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Using benzene-diamine and benzene-dithiol molecular junctions as benchmarks, we investigate
the widespread analysis of the quantum transport conductance G(ε) in terms of the projected den-
sity of states (PDOS) onto molecular orbitals (MOs). We first consider two different methods for
identifying the relevant MOs: 1) diagonalization of the Hamiltonian of the isolated molecule, and
2) diagonalization of a submatrix of the junction Hamiltonian constructed by considering only basis
elements localized on the molecule. We find that these two methods can lead to substantially differ-
ent MOs and hence PDOS. Furthermore, within Method 1, the PDOS can differ depending on the
isolated molecule chosen to represent the molecular junction (e.g. benzene-dithiol or -dithiolate);
and, within Method 2, the PDOS depends on the chosen basis set. We show that these differences
can be critical when the PDOS is used to provide an physical interpretation of the conductance
(especially, when it has small values as it happens typically at zero bias). In this work, we propose
a new approach trying to reconcile the two traditional methods. Though some improvements are
achieved, the main problems are still unsolved. Our results raise more general questions and doubts
on a PDOS-based analysis of the conductance.
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INTRODUCTION

According to Moore’s law, in a decade or so the
downscaling of conventional silicon based electronics will
achieve its ultimate nanoscale limits. Molecular electron-
ics, or electronics at the nanoscale, is considered one of
the most difficult technological challenges. The construc-
tion, measurement and understanding of electronic de-
vices constituted by single molecules in between metal
electrodes, is nowadays a major concern of fundamental
research.

Today, different techniques are available to realize
molecular junctions in laboratories, such as electromi-

gration methods, mechanical strain and scanning tun-
neling microscopes to open small gaps in between gold
leads which can host (with a small but non-negligible
probability) single molecules from a wetting solution1–3.
The complete characterization of such junctions (includ-
ing the measurement of their current-voltage character-
istics) is however still difficult to achieve. In order to
obtain reliable single-molecule zero-bias conductances, it
was suggested to resort to a statistically significant sam-
ple of tens of thousands measurements4. Thanks to this
breakthrough work, it is now possible to quote the 0-
bias conductance of some molecular junctions such as
benzene-diamine (BDA) and benzene-dithiol (BDT) in
between gold leads. Nevertheless, important character-
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ization uncertainties still persist. For instance, in these
experiments the junction geometry is not measured and
hence unknown. Given these difficulties, resorting to the-
ory could reveal a valid approach to understand and in-
terpret the experimental observations.

The theoretical description of the electronic quan-
tum transport in molecular junctions or nanostruc-
tures relies on established frameworks5,6 like the Kubo-
Greenwood7,8 or the Landauer9 formalisms, or the non-
equilibrium Green’s function theory10–12. In the last
two decades, the combination of these formalisms with
density-functional theory (DFT) or many-body pertur-
bation (MBPT) theory allowed to establish ab initio ap-
proaches to quantum transport. The DFT-Landauer
framework is one of the most popular. It has proven
successful in calculating zero-bias conductances in good
agreement with the experiment in some systems like
the hydrogen molecule in between platinum wires13.
In other systems, like organic molecule junctions, the
DFT-Landauer estimate can be several orders of mag-
nitude larger than the experiment1,14. Several solutions
have been proposed to alleviate this discrepancy as by
self-interaction corrections15,16, hybrid mixed Hartree-
Fock approaches17, many-body model18–21 or ab ini-
tio GW corrections22,23, arising in a not yet solved
controversy24–32.

Besides calculating or measuring, a physical interpre-
tation of the conductance is needed. At the end, we
would like a complete picture of the mechanisms gov-
erning quantum transport in order to fully understand
the behavior of the molecular junction as an electronic
device. To this end, it is important to establish a re-
lationship between the conductance and the electronic
structure, for example determining the main ingredients
influencing the absolute value of the zero-bias conduc-
tance A very common approach for providing such an
interpretation proceeds as follows. A set of molecular or-
bitals (MOs) associated to the central molecule are iden-
tified and classified according to the energy levels, e.g.
the highest occupied molecular orbital (HOMO), or the
lowest unoccupied molecular orbital (LUMO), or the next
one (LUMO+1), etc. Then, the total electronic density
of states (DOS) is decomposed into the projected den-
sity of states (PDOS) associated to each different MO.
Finally, by directly comparing the conductance profile
G(ε) with the various PDOS, one tries to establish a cor-
respondence between conductance features and MOs. In
particular, one tries to understand which MO has the
largest influence on the zero-bias conductance.

The purpose of this work is to investigate how mean-
ingful (or on the contrary misleading) this analysis is.
How reliable are the interpretations that one can get?
How pertinent is it to a correct understanding of the
behavior of the system? We analyze two common bench-
marks, the above mentioned molecular junctions of BDA
and BDT in between gold leads in order to answer these
questions and solve the problems evidenced in traditional
methodologies. In particular, we propose a new method

to identify MOs and the associated PDOS which clearly
goes in this direction, though further work is still re-
quired. Though the findings of this work may seem quite
theoretical at first sight, they will have an important im-
pact in the experimental community. Indeed, theoretical
analysis of quantum transport is often used for interpret-
ing the measurements, predicting trends (for example, for
the sign of the thermopower), for obtaining independent
arguments, or checking the validity of the experimental
work.

