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Abstract. Molecular biology produces and accumulates huge amounts
of data that are generally integrated within graphs of molecules linked
by various interactions. Exploring potentially interesting substructures
(clusters, motifs) within such graphs requires proper abstraction and
visualization methods. Most layout techniques (edge and nodes spatial
organization) prove insufficient in this case. Royer et al. introduced in
2008 Power graph analysis, a dedicated program using classes of nodes
with similar properties and classes of edges linking node classes to achieve
a lossless graph compression. The contributions of this paper are twofold.
First, we formulate and study this issue in the framework of Formal
Concept Analysis. This leads to a generalized view of the initial problem
offering new variants and solving approaches. Second, we state the FCA
modeling problem in a logical setting, Answer Set programming, which
provides a great flexibility for the specification of concept search spaces.

Keywords: graph compression, graph visualization, bioinformatics, ASP

1 Introduction: graph compression for graph visualization

Large graphs are a common entry of many application domains including infor-
mation systems, program dependency graphs, social networks, and experimental
data. We are particularly interested in molecular biology that accumulates huge
amount of data, generally integrated within graphs of molecule interactions. Un-
derstanding the main structures present in such graphs is a source of knowledge
that goes far beyond general statistics on the graph topology and can lead to the
discovery of key organization schema reflecting disease determinants, regulation
mechanisms or active domains. A common way of studying them uses visual-
ization methods that focus on smart displays organizing spatially the edges and
the nodes or using virtual nodes aggregating structural information [12, 18]. A
more powerful approach consists in first summarizing the graph and then using
this compressed representation for visualization or graph mining.

1.1 Graph Compression

Graph compression looks for possible node or edge aggregations, i.e. connec-
tions between clusters of nodes instead of connections between individual nodes.



2 L. Bourneuf and J. Nicolas

Not surprisingly, it has been shown that graph readability increases with edge
compression [9]. Among early works in this direction, Agarwal et al. [1] have
shown that visibility graphs, a type of graph commonly used in computational
geometry, can be represented compactly as a union of cliques and bicliques. The
decomposition (partition of the edges) or the covering (multiple use of edges) of
graphs into subgraphs belonging to a particular family have been the subject of
many studies. Bounds on the size complexity of such coverings have been early
established for the important particular case of complete bipartite subgraphs [7]
but many interesting open combinatorial problems remain in this area [17]. From
an algorithmic perspective, the generation of all maximal bicliques of a graph
is related to and may be considered as an important subtask of the covering
problem. Apart from algorithms developed in Formal Concept Analysis, applied
mathematics have also worked on classes of graphs for which it is possible to
find the set of all maximal bicliques in time polynomial in the size of the graph.
For instance, it is possible to find linear time algorithms for the case of graphs
of bounded arboricity [11] or for domino-free graphs [4]. For general graphs, the
best one can hope is to get total polynomial algorithms, i.e., polynomial with
respect to the size of the union (input + output). This has been proposed in [3],
with an algorithm derived from the consensus method.

On the practical side, a nice visualization of compressed graphs introduces
additional constraints on the choices of subgraphs that add a complexity level
in the covering or decomposition problem. We have already mentioned that it
is useful to allow both cliques and bicliques for more compact representations.
introduced by Royer et al., the Power graph analysis is a clustering and visual-
ization method [23] that starts from this requirement and has been specifically
designed to show these subgraphs typically arising in bioinformatics. Indeed,
they have been associated to important structures in biological networks, par-
ticularly for protein interactions [2, 21, 12]. Bicliques also show interactions in-
duced by specific protein domains in case of protein-protein interactions, or for
multi-target drugs in case of drug/target/disease networks [8]. Furthermore, this
approach has been used as an alternative approach to compare two biological
networks by measuring the compression ratio of the compressed union of the
graphs [22]. Due to the genericity of the subgraph motifs, Power graph analysis
has been used for applications in other research fields like reliable community
detection in social networks [26].

