain knowledge. In
the real case, the only certain knowledge is that Human_1
and Human_2 are possibly sitting on Chair_1. We need
to express in the one hand that a human is sitting on
Chair_1. In the other hand that Human_1 and Human_2
are candidates. To express the first need, we propose to use
the sitting_on relation to link an anonymous instance with
Chairy as illustrated in fig. 2. At this step, no individual fits
to the anonymous instance. We just modeled on the factual
ontology the fact “something is sitting on Chair_1”. To
express the set of candidate individuals, we propose to use
the owl:sameAs relation to link the anonymous instance to
all candidate individuals as shown in fig. 3. The universe of
discourse we propose is then made of all owl : sameAs
relationships related to the same anonymous instance. As such
knowledge is produced by sensor measurements, the universe



of discourse is expressed on the factual ontology (i.e. the
ABox).

This universe of discourse can be formalized using a RDF
format triplets:

< Inst; rdf : type Concept’, Relationy, Inst; rdf : type
Concept! >

where rdf : type is the RDF relation that links an instance
to its concept.

This triplet expresses that:

o Inst; is an instance of Concept?,

e Inst; is linked to Inst; throw the relationship

Relationy,,
e Inst; is an instance of Concept .

An anonymous instance without type, as shown in fig. 3 is
represented by (_:7).

An anonymous instance with a type, as shown in fig. 4 is
represented by (_:? rdf : type Concept?).

Let’s considering example introduced in section I and the
corresponding ontology is presented in fig. 1 to illustrate the
of universe of discourse usage. When Chair_1 indicates that
sitting_on is an active relationships, the ontology illustrated
in fig. 1 becomes the ontology illustrated in fig. 2. Note that
an anonymous instance appeared and is linked to the instance
Chair_1 using the sitting_on relationship. From this step,
the anonymous instance has no type.

The universe of discourse corresponding to the expression
of this knowledge is limited to a single RDF triplet and its
negation that expresses “no Human is sitting on Chair_1":

O ={
< _ 7, sitting_on, Chair_lrdf : typeChair >,
< _ 7, sitting_on, Chair_lrdf : type Chair >}

(1)

However, we consider that any instance of ontology is can-
didate to be the real instance corresponding to the anonymous
instance. In our example, Human_1, Human_2, Object_1
and Chair_1 are candidates. As the sitting_on relation is
not reflexive, Chair_1 is dropped from the candidates list.
The Fig. 3 illustrates this.

The corresponding universe of discourse is:

Qo =1

< _:?, owl : sameAs, Human_1 rdf : type Human >,
< _:7, owl : sameAs, Human_2 rdf : type Human >,
< _:7, owl : sameAs, Object_1 rdf : type Object >}

2)

To illustrate another example of universe of discourse usage,
we consider the same previous example except that the type
of the anonymous instance is known: anonymous instance is a
Human type. In this case, any instance of ontology restricted

to the anonymous instance type is candidate to be the real
instance corresponding to the anonymous instance. In this
example, Human_1 and Human_2 are candidate. Fig 4
illustrates this. The corresponding universe of discourse is:

Q2Human = {
< _:7, owl : sameAs, Human_1 rdf : type Human >,
< _:?, owl : sameAs, Human_2 rdf : type Human >}

3)

sitting_on

4{ Object }4—{ Furniture_unit ‘

k A

Fig. 2. An anonymous instance is used in the factual ontology to represent
the fact that something is sitting on the chair chair_1.

sameAs

Human_1
“"F
A opect 1

Fig. 3. We propose to use the sameAs relationship to define the set of all
instances that possibly be the anonymous instance. This example modelizes
the fact that either Human_1, Human_2 or Object_1 are possibly sitting
on Chair_1

sitting_on

-

C. The uncertainty model

We propose to use mass to express uncertainty on a
knowledge. The wanted result is a set of candidate entities
associated with mass for each of them. Each candidate entity
can be the real instance corresponding to the anonymous
instance. This link is associated with a given mass. In order to
model uncertainty into ontology representation, we propose to
associate a mass to the owl : sameAs relationship. According
to the sources of information, the masses are distributed or
rearranged on the related universe of discourse.

Fig 5 illustrates this example.
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Fig. 4. Known relationships on the anonymous instance act as constraints
that must be respected when the alignment is performed. In our example, the
ABox expresses the fact that the actor sitting on C'hair_1 is a Human and
Object_1 is not of Human type so it is no more a possible candidate for

the identification of the anonymous instance.
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Fig. 5. The owl : sameAs relationships related to a same anonymous node
hold the mass that will represent the uncertainty on the indetification of the
human that is sitting on the chair.

D. Managing uncertainty on a factual ontology

Modeling uncertainty using mass does not include semantic.
So, in the first subsection below, we present a probabilistic
approach to manipulate the masses; this is traditional approach
Then, in the second subsection, we present a possibilistic
approach. To facilitate understanding for the reader, we use
the same previous example illustrated in fig 5.

From this examples, the following events can be deduced:

e E1 = “a Human is sitting on Chair_1";

e E2 =“Human_1 is sitting on Chair_1";

e E3 =“Human_2 is sitting on Chair_1".