The paper is organized as follows: Sec. I introduces
quantum transport ab initio theory, together with the
definitions of all the relevant quantities and the two tra-
ditional methods to identify MOs and PDOS. In Sec. II
and III, we present the results for the BDA and BDT
molecular junctions, respectively. Sec. IV is devoted to
the presentation of our new method and its results on
BDT. Sec. V gives a critical discussion of the physical
meaning of the interpretation provided by the traditional
methods and our new one.

I. THEORY: MOLECULAR ORBITALS, PDOS
AND CONDUCTANCE

In the DFT-Landauer framework, the molecular junc-
tion is modeled by a central region (C) connected to two
semi-infinite leads (left L and right R). Its conductance
G(ε) as a function of the energy ε of the injected electrons
is given by the Landauer formula:

G(ε) =
2e2

h
M(ε)T (ε) =

2e2

h
tr[ΓL(ε)Gr

C(ε)ΓR(ε)Ga
C(ε)].

M(ε) is the number of modes at a given energy ε. T (ε) is
their transmittance. ΓL/R(ε) is the left/right leads injec-

tion rate. G
r/a
C (ε) is the retarded/advanced Green func-

tion for the central region. The quantities G
r/a
C (ε) and

ΓL/R(ε) can be obtained from the DFT electronic struc-
ture [i.e. the energies εn and wavefunctions φn(r)] of the
central region containing an “extended molecule” and of
the leads (treated as infinite periodic solids), respectively.
The central extended molecule actually consists of the
molecule itself plus some layers actually belonging to the
leads. The number of included layers (typically 3 or 4)
should account for the relaxation of both the atomic and
the electronic structures of the junction. The value as-
sumed by G(ε) at the Fermi energy εF (which will be set
to 0 in the following), G(ε=εF =0), is an observable that
can be directly measured in experiments and referred to
as the zero-bias conductance.

The junction conductance depends on the nature and
the shape of the leads, the geometric/atomic structure of
the molecule-lead contact, and the molecule itself. Ex-
periments and calculations very often only consider gold
for the leads, so that these can be considered a constant
ingredient. In contrast, the geometry of the molecule-
lead contact may vary quite a lot, but in many cases
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it is not known and furthermore it cannot be controlled
experimentally. In practice, experiments only measure
conductances averaged over the different possible geome-
tries. In the end, the main factor influencing the junction
conductance is the central molecule. Therefore, there is
quite a lot of interest on how the conductance changes
by varying the chemical composition or the atomic struc-
ture of the central molecule. Furthermore, by looking at
the generic representation of the molecular junction, the
central molecule appears as a “bottleneck” to the stream
of electrons flowing from one lead to the other. For this
reason, it is believed that the molecule itself and its elec-
tronic structure has a deep influence on the conductance.

The interpretation of the conductance profile G(ε) or
of the zero-bias conductance G(0) is often carried out by
referring to the projected density-of-states onto molecu-
lar orbitals (see next Section). Traditionally, these are
identified using two methods that will be detailed later.

A. Interpretation of the conductance by the PDOS

Supposing that a set {m} of molecular orbitals with
wavefunctions φMO

m (r) have been identified, the projected
density of states, ρm(ε), on the molecular orbital m is
defined as

ρm(ε) =
∑
n

〈φMO
m |φn〉δ(ε− εn), (1)

where n runs over all the states of the central extended
molecule with wavefunction φn(r) and energy εn. In
Eq. (1), the Dirac delta function is usually replaced by a
Gaussian function with a given broadening.

As discussed above, G(ε) is fundamentally determined
by the electronic structure of the central extended
molecule. In particular, the DOS ρ(ε)=

∑
n δ(ε − εn)

should play a major role. For instance, the conductance
will be zero where the number of modes M(ε)=0, and so
will be the density-of-states. Hence, it is quite natural
to interpret the conductance with the help of the DOS.
More specifically, it has become very common to analyze
G(ε) in terms of the different partial molecular compo-
nents which enter the full DOS, i.e. the PDOS on the
various MOs33–37. Since the energy region of interest for
the conductance is that one around the Fermi level, one
usually takes into account the molecular orbitals around
the fundamental gap, e.g. the highest occupied molecular
orbital (HOMO), the lowest unoccupied molecular orbital
(LUMO), and the next ones, the LUMO+1, LUMO+2,
HOMO-1, etc.

The analysis of the conductance in terms of the PDOS
is based on a one-to-one comparison of G(ε) with ρm(ε)
for some chosen MOs. Whenever a peak in G(ε) is in
correspondence with a peak in a ρm(ε), that molecular
orbital m is said to “drive” the peak of conductance. The
specific case of the 0-bias conductance is a bit particu-
lar. Indeed, very often, G(0) is quite small and the main

conductance peaks are several eV away. The 0-bias con-
ductance is actually interpreted as the tail of one of these
peaks. But there is some ambiguity about the MO which
will be said to drive G(0). Indeed, it can be chosen as:

i) the MO corresponding to the peak closest to the
Fermi level (ε=0)38,39;

ii) the MO presenting the highest PDOS value at ε=0,
no matter how far the PDOS maximum is from
ε=023,40,41.