1.2 Power Graph

Given a graph G = (V,E), a power graph is defined as a special graph PG =
(PV, PE) where the nodes PV are subsets of V and the edges PE are subsets
of E. A power graph must fulfill the three following conditions:

subgraph condition Any pair of power nodes connected by a power edge rep-
resents a biclique in graph G. As a special case, a clique in G is represented
by a single power node and a power edge looping on this node.
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power node hierarchy condition Any two power nodes are either disjoint,
or one is included in the other. From the point of view of classification, the
sets of vertices clustered in power nodes form a hierarchy.

power edge decomposition condition power edges form a partition of the
set of edges.

An example of graph compression is shown in Figure 1.

Fig. 1: A graph with 15 nodes labelled from a to o and 35 edges. A smart layout of
this graph allows one to understand its underlying structure, something that becomes
hard with a growing number of edges. The bottom compressed version of this graph
has been produced by Power graph analysis and printed with Cytoscape [25], through
a plug-in developed by Royer et al.. Power edges are shown as thick and black lines
linking power nodes (thick circles, black for bicliques and green/grey for cliques). Some
edges like (h, i) remain uncompressed. Concept ({h, i}, {f, g, j, k}), despite being a
maximal biclique, can’t be associated to a single power edge without breaking the
power node hierarchy condition. Instead, two power edges are generated, corresponding
to bicliques ({h, i}, {f, g}) and ({h, i}, {j, k}). The same way, the subgraph on the
subset of vertices {d, e, f, g, h, i, j, k} can’t be covered by power edges ({f, g}, {d, e, h, i})
and ({h, i}, {f, g, j, k}) since it would break the power edge decomposition condition
.

The issue is to exhibit a power graph with a minimal number of power edges.
It is not necessarily unique. It has been shown to be a NP-complete problem [10].
An algorithm and a software are described in [23]. It implements a two-phase
approach, first processing the possible power nodes by a hierarchical clustering
of the nodes using the Jaccard index on the sets of neighbours, and then building
the power edges than can be drawn between any pair of power nodes following a
greedy incremental approach, choosing at each step a maximal subgraph in the
number of covered edges. The algorithm is very fast but remains heuristic and
only computes an approximation of the minimal powergraphs. It also has been
implemented with slight variations, for instance to work on directed graphs, or
to enable overlapping power nodes for visualization of relations between non-
disjoints sets [2], or to enable an edge to be used multiple times for a faster
search for near-to-optimal compression [10].
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The paper contributions are twofold. First, we formulate and study this issue
in the framework of FCA. The goal is to be able to benefit from the advances in
this domain to get a better view of the structure of the search space, suggesting
variants and solving approaches and conversely to offer a playground for new
studies in FCA. Second, we have stated the FCA modeling problem in a logical
setting, Answer Set programming (ASP). The first proposition of ASP program
for FCA seems due to CV Damásio and published only in [16], where the focus is
on the developing expressive query languages for formal contexts. A more recent
study extends the search for n-adic FCA [24] and is focused on the issue of
filtering large concept spaces by checking additional membership queries. In our
case, the particular task of graph compression needs heavier calculations and a
specific code since the whole concept space need to be explored.

Our goal is to show that this high level language provides a great flexibility
in the specification of concept search spaces and thus enables to easily explore
the effect of new constraints or new properties on the lattice of concepts. We
have implemented a modeling of Power graph compression as a formal concept
search. We illustrate in the last section some results showing that the developed
tool is already applicable to real biological applications.

2 Power Graph as a Formal Concept Search

This section first defines how the search space for Power graph compression can
be formalized with FCA. The section ends on a proposition working on formal
contexts, allowing one to split the search space of power graphs.

2.1 Motifs as Formal Concepts

Power graph compression leads to edge reduction through motif recognition: bi-
cliques and cliques are abstracted in power nodes and power edges. A power node
is a node that represents a non empty set of (power) nodes. Power edges link
(power) nodes. A biclique is compressed in two power nodes, one for each set,
linked by a power edge. Cliques are represented by a single power node with a
reflexive power edge. Stars are particular case of bicliques where a power edge
links a single node with a power node. These motifs can be ordered by edge
coverage: a motif is greater than another if it covers more edges. For instance, a
biclique of 2 × 4 nodes has an edge coverage of 8, which is larger than a clique
of 4 nodes that covers 6 edges. This is the spirit of the Royer et al. heuristic.