At this step of the paper, we already presented the most
inovative part, i.e. the knowledge split and the inclusion of the
corresponding universes of discourse on the factual ontology.
The refinement of the uncertainty management is now quite
simple and is detailed below.

1) Probabilistic representation of uncertainty: In the prob-
abilistic modeling, the mass represents the probability of an
event. If all possible exclusive events are represented, the sum
of each event probability is equal to 1. In the other case, this
sum is less than 1.

According that P(F) is the probability that an event F
occurred, and with respect of the RDF format, P(FE1), P(E2)
and P(E3) are defined as follow.

P(E1) = P(< _:?, sittingOn, Chair_1 >)
P(E2) = P(< Human_1, sittingOn, Chair_1 >)
P(E3) = P(< Human_2, sittingOn, Chair_1 >)

According that

P(E1) = 1 — P(E1) is the probability of the event “no
Human is sitting on C'hair_1".

Whe have:

P(E2) = P(< Human_1, sittingOn, Chair_1 >)
= P(< _:?, sittingOn, Chair_1 >
N < Human_1,owl : sameAs, _:7 >)
= P(< _:?, sittingOn, Chair_1 >)
.P(< Human_1,owl : sameAs,_:7 >)

4)
and
P(E3) = P(< Human_2, sittingOn, Chair_1 >) =
P(< _:?, sittingOn, Chair_1 >
N < Human_2,owl : sameAs, _:?7 >) =
P(< _:?, sittingOn, Chair_1 >)
.P(< Human_2,owl : sameAs,_ 7 >)
(5)

The most important point to presented here concerns the
decomposition of the event “Human_X is sitting on Chair_1"
into the 2 events “a human is sitting on Chair_1" and “the
human sitting on Chair_1 is Human_X".

Without external knowledge about Human_1 or
Human_2, for example the probability of their presence
in the room, the probabilities on the owl sameAs
relationships P(< Human_2,owl : sameAs,_ :? >) and
P(< Human_2,owl : sameAs, _:7 >) are equals.

In the general case, the ignorance is modeled by a uniform
ditribution of the unitary probability over the universe of
discourse.

2) Possibilistic representation of uncertainty: In the possi-
bility modeling, masses are representing the possibility that an
event occurred. The supremium of the possibilities of exclusive
events is equal to 1. Note that a 0 value for possibility
means the impossibility for an event to occur and is already
modeled in our approach by no presence of the corresponding
relationship. So, for any event E modeled in the factual
ontology, the possibility II(E) respects 0 < II(E) < 1.

According that II(E) is the possibility that an event E
occurred, and with respect of the RDF format, II(E1), II(E2)
and TI(E3) are defined from the same example than before.

II(E1) =II(< _:?, sittingOn, Chair_1 >)
II(E2) = II(< Human_1, sittingOn, Chair_1 >)
II(E3) = (< Human_2, sittingOn, Chair_1 >)



Whe have:

II(E2) = II(< Human_1, sittingOn, Chair_1 >)
=TI(< _:?, sittingOn, Chair_1 >
N < Human_1,owl : sameAs, _:7 >)
= min(II(< _:?, sittingOn, Chair_1 >),
II(< Human_1,owl : sameAs,_:7 >))

(6)
and
II(E3) = P(< Human_2, sittingOn, Chair_1 >)
=II(< _:7, sittingOn, Chair_1 >
N < Human_2, owl : sameAs, _:7 >)
= min(II(< _:?, sittingOn, Chair_1 >),
II(< Human_2, owl : sameAs, _:7 >))
(7

Without other knowledge about Human_1 or Human_2
i.e. possibility of their presence in the room, the possibil-
ity on owl : sameAs relationship II(< Human_2, owl
sameAs,_ :7 >) and II(< Human_2,owl : sameAs,_ :
? >) are equal to 1.

V. CONCLUSION

The main contribution of this paper is a new proposal to
model the universe of discourse on factual ontologies in order
to express the uncertainty coming from the measurements
performed by sensible objects. The introduction of an anony-
mous instance to help modeling the universes of discourse
is an elegant solution that preserves the original ontology
and prevents from the augmentation of its complexity. The
proposed approach can be refined to use the usual uncertainty
management approaches. The refinements with the probability
theory and with the possibility theory are presented in the
paper. The application of the evidence theory will be presented
later.

The proposed approach helps to model complex interactions
between smart connected objects and gives a good support
for the identification of situations involving many actors.
The significant level of uncertainty produced by the sensi-
ble furniture units is now managed in our ontology based
model. Indeed the fusion process is able to propagate the
given uncertainty in order to identify the situations. Actually
the proposed ontological model lays the groundwork of an
ambient intelligence that allows us to supervise the evolution
of daily routines in order to prevent the consequences of
underlying medical or health issues.

Future studies will consist in further expressing various
uncertainties, especially when information is provided from
several instanced entities, creating a multi-source context.
These sources of information can deliver various uncertainty
information, that could be contradictory. Evidence theory is
an appropriate candidate to manage this kind of information
in order to facilitate decision process.
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