B. Identification of the molecular orbitals

The molecular orbitals φMO
m (r) are the fundamental in-

gredient of the PDOS [see Eq. (1)]. As shown below, the
approach chosen for identifying the MOs strongly affects
the PDOS and the consequent interpretation of the con-
ductance spectrum. Two main methods have been used
so far in the literature for identifying MOs:

Method 1: The φMO
m (r) are chosen to be the eigenfunc-

tions of Hamiltonian of the uncontacted, gas phase,
isolated molecule41. For consistency, they are usu-
ally determined using exactly the same supercell of
the extended molecule, as in the molecular junction
calculation, and removing the atoms of the leads.

Method 2: The Hamiltonian of the extended molecule
is first expressed on a real-space localized basis
set. This can be achieved, for instance, using max-
imally localized Wannier functions (MLWFs)42.
The φMO

m (r) are then chosen as the eigenfunctions
of the submatrix constructed by considering only
basis elements localized on the molecule13.

There is no obvious reason why the MOs identified us-
ing these two different procedures should coincide. Fur-
thermore, it is not evident which method is preferred
with respect to the assumed purpose, i.e. the analysis of
the conductance. Method 1 coincides with the rigorous
definition of MOs in the chemistry sense for the isolated
molecule. However, the electronic structure of the ex-
tended molecule (taking into account charge transfer and
other modifications induced by the contact between the
molecule and the leads) is clearly much more important
with respect to the conductance profile. So that Method
2 appears more relevant for the analysis of the conduc-
tance.

Note that choosing of one of these methods does not
affect the conductance profile, provided that convergence
is reached. What actually changes is rather the PDOS
and hence the interpretation of the conductance in these
terms.

C. Computational details

Our calculations are carried out within the DFT-
Landauer framework. The exchange-correlation energy
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LUMO LUMO+1HOMO-1 HOMO

BDA (junction)!
Method 2

BDA (gas)!
Method 1

Ordering is 
inverted

FIG. 1. Electronic density isosurfaces (red) of the HOMO-1, HOMO, LUMO and LUMO+1 molecular orbitals of BDA as
obtained with the two traditional methods (see text). The ordering of the LUMO and LUMO+1 is inverted in the two
methods. The localized MOs [HOMO-1 and LUMO (gas) or LUMO+1 (junction)] look remarkably similar for both methods.
In contrast, the HOMO and LUMO in the junction present a clear bonding with the leads and thus slightly differ from the
corresponding MOs in gas-phase. Hydrogen, carbon, nitrogen and sulfur atoms are represented by white, grey, brown and green
spheres, respectively.

is approximated using the PBE functional43. We use
ABINIT44 for ground state calculations and WanT45,46

to construct Wannier functions and for conductance cal-
culations. All the results presented here are obtained by
well converged calculations, using the same convergence
parameters as in Ref. 23, which are consistent and in
agreement with the literature.

II. RESULTS FOR BENZENE-DIAMINE

A. BDA molecular orbitals

In Fig. 1, we show the molecular orbitals of BDA cal-
culated with Methods 1 and 2. They are analogous to
those found previously for instance using Method 141.
While the HOMO-1 molecular orbitals are very similar,
the HOMO show non-negligible differences: the bonding
character with the leads is more important when using
Method 2, as indicated by the more pronounced lobes on
the N atoms that point towards the gold adatoms.

We observe a close similarity between the LUMO from
Method 1 and the LUMO+1 from Method 2, like if there
were a change in the ordering of the corresponding eigen-
values between the two methods. Notice that the energy
difference between the LUMO and the LUMO+1 is ∼0.5
eV, so enough to exclude their degeneracy. Vice versa,
the LUMO+1 from Method 1 resembles the LUMO from
Method 2 but there are some small differences: the bond-
ing character with the leads is again more pronounced
when using Method 2. In fact, the corresponding den-
sity arises from a MLWF basis element which is localized
on the gold-amino bond and not clearly identifiable as
purely belonging to gold or to the molecule. In this MO

important differences are also found for the lobes on the
benzene-ring: in Method 1, the lobes are mainly on the
opposite C atoms along the molecule long axis; whereas,
in Method 2, they are on the C atoms close to the Au
adatom.

These differences will induce non-negligible differences
in the PDOS analysis, as will see in the next section.

B. PDOS and interpretation of the conductance

In Fig. 2(c), we show the conductance of BDA calcu-
lated in the Landauer-DFT framework using the PBE ap-
proximation. And, as it is usually done in literature for
providing a physical interpretation of the conductance,
we also present the PDOS as calculated using Methods
1 [Fig. 2(a)] and 2 [Fig. 2(b)]. The position and height
of the main features are in very good agreement with
previous work41.

The two PDOS look quite similar but with differences
that can be associated to the already discussed discrepan-
cies between MOs. In particular, we observe the change
in the ordering between the LUMO and the LUMO+1
from Method 1 to 2. The PDOS onto non-hybridized
MOs (HOMO-1 and LUMO/LUMO+1 in Method 1/2)
look similar, whereas the PDOS onto the HOMO and
LUMO+1/LUMO in Method 1/2 present differences, as
expected from the MO plots. Finally, the PDOS onto
HOMO-2 seems to have more weight in Method 1 than
in Method 2.