A graph context is a formal context where objects and attributes are nodes
in the graph and the binary relation represents edges. For a bipartite graph, the
relation may be oriented and objects and attributes are distinct. In the general
case, objects and attributes represent the same elements and the graph context
is symmetric, comparable to an adjacency matrix. We use lower case for objects
and upper case for attributes to distinguish them (see Table 1).

Building a power graph consists in iteratively looking for the largest motifs
in the graph (cliques or bicliques) until all edges are covered. Largest bicliques
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correspond to formal concepts in the graph context where objects and attributes
are disjoint (e.g. {a, b}×{g, h, i} in Table 1). Largest cliques correspond to formal
concepts where objects and attributes are equal. The other cases where objects
and attributes partially overlap are not allowed.

Yet the motifs compressed by Power graph compression are not always formal
concepts themselves, because, in order to respect the power node hierarchy and
power edge decomposition conditions, maximal (bi)cliques are not always fully
compressed, as indicated in the introduction and illustrated in Figure 1.

Let (A,B) and (C,D) be two formal concepts, the power node hierarchy
condition is not fulfilled if two sets are partially overlapping, that is X ∩ Y /∈
{∅, X, Y } for X ∈ {A,B} and Y ∈ {C,D}. This is illustrated in Table 1 for
X = B and Y = C, with A = {a, b}, B = {g, h, i}, C = {e, f, i}, and D = {c, d}.
In such a case, one of the concept has to be covered by two power edges, using
a simple set algebra: (C,D) can be covered by D × (C \B) and D × (C ∩B)).

Similarly, let (A,B) and (C,D) be two formal concepts, the power edge
decomposition condition is not fulfilled if two pairs of sets have a common in-
tersection. Such a situation commonly occurs when the concepts have crossed
dependencies: A ⊂ D and C ⊂ B. In Figure 1 for instance, with A = {f, g}, B =
{d, e, h, i}, C = {h, i}, D = {f, g, j, k} the same edges (f, h), (g, h), (f, i), (g, i)
are represented multiple times. In such a case, one of the concept has to be
restricted: (C,D) can be covered by (C,D \A).

In summary, power graph compression may be seen as a contextual search of
concepts in the graph. The effect of the two admissibility constraints required
by power graphs are different on the concepts associated to power edges: the
power edge decomposition condition does not increase the number of bicliques
in the decomposition while the power node hierarchy condition has a more dras-
tic effect by splitting concepts. Finally, it has to be noticed that this problem
introduces an interesting covering problem in FCA: how to extract a cover of all
edges by a minimum number of concepts.

A B C D E F G H I
a x x x
b x x x
c x x x
d x x x
e x x
f x x
g x x
h x x
i x x x x

Table 1: Illustration of the power node hierarchy condition on a graph context: Assume
the grey cells mark an already selected motif (here, biclique {a, b}×{g, h, i}). Although
the concept {c, d}×{e, f, i} is valid as a standalone motif, it overlaps the previous one
and these two motifs cannot occur together.
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2.2 Heuristics Modeling

As already discussed, the Royer et al. heuristics consists of an iterative search of
the largest motifs to compress. From the FCA point of view, this can be modeled
by an iterative search of the largest concept and the suppression of covered edges
at each step from the graph context until an empty context is reached. Note that
in this way, we can possibly obtain a better decomposition solution than Power
graph Analysis since the choice of the best concept is evaluated at each step in
our case whereas all bicliques are ranked only once during the initial step in the
other case. We give in section 3 the programs that implement this search.

The Dwyer et al. heuristics is much more complex and can reach an optimal
compression. The idea is basically to first create all stars associated with each
node, then iteratively merge two (power) nodes involving a maximal number of
common neighbors. The approach seems to be compatible with Chein algorithm
[6] but it is not clear that it fulfill all conditions of powergraphs and we have
not further explored this track of research. Instead, we have designed a concept
generation heuristic, the HDF method (for High Degree First). At each step,
the HDF heuristics selects first nodes of highest degree, then the largest concept
using one of these nodes. The degree is just one measure on the graph topology
and could be replaced by any notion of node degree of interest. We have tried a
variant, K2HDF, directly inspired from Dwyer et al. heuristics. In this variant,
the selected nodes include nodes of highest degree and nodes with the highest
number of neighbours in common with another node. HDF is quicker than the
greater-first heuristics, to the expense of a slightly smaller edge reduction (see
section 4). We have tested another variant, called Fuzzy HDF (FHDF). The idea
is to directly use the degree of interest for scoring. FHDF tries to maximize the
total degree of interest of nodes involved in the concept. It provides an upper
bound on the real edge coverage.