When interpreting the conductance profile, one can as-
sociate the small conductance peak at ∼1.5 eV with the
intense LUMO and LUMO+1 PDOS peaks observed re-
spectively in Methods 1 and 2. The conductance struc-
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FIG. 2. Projected density of states (a,b) and conductance
(c) of benzene-diamine (BDA). The PDOS for the different
molecular orbitals (from HOMO-2 to LUMO+1) have been
obtained with (a) Method 1 and (b) Method 2 (see text).
The insets show a zoom on the PDOS zoom around the Fermi
energy region. Notice that, in the inset of (b), the PDOS is
presented in logarithmic scale.

ture arising at energies > 0 eV with maximum at 2 eV
could be correlated to the other unoccupied molecular
orbital (LUMO+1 of BDA-gas alias LUMO of BDA-
junction), as well as the LUMO+2. The peak in the
conductance at ∼-1.5 eV could be related to the HOMO
PDOS peak at ∼-1.4 eV, and so also the structure from
-2 down to -3.8 eV. The HOMO-1 and its PDOS peak
at ∼-3.6 eV does not reflect in the conductance. How-
ever, when performing a one-to-one comparison of the
conductance with the total PDOS on the various MOs
(Fig. 3), the relationship does not look that direct, even
qualitatively.

We finally discuss the interpretation of the 0-bias con-
ductance. Following one possible interpretation scheme
very common in the literature, the zero-bias conductance
appears on the tail of the conductance peak at −1.5 eV
(HOMO), though the smallest peak at +1.5 eV (asso-

-4 -2 0 2
ε − εF [eV]

0

0.2

0.4

0.6

C
on

du
ct

an
ce

 [G
0]

BDA

-4 -2 0 2
ε − εF [eV]

0

1

2

3

4

To
ta

l P
D

O
S

Ju
nc

tio
n 

M
et

ho
d 

2

FIG. 3. Total molecular PDOS (red line) and conductance
(black line) of BDA. The total molecular PDOS is the sum
of the PDOS onto the MOs from HOMO-2 to LUMO+2 as
obtained from Method 2. Note that the PDOS onto LUMO+2
is not shown in Fig. 2.

ciated to the PDOS onto the LUMO/LUMO+1 from
Method 1/2) is equally distant. According to this in-
terpretation, the zero-bias conductance is driven by the
HOMO, though a contribution from the LUMO from
Method 1 (alias the LUMO+1 from Method 2) is ex-
pected.

These conclusions are contrasted by another approach
which rather looks at the absolute values of the PDOS
at the Fermi energy (see Fig. 2 insets showing zooms on
the Fermi energy regions). According to this scheme, the
other unoccupied MO (the LUMO+1 from Method 1,
alias the LUMO from Method 2) drives the zero-bias
conductance. In fact, both methods agree on the fact
that this MO (labeled differently) presents the largest
PDOS value at the Fermi energy. Nevertheless, its corre-
sponding PDOS value at 0 eV disagrees by one order of
magnitude: from 0.1 in Method 2 to 0.02 in Method 1.
The next MO presenting an important PDOS value at
the Fermi energy is the HOMO-2 from Method 1, with
a value even not much smaller than the LUMO+1, im-
plicating that the HOMO-2 has a certain weight on the
zero-bias conductance. However, this is the HOMO from
Method 2 with a marked gap (from 0.1 to 0.01). Both
methods agree about the HOMO PDOS absolute value
(∼0.01) at ε = 0, probably by mere coincidence given the
disagreements mentioned above.

Summarizing, when interpreting the BDA zero-bias
conductance we are in front of 3 problems: i) arbitrari-
ness in the labeling of MOs (the LUMO in Method 1
becomes the LUMO+1 in Method 2, and vice versa); ii)
dependence on the method to identify the MOs; iii) de-
pendence on the interpreting approach. Hence PDOS
analyses of G(ε = 0) are affected by some ambiguity.
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HOMO-1 LUMO+1HOMO LUMO

BDT-n
Method 2

BDT-p
Method 2

BDT (thiol)
Method 1

BDT (thiolate)
Method 1

BDT-h
Method 2

BDT (thiolate)
Method 3

FIG. 4. Electronic density isosurfaces (red) of the HOMO-1, HOMO, LUMO and LUMO+1 molecular orbitals of BDT as
obtained with the two traditional methods as well as with the new method (see text). For Method 1, the dithiol and dithiolate
molecules are considered. For Method 2, the different molecular junction geometries (BDT-n and BDT-p and BDT-h) are
examined. For Method 3, a charge of +0.5 e− was added to the dithiolate molecule in order to account for the transfer of
charge to the molecule from gold atoms in the BDT-h junction. The resulting orbitals are very similar to those obtained with
Method 2 for BDT-h. Hydrogen, carbon, nitrogen and sulfur atoms are represented by white, grey, brown and green spheres,
respectively.

III. RESULTS FOR BENZENE-DITHIOL

A. BDT molecular orbitals

We now consider a more complex case: the
benzene-dithiol (BDT) gold junction. Experimen-

tal and theoretical works concluded that the BDT-
gold junction can be stable in several different atomic
structures/geometries16,47–51. To account for different
hybridizations and bonding motifs, three geometries are
studied here: the sulfur atom of the benzene-dithiol
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molecule can adsorb to an extra gold adatom without
loosing the bound hydrogen atom (BDT-n); the benzene-
dithiol molecule can loose the hydrogen, thus becoming
benzene-dithiolate, and bind its sulfur atom to an ex-
tra gold adatom in a pyramid structure (BDT-p); or the
benzene-dithiolate can bind to 3 equidistant gold atoms
in the hollow structure (BDT-h). These geometries are
shown in Fig. 4.

In Fig. 4, we show the MOs of BDT calculated with
different methods. For Method 2, we show the molecular
orbitals obtained for the 3 different junction geometries:
BDT-n, BDT-p and BDT-h. They are very similar to
those obtained previously13, especially given the differ-
ences in the considered geometries. In Ref. 52, an alter-
native set of MOs are shown for BDT-h, obtained within
Method 2 by considering only the localized orbitals on the
benzene molecule (excluding the S atoms). For Method 1,
we depict both the cases of benzene-dithiol and benzene-
dithiolate. The latter might better represent the BDT
molecule in the BDT-p and BDT-h junctions where it
looses a hydrogen atom before binding. But this is not
so straightforward: besides the effective chemical com-
position of the molecule in the junction, other chemi-
cal/physical effects, e.g. saturation of bonds, transfer of
charge, may be considered24–27.

We start by analyzing the MOs from Method 1. The
MOs for the dithiol and dithiolate molecules present a
few similarities. The LUMO+1 are similar in shape. The
HOMO of the dithiol molecule resembles to the LUMO of
the dithiolate molecule, with an exchange of the ordering
as already seen in BDA (see previous Section). Never-
theless, other MOs strongly differ. So, identification of
MOs using Method 1 strongly depends on the molecule
(dithiol vs. dithiolate).

Now we analyze the MOs obtained with Method 2.
We focus on BDT-p, the junction in which the inter-
pretation of conductance using the PDOS is the most
critical of all the cases considered here, as will be seen
later. The LUMO+1 from Method 2 looks very similar
to the LUMO+1 from Method 1 for both the dithiol and
dithiolate molecules, though with differences on the sul-
fur atom. The LUMO from Method 2 corresponds to
the LUMO from Method 1 for the dithiol molecule, but
it has no correspondence to any MO from Method 1 for
the dithiolate molecule. On the other hand, the HOMO
from Method 2 is similar to the HOMO from Method
1 for the dithiolate molecule, but it differs from all MOs
from Method 1 for the dithiol molecule. Finally, the MOs
which look closer to the HOMO-1 from Method 2 are the
HOMO from Method 1 for the dithiol molecule and the
LUMO from Method 1 for the dithiolate molecule.

From the above discussion, it appears that no one-to-
one correspondence can be established between the MOs
obtained with the two methods nor between the MOs
from Method 1 both for the dithiol and dithiolate isolated
molecules. The BDT-p MOs from Method 2 seem at half-
way between the MOs from Method 1 for the dithiolate
and dithiol molecules.

-2 0 2 4
ε − εF [eV]

0

0.5

1

C
on

du
ct

an
ce

 [G
0]

0

0

0

BDT-p

1

2

3

PD
O

S
Th

io
l g

as
-M

et
ho

d 
1 HOMO-3

HOMO-2
HOMO-1
HOMO
LUMO
LUMO+1 0

0.2

0.4

1

2

PD
O

S
Th

io
la

te
 g

as
-M

et
ho

d 
1

0

0.2

0.4

1

2

PD
O

S
Ju

nt
ci

on
-M

et
ho

d 
2

0

0.2

0.4

(a)

(b)

(c)

(d)

ε − εF [eV]

ε − εF [eV]

ε − εF [eV]
0.2-0.2 0

0.2-0.2 0

0.2-0.2 0

FIG. 5. Projected density of states (a,b,c) and conductance
(d) of benzene-dithiol in the pyramid geometry (BDT-p). The
PDOS for the different molecular orbitals (from HOMO-3 to
LUMO+1) have been obtained with (a) Method 1 based on
the dithiol molecule, (b) Method 1 based on the dithiolate
molecule, and (c) Method 2 (see text). The insets show a
zoom on the PDOS zoom around the Fermi energy region.

B. PDOS and interpretation of the conductance

We now move to the analysis of the most critical case
(among the examples investigated here) regarding the in-
terpretation of the conductance in terms of the PDOS:
benzene-dithiol in the pyramid geometry (BDT-p). In
Fig. 5 we present the Landauer-DFT conductance of
BDT-p. On top, we present also 3 different PDOS cal-
culated following Method 1 (gas phase) and Method 2
(junction), for the former both the dithiol and dithiolate
molecules are considered.

Without entering into all details, it is clear that the
PDOS strongly depends on the method used to calcu-
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FIG. 6. Scheme representing the integration volume (shad-
owed area passing through the two S atoms of the BDT-h
junction) used for our Method 3.

late it, reflecting previously seen differences in the MOs.
For instance, the zero-bias conductance seems dominated
by the HOMO from Method 1 for the dithiol molecule,
since the PDOS onto the HOMO is the closest to the
Fermi level and it also provides the highest contribution
at that level (see the inset), with minor contribution from
the HOMO-1. When using Method 1 for the dithiolate
molecule, the zero-bias conductance seems equally driven
by the HOMO and LUMO, with also some contribution
from the HOMO-1 and the HOMO-2. Finally, using
Method 2, the HOMO-1, the HOMO and the HOMO-
2 (in decreasing order) are the most important contri-
butions at zero-bias . Though some discrepancies can
be ascribed to simple re-labeling of the same MO, one
cannot pass over more important differences among the
methods.