For small graphs, it is possible to look for a global optimum with our approach
by exploring non deterministically all admissible decompositions. In practice,
we have limited our study to incremental, locally optimal searches in order to
manage the large graphs that occur in bioinformatics. An intermediate approach
is possible. At each step, the local optimum is not necessarily unique. If two
optimal concepts are compatible, they can be chosen in a same step. If they are
not compatible, it introduces a choice point that can be subject to backtracking.
In fact, even in this case we need to better manage the dependencies in the graph
contexts in relation with the constraints to be checked in order to reduce the
complexity of the search. The next proposition is a first step in this direction.

2.3 Exploitation of the Graph Context to Reduce the Search Space

If the number of nodes of a graph is reduced by a factor k, its graph context is
reduced by a factor k2 and the search space of concepts is reduced by a factor
2k

2

. This emphasizes the well known importance of reduction strategies as a
preprocessing step of a concept search. Simple techniques include the application
of standard clarification and reduction procedures and the decomposition of the
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graph into connected components. Concerning the FCA reduction procedures
and since we are interested in largest concepts, the computation of the edge cover
size requires all reduced nodes to have an associated weight counting the number
of nodes they represent. Concerning the decomposition of the graph, we propose
a generalization of the connected component property aiming at further splitting
the graph context. This "bipartite split" property can be applied recursively, in
order to work on increasingly smaller contexts, but the gain is generally weak.

Dot operator: The dot operator on sets of objects or attributes is introduced in
order to ease the bipartite split expression. It is a relaxed variant of the derivation
operator of FCA where the universal quantification is replaced by an existential
one. Given a set of objects X (resp. attributes Y ), the set Ẋ (resp. Ẏ ) is made
of all attributes (resp. objects) related to at least one attribute in X (resp. Y ):

Ẋ = {y ∈ Y |∃x ∈ X, r(x, y)} Ẏ = {x ∈ X |∃y ∈ Y, r(x, y)} (1)

As for derivation, the dot operator can be combined multiple times:

Ẍ = {x ∈ X |∃y ∈ Ẋ, r(x, y)} Ÿ = {y ∈ Y |∃x ∈ Ẏ , r(x, y)} (2)

Proposition: Given a set of objects O and a set of attributes A, let P = {O1, O2}
be a partition of O and Q = {A1, A2} be a partition of A. Let LC(O,A) denotes
a largest concept of the formal context C(O,A), i.e. a concept corresponding to
a submatrix of largest size. Then, the following property holds:

LC(O,A) = max (LC(O1, A1), LC(Ȧ2 ∪ Ö2, Ȯ2 ∪ Ä2)) (3)

Moreover, this equation may be refined if no relation holds over O1 ×A1:

LC(O,A) = max (LC(Ȧ2, A2), LC(O2, Ȯ2)) (4)

Proof: Let P = {O1, O2} be a partition of a set of objects O and Q = {A1, A2}
be a partition of a set of attributes A. If the largest concept LC(O,A) is in the
context C(O1, A1), then by definition, it will take the right value LC(O1, A1).
Else, there exists an element of the largest concept either in O2 or in A2 . If the
element is in O2, then the attributes of LC(O,A) have to be included in Ȯ2. The
same way, the objects of LC(O,A) have to be included in the objects sharing at
least one relation with attributes of Ȯ2, that is, Ö2. With a symmetric argument,
if there is an element of A2 in the largest concept, then attributes of LC(O,A)
have to be included in Ȧ2 and objects in Ä2. Altogether LC(O,A) must be a
concept of the context C(Ȧ2 ∪ Ö2, Ȯ2 ∪ Ä2).