In conclusion, we could not find a rigorous definition of
the MOs and associated PDOS for the BDT-p case when
using the traditional methods. As a consequence, the
PDOS interpretation of the conductance does not rely
on stable grounds.

IV. NEW METHOD FOR IDENTIFYING
MOLECULAR ORBITALS

A. Charged isolated molecules

In order to reconcile the two main methods found in
literature, that is, smooth their differences and solve the
difficulties, we here propose a new approach which is
based on an evolution of Method 1.

Method 3: The φMO
m (r) are chosen as the eigenfunc-

tions of the Hamiltonian of the uncontacted, gas
phase, isolated molecule, to which some charge
is added accounting for metal-molecule charge-
transfer. The same supercell is used as in the con-
tacted molecule junction calculation, but removing
the atoms of the leads. The added charge is calcu-
lated from a three steps procedure:

i) the density ρ(r) of the complete junction is
computed;

ii) the density ρ′(r) of the molecule is also calcu-
lated using the same geometry and simulation
box as in the junction;

iii) the added charge is given by integrating
ρ(r)−ρ′(r) over the volume spanned by the
molecule. For BDT-h, this volume is given by
the region between two planes perpendicular
to the S-S axis and passing through the two S
atoms (see Fig. 6).

The rationale behind our new method is to modify the
electronic structure of the gas-phase isolated molecule
with the purpose to account for the lead-molecule charge
transfer. Thus, the isolated molecule is placed into an en-
vironment closer to that one of the molecular-junction.
Previous studies24,26 have already underlined the impor-
tance of the lead-molecule charge transfer and the sig-
nificance of its role in transport properties of molecular
junctions. Here, it constitutes the basis for the construc-
tion of a new method of analysis.

B. Application of the new method to BDT-h

We apply our new method to the case of BDT-h (hol-
low geometry), which presents contradictory results us-
ing standard methods, as explained later. According to
our recipe, the extra charge to be added to BDT-thiolate
to simulate the environment of the BDT-h junction was
found to be ∼0.5 e−. However we observe that the mod-
ifications of the MOs are slightly affected by the precise
value of the added charge, apart when the charge crosses
integer values, ρ=0, 2, . . ., of the electronic unit charge
e−, at the onset of the occupation of new levels. The
MOs found with this procedure are shown at the bottom
of Fig. 4. Remarkably, these MOs look now much more
similar to the MOs found with Method 2 for BDT-h, as
it can be clearly seen. Furthermore, they present marked
differences with the original Method 1 for dithiolate, and
in some cases are even closer to Method 1 for the dithiol
molecule.

Fig. 7 shows the PDOS for the BDT-h junction calcu-
lated with the traditional methods (Method 1 for dithiol
and dithiolate isolated molecules and Method 2 for a se-
lected set of MLWFs for the BDT-h junction) and our
new Method 3. We focus on the PDOS around ε=3 eV
where traditional methods present the most important
differences. In that energy region, our new Method 3
provides an evident improvement. Coming from a dithio-
late isolated molecule, the PDOS from Method 3 is closer
to the one from Method 1 for the dithiol molecule than
for the dithiolate molecule, thus bridging the gap be-
tween the dithiol and dithiolate molecules. Moreover,
in this same energy region, when considering the rel-
ative height between the PDOS peaks of LUMO and
LUMO+1, Method 3 evidently bridges the gap between
Method 1 for the dithiol and dithiolate molecules and
Method 2. We can probably conclude the same also for
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FIG. 7. Projected density of states (a,b,c,d) and conductance
(e) of benzene-dithiol in the hollow geometry (BDT-h). The
PDOS for the different molecular orbitals (from HOMO-3 to
LUMO+1) have been obtained with (a) Method 1 based on
the dithiol molecule, (b) Method 1 based on the dithiolate
molecule, (c) Method 2, and (d) Method 3 (see text). The
insets show a zoom on the Fermi energy region.

the ε=0 eV region, though restricting the discussion to
the PDOS of the HOMO. One can observe the evolution
of the PDOS peak of the HOMO at the Fermi energy from
Method 1 for the dithiol molecule, from Method 3 and
from Method 2. We can say that Method 3 is somehow
successful in reconciling the traditional Methods 1 and

2. However, we do not notice any other evident improve-
ment. We still find clear differences among the PDOS
when zooming on the ε=0 eV region (not shown). The
MO ordering problem continues to exist: the PDOS peak
at ∼-2.5 eV from Method 3 is attributed to yet another
MO, the HOMO-4. The same ambiguous attribution re-
mains for the PDOS of the intermediate HOMO orbitals.

We have tried Method 3 also on the more complex case
of BDT-p. The MOs from Method 3 (not shown) do not
resemble to those from Method 2, and consequently we
get no satisfactory results on the PDOS. BDT-p contin-
ues to be an unsatisfactory case also for Method 3. This
is so probably because the metal-molecule charge trans-
fer is not the only, or the main, parameter affecting the
electronic structure of BDT-p, due to a may be higher
metal-molecule coupling and hybridization.

In conclusion, Method 3 provides encouraging partial
satisfactory results, in particular in reconciling the two
traditional methods as in BDT-h. However, this is not
general and not all problems are solved. The metal-
molecule charge transfer is not the only mechanism at
play. One should probably take into account also the
metal-molecule hybridization. This is not an easy task if
the purpose is to keep the picture of an isolated molecule.

V. DISCUSSION: FURTHER
CONSIDERATIONS ON THE PDOS ANALYSIS

As discussed in the previous section, Method 3 aims
at overcoming the drawbacks related to the identifica-
tion of MOs using Method 1. Instead, one could have
explored the possibility to improve upon Method 2. How-
ever, as we argue hereafter, this path appears to us less
physically-grounded. It actually opens even more funda-
mental questions on the implicit hypotheses at the basis
of the interpretation of the conductance based on the
PDOS, and raises further doubts on the validity of the
whole procedure.

A. Dependence of MOs and PDOS from the choice
of Wannier Functions basis set

At first sight, Method 2 (for which MOs originate from
the junction) would seem more meaningful for studying
the conductance. However, it presents a severe draw-
back for which it seems very difficult to find a solution.
There is a certain arbitrariness in the criterion establish-
ing the spatial limits of a molecule and thus the basis
elements that will be considered as being “localized on
the molecule”. For instance, there can be MLWFs lo-
calized on the molecule-lead bonds as we have pointed
out for BDA. It is then quite arbitrary to say whether
they are localized on the molecule or on the leads. This
choice clearly affects the resulting submatrix, as well as
the number and the shape of the MOs found after its
diagonalization.
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Intuitively, these basis elements should have an impor-
tant effect on the junction conductance, so that it makes
a lot of sense to keep them when generating the MOs.
Coming back to the case of BDA, the most important
PDOS at the Fermi energy was precisely the one associ-
ated to the MO presenting the major localization on the
molecule-bond MLWF (i.e. the LUMO). If we had dis-
carded the latter from those “localized on the molecule”,
we would have excluded this important MO from the
analysis of the zero-bias conductance. It is actually reas-
suring that this MO also appeared when using Method
1, though labeled LUMO+1 due to the already discussed
inverted ordering (see Fig. 1) and it was also the most
important PDOS at εF . But, at the same time, it shows
that the exclusion of some MLWFs based on their local-
ization may lead to very different interpretations starting
from Method 1 or Method 2.

A strategy to circumvent this drawback is to select a
different set of Wannier functions (WFs), or any other lo-
calized basis set with elements presenting a well-defined
localization (on the molecule or on the leads). For in-
stance, atom-centered basis sets would resolve this ambi-
guity, such as symmetry-adapted WFs53, WFs obtained
from LCAO projections54, or LCAO basis sets. Further-
more, it is well-known that, in some cases, the Marzari-
Vanderbilt42 algorithm can lead to different sets of WFs.
For instance, silicon bulk presents at least 3 different sets
of WFs with a similar degree of localization (as mea-
sured by the spread S). When starting the Marzari-
Vanderbilt algorithm from a random initial guess, there
is a high probability to fall down into the global min-
imum (S=2.56 Å2) for which the lowest 8 MLWFs are
of the sp3-backward kind [Fig. 8(c)] which do not corre-
spond to the real chemical orbitals. It is obviously pos-
sible to obtain the 8 sp3-forward WFs [Fig. 8(b)] which
correspond to the physical chemical sp3 orbitals, but at
slightly higher local minimum (S=2.95 Å2). Finally, the
set of WFs with 4 bonding orbitals on one Si atom and
4 anti-bonding orbitals on the other atom [Fig. 8(a)] has
a relatively large spread (S=5.09 Å2). However, when
performing the search of the MLWFs for the 4 valence
states only, the minimum spread is obtained for a set
containing the 4 bonding orbitals.

The previous discussion points to a possible ambiguity
in Method 2 for identifying the MOs and hence in using
the corresponding PDOS to interpret the conductance.
For a single junction, one may find several sets of WFs.
The one presenting the minimum spread (the most local-
ized) does not necessarily correspond to the real physical
situation, and this cannot be known a priori. The cal-
culated conductance must and does not depend on the
chosen basis set, provided the basis is complete and at
convergence. On the other hand, the submatrix of the
junction Hamiltonian does depend on the chosen basis
set. So do its eigenfunctions (which define the MOs) and
the resultant PDOS. Consequently, the physical interpre-
tation of the conductance by the PDOS does depend on
the chosen WF or other basis set. A basis-dependent

(a) bonding + anti-bonding (b) sp 3 (c) sp 3-backwards

FIG. 8. Using the Marzari-Vanderbilt algorithm, three
different sets of Wannier functions (WFs) with comparable
spread can be obtained for bulk silicon. While a) bond-
ing+antibonding and b) sp3-forward are the most “physical”
WFs, though not the most localized ones, c) sp3-backwards
are the maximally localized WFs.

interpretation method is questionable.
Starting from this point, we are led to ask even more

fundamental questions: Is the conductance really related
to a MO, or a PDOS, or to some MOs and a total PDOS?
Before answering these questions, let us try to answer a
question even further upstream.