If no relation holds over O1×A1, then every concept has either all its elements
in O2 or all its elements in A2. In the first case they are in the formal context
C(O2, Ȯ2), and in the second case they are in the formal context C(Ȧ2, A2). The
largest concept is the largest of the largest concepts of the two contexts. Table 2
gives details on the way the search can be split in this case. �

From the point of view of graph modeling, the fact that no relation holds
over O1×A1 means that it is stable set of the graph (note however that O1 and
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A1 A2

H I J K L M N

O1

a x x
b
c x x x x

O2

d x x x x
e x x x
f x x x x x
g x x x x

Table 2: A partitioned context with no relation over C(O1, A1). The five possible posi-
tions of the largest concept L are shown. L could be in C(O2, A1) (e.g. ({e, f}, {H})),
C(O2, A2) (e.g. ({f, g}, {M,N})), C(O1, A2) (e.g. ({a}, {L,M})), C(O2, A1 ∪A2) (with
an element in A1 and an element in A2, e.g. ({e, f, g}, {J,K})) or C(O1 ∪O2, A2) (e.g.
({c, d}, {L,M,N})).

A1 may overlap). If moreover no relation holds over O2 × A2, it corresponds to
the existence of at least two connected components in the graph. If O1 = A1,
O1 is a stable set and it can be searched by looking for cliques in the graph’s
complement. Moreover, we get O2 = A2, so LC(Ȧ2, A2) = LC(O2, Ȯ2) and it is
sufficient to consider the graph context C(O, Ȯ2). Since the aim is to speedup the
search for concepts, the search in bounded time of a "best" clique (not necessarily
maximal) has to be achieved, a feature allowed by ASP.

3 PowerGrASP , graph compression based on FCA

We propose an implementation of Power graph compression1 as a formal concept
search using a non-monotonic logical formalism, ASP, to model the constraints
on the power nodes and power edges introduced in section 1.2.

ASP (Answer Set Programming) is a form of purely declarative program-
ming oriented towards the resolution of combinatorial problems [20]. It has been
successfully used for knowledge representation, problem solving, automated rea-
soning, and search and optimization. In the sequel, we rely on the input language
of the ASP system Potassco (Potsdam Answer Set Solving Collection [13] de-
veloped in Potsdam University. An ASP program consists of Prolog-like rules h
:- b1, . . . , bm, not bm+1, . . . , not bn, where each bi and h are literals and not
stands for default negation. Mainly, each literal is a predicate whose arguments
can be constant atoms or variables over a finite domain. Constants start with a
lowercase letter, variables start with an uppercase letter or an underscore (don’t
care variables). The rule states that the head h is proved to be true (h is in an
answer set) if the body of the rule is satisfied, i.e. b1, . . . , bm are true and one
can not prove that bm+1, . . . , bn are true. Note that the result is independent
on the ordering of rules or of the ordering of literals in their body. An ASP
solver can compute one, several, or all the answer sets that are solutions of the
encoded problem. If the body is empty, h is a fact while an empty head specifies
1 Repository at http://powergrasp.bourneuf.net
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an integrity constraint. Together with model minimality, interpreting the pro-
gram rules this way provides the stable model semantics (see [15] for details). In
practice, several syntactical extensions to the language are available and we will
use two of them in this paper: the choice rules and optimization statements.

A choice rule of the form i{h : b1, . . . , bn}j, where i and j are integers, states
that at least i and at most j grounded h are true among those such that the body
is satisfied. In the body part, N = {h} evaluates N to the cardinal of the set of
h. An optimization statement is of the form #operator{K@P,X : b1, . . . , bn},
where operator is the type of optimization (either maximize or minimize), K
refers to integer weights whose sum as to be optimized, P is an optional priority
level in case of multiple optimization (the highest is optimized first) and X is a
tuple of variables such that one weight K is associated to each tuple of values of
these variables. The Potassco system [14] proposes an efficient implementation of
a rich yet simple declarative modeling language relying on principles that led to
fast SAT solvers. ASP processing implies two steps, grounding and solving. The
grounder generates a propositional program replacing variables by their possible
values. The solver is in charge of producing the stable models (answer sets) of
the propositional program.

The main objective of this section is to show, through its application to the
stated graph compression problem, the effectiveness and flexibility of ASP for
modeling various searches in the concept lattice. Of course, it remains always
preferable from the point of view of efficiency to design a specific algorithm for
a particular FCA problem. However, ASP systems are not "toy" environments
and are useful for the design of efficient prototypes or to take into account a
knowledge-rich environment while keeping a simple code. ASP has shown to
be an attractive alternative to standard imperative languages that enable fast
developments and is most of the time sufficient in real applications where many
constraints have to be managed. In fact, Potassco proposes an integration of
ASP and Python that allows the development of hybrid codes. The reminder
of this section provides the relevant part of the encoding for solving variants of
Power graph compression. All lines starting with % are comments.