B. Is the conductance directly related to the full
DOS?

The conductance G(ε) is certainly directly related to
the electronic structure of the junction, i.e. to both the
electronic energies εn and wavefunctions φn(r) of the ex-
tended molecule. Hence, there should also be a relation-
ship to the total DOS, ρ(ε), though somehow indirect and
not one-to-one. For instance, wherever ρ(ε)=0 (there are
no states available at that energy), the conductance G(ε)
must be also zero. The reverse is not true: the con-
ductance can be zero at energies where the total DOS is
finite. This can happen at energies associated to strongly
localized wavefunctions, with zero spatial overlap among
them, for example core states. There can also be other
factors beyond localization altering the direct relation-
ship between G(ε) and ρ(ε). For instance, not all de-
localized wavefunctions are good conducting channels55.
As a result, direct conclusions cannot be drawn from the
inspection of the DOS only.

C. Is the conductance related to some kind of
PDOS?

Whether the conductance is directly related to some
kind of PDOS, be it onto a given MO or onto some MOs
or even the total PDOS, is actually less obvious to answer
than for the full DOS. And so is the physical interpreta-
tion of the conductance based on such quantities.

Taking the example of BDT-h (Fig. 7), one can see
that the conductance profile is qualitatively related to
a total PDOS including the MOs which are close to the
Fermi energy. Nevertheless, it is not possible to observe a
quantitative relationship between the conductance value
and the total PDOS height. This is more evident in the
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case of BDT-p (Fig. 5), one cannot explain why the con-
ductance is larger at −1 eV than at 3.5. At below -1 eV,
the agreement worsens even qualitatively. In the case of
BDA (see Fig. 2), the relationship between the conduc-
tance and the total PDOS is even less evident.

This work has made it clear that the conductance anal-
ysis depends on a suitable choice of the MOs. For this
reason, the interpretation of the conductance in terms of
the PDOS is quite questionable. We should first provide
an answer to the following fundamental questions:

i) which set of MOs do physically represent the
molecule in the junction?

ii) given the lead-molecule hybridization, are MOs ob-
tained from an isolated molecule (i.e. from Meth-
ods 1 or 3) meaningful for analyzing a metal-
molecule junction?

iii) are MOs obtained by diagonalizing a submatrix of
the Hamiltonian (Method 2) physical, given the
fact that they depend on the choice of basis set?

MOs identified as the eigenvectors of the gas phase,
isolated Hamiltonian (Methods 1 and 3) have a physical
meaning. But, this is only true for the isolated molecule
not necessarily for the junction. For the latter, the eigen-
functions of the isolated molecule are nothing but yet an-
other basis set (just like the atomic orbitals for a solid).
Furthermore, the actual choice of the molecule may not
be unique (e.g., dithiol or dithiolate). As for Method 2,
an interpretation which depends on the chosen basis set
(WFs, LCAO, Gaussians or Wavelets) cannot be consid-
ered physical.

We believe that a completely different direction should
be taken in order to provide an answer to these questions.
What matters for a physical interpretation of the con-
ductance is the full electronic structure of the extended
molecule (containing also some layers of the leads). Con-
sidering the extended molecule system needed to con-
verge the conductance, which typically contains of the
order of 102 gold and 101 molecule atoms, one can realize
that the molecule does not even have such an important
weight on the determination of the electronic structure
of the junction. Following these arguments, we can give
the indication that a meaningful procedure to provide a
physical interpretation of a junction conductance should
rely on the wavefunctions and energies directly identified
for the extended molecule electronic structure. Thus, in
order to provide a physical interpretation of the conduc-
tance, we believe that the local density-of-states (LDOS),
a quantity independent from the basis set and directly
built on the extended molecule wavefunctions and ener-
gies, is the most meaningful. Actually, we have already
presented an application which uses the LDOS for the
interpretation of the quantum transport conductance23.

Regarding an interpretation of the molecular junction

conductance rooted on the molecular PDOS, this work
first tried to reconcile the two traditional methods (Meth-
ods 1 and 2) by introducing a new one (Method 3). Some
success was achieved in this direction, but we cannot con-
sider the problem to be solved. Further work is clearly
needed. However, our considerations led us to doubt that
a fully satisfactory solution exists along this direction.

CONCLUSIONS

Taking as examples two reference molecular junc-
tions (benzene-diamine and benzene-dithiol between gold
leads), we have investigated the interpretation of the
conductance based on the projected density of states
(PDOS) onto molecular orbitals. The latter are usually
identified following two procedures: diagonalization of
Hamiltonian of the gas-phase isolated molecule (Method
1); and diagonalization of a submatrix of the junction
Hamiltonian constructed by considering only basis ele-
ments localized on the molecule (Method 2). We have
shown that these two methods can lead to substantially
different MOs and hence PDOS. Furthermore, within
Method 1, the PDOS depends on the isolated molecule
chosen to represents the junction (e.g. with or without
dangling bonds); and, within Method 2 the PDOS de-
pends on the chosen basis set. As a consequence, the
analysis of the conductance based on the PDOS can
lead to different, if not contrasting, conclusions. This
is particularly true for the analysis of the zero-bias con-
ductance which can be found to be driven by, e.g., the
LUMO in one method and the HOMO in another. To
go beyond these drawbacks, we proposed an alternative
method (Method 3) as an improvement to Method 1.
This new method somehow reconciles Methods 1 and 2,
but still presents problems which point to more funda-
mental questions. An analysis of the conductance based
on the PDOS seems not to rely on well established roots
due to the arbitrariness in the identification of MOs. Our
proposal provided some indications toward possible solu-
tions to the problem of interpreting the molecular junc-
tion conductance.
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de Calcul Intensif en Fédération Wallonie Bruxelles
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