The initial graph is assumed to be coded with facts edge(X,Y ), where X and
Y are vertices (e.g. edge(a, d). edge(a, e).) If the graph is non oriented and not bi-
partite, edges are made symmetric by adding a clause edge(X,Y ) : −edge(Y,X).
Many input graph examples are available in the PowerGrASP source code2.

3.1 Looking for a formal concept and for graph motifs

Listing 1.1 provides a code specifying a formal concept. They are represented
by a predicate of arity 2: concept(S,X) holds if the node X is in the set num-
ber S. For instance, the concept ({a}, {b, c}) is represented by concept(1, a),
concept(2, b) and concept(2, c). The elements of a concept (at least 1 in each
set) are chosen among those linked by an edge (line 2-3). The set of admissible
concepts is restricted by three constrains: the necessity to have two disjoint sets,
2 powergrasp/tests/



10 L. Bourneuf and J. Nicolas

1 % Choice of elements in set 1 and 2 of a concept
2 1 { concept(1,X): edge(X,_)}.
3 1 { concept(2,Y): edge(_,Y)}.
4 % Bipartite subgraph: The two sets are disjoint .
5 :− concept(1,X), concept(2,X).
6 % A node is impossible in a set if not linked to some node in the other set
7 imp(1,X):− edge(X,_), concept(2,Y), not edge(X,Y), X!=Y.
8 imp(2,Y):− edge(_,Y), concept(1,X), not edge(X,Y), X!=Y.
9 % Consistency ; no impossible element can be added to the concept

10 :− imp(T,X), concept(T,X).
11 % Maximality ; all possible elements have to be added to the concept
12 :− not imp(1,X), not concept(1,X), edge(X,_).
13 :− not imp(2,Y), not concept(2,Y), edge(_,Y).

Listing 1.1: Search of concepts: maximal bicliques

1 % Choice of elements in the clique
2 3 { clique(X): edge(X,_)}.
3 % A node is impossible in a set if not linked to some node in the other set
4 imp(X):− edge(X,_), clique(Y), not edge(X,Y), X!=Y.
5 imp(Y):− edge(_,Y), clique(X), not edge(X,Y), X!=Y.
6 % Consistency ; no impossible element can be added to the clique
7 :− imp(X), clique(X).
8 % Maximality ; all possible elements have to be added to the clique
9 :− not imp(X), not clique(X), edge(X,_).

10 :− not imp(Y), not clique(Y), edge(_,Y).

Listing 1.2: Search of concepts: maximal cliques

the necessity to have a biclique between these sets (line 10) and the necessity
to have a maximal biclique(line 12-13). The two last constraints make use of a
common symmetric predicate imp() that lists elements that cannot be in a set
if another element is chosen in the other set (line 7-8).

Powergraphs contain two types of motifs, bicliques and cliques. The first
one is searched by looking for all solutions of the previous code. Cliques can be
considered as a simplification where the two sets are equal and deserves a special
code (listing 1.2). A clique must contain at least 3 elements. The loops on each
elements are not required since in most applications they are not present.

The code that ensures generated concepts do not break the power node hier-
archy is not presented here for the sake of brevity (see the PowerGrASP source
code3). It mainly consists in the maintenance of an inclusion tree of power nodes.
The power edge decomposition condition is met by design : once a concept is
chosen, its edges are removed from the compressed graph and cannot therefore
be involved in the remaining concepts.

3 powergrasp/ASPSources/postprocessing.lp
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1 % The concept score is its edge cover.
2 score(N1∗N2):− N1={concept(1,X)}, N2={concept(2,X)}.
3 % Exclusion of concepts with unbounded score.
4 :− score(S) ; S>upperbound.
5 :− score(S) ; S<lowerbound.
6 % Maximize the score.
7 #maximize{S@1,S:score(S)}.

Listing 1.3: Concept ordering

3.2 Implementing Concept Scoring

Listing 1.3 implements the scoring of concepts. It simply maximizes the edge
cover of found concepts (line 7), which is computed as the product of the number
of nodes in each set (line 2) and contained between two constant parameters of
the program, lowerbound and upperbound. By default the lowerbound equals
2 (edge coverage of a star involving three nodes) and the upperbound is the
minimum between the size of the previous chosen concept and the number of
remaining edges in the connected component.

Note that in the real code, maximization is replaced by a minimization of
uppperbound - score. This leads to a significant speedup because the solver
converts maximization to minimization and uses higher upperbound values. Like-
wise, the code in Listing 1.3 is able to handle directed graph but a dedicated
slightly more efficient version exists for this type of graph4.

3.3 Implementing the Stable Search and Heuristics

Stables are used to split the search space as exposed in proposition 1 (see sec-
tion 2.3). They are searched in the complement context, i.e. with 0 and 1 inverted,
using the code defined in listing 1.1 without the bipartite constraint (line 5).

The implementation of heuristics takes only a few ASP lines. The code of
HDF is provided in listing 1.4 (PowerGrASP 5) predicate interest_ok states
that one of the concept nodes must be chosen among top interesting nodes.
It uses max_interest, a predicate true only for nodes with highest interest in
the current graph. In the PowerGrASP source, the computation of this atom
is performed on the Python side. The code of FHDF is provided in Listing 1.5
(PowerGrASP 6). It needs each node to get a degree of interest computed in
Python and coded in predicate interest_level. Line 2 maximizes the sum of
node degrees belonging to the concept. Note that the priority of the interest
maximization is greater than the priority of the score maximization, so that the
heuristics is used as a first selection criterion. For the K2HDF heuristics, the
code remains the same than in listing 1.4 but the Python part is relaxing the
constraint by generating max_interest for the nodes of maximal degree plus
the nodes sharing a maximal number of common neighbors with another node.
4 powergrasp/ASPSources/findbestorientedbiclique.lp
5 powergrasp/ASPSources/by_priority.lp
6 powergrasp/ASPSources/by_fuzzy_priority.lp
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1 % At least one node of maximal priority is involved in the concept.
2 interest_ok :− concept(_,X) ; max_interest(X).
3 :− not interest_ok.

Listing 1.4: Addon to the (bi)clique search program: HDF and K2HDF heuristics.

1 % Maximize the concept priority as a sum of node degrees of set 1.
2 #maximize{P@2,X: concept(_,X), interest_level(X,P)}.

Listing 1.5: Addon to the (bi)clique search program: FHDF heuristics.

4 Biological benchmarks

The powergraph compression code is benchmarked here using three networks
coming from biological data. Our aim is just to show that our ASP code is already
useful in managing real graphs. A complete evaluation on a larger benchmark is
out of the scope of this paper, which mainly tries to take the first steps in FCA
applied to the powergraph issue.

The network named rna comes from a study on the pea aphid (A. pisum) [27].
It is a bipartite interaction graph linking two disjoint populations of molecules
(15× 1810). The second network, mdb, comes from the database MatrixDB [19]
describing interactions between extracellular proteins. It contains 5 connected
components, the largest one involving 273 nodes and 642 edges. The third graph,
sbind comes from biological data of Royer et al., and contains one large con-
nected component (205 nodes, 335 edges) and 188 with less than 20 nodes. These
three graphs are described in Table 3, and the compression results in Table 4. A
graphical representation of the rna network is shown in Figure 2. All benchmarks
have been run on one core of an Intel i7-6600U (2.60GHz).

Bipartite stable search. As shown in section 2.3, the bipartite stable is the object
needed by proposition 1 in order to restrict the search space. It is computed with
a time limit of 5 seconds ; its optimality is thus not guaranteed, but not required
either. Results show that stables of consequent size are found (see Table 3). In
case of the rna bipartite network, 9 out of 16 nodes of the first set and one third
of the second are involved in the stable. This result suggests that finding a large
stable is an interesting application of proposition 1.

#node #edge density #cc bipartite stable
rna 1825 2250 0.0013 1 yes 9x765
mdb 286 652 0.016 5 no 171x213
sbind 864 1241 0.003 189 no 102x122

Table 3: Network statistics. #node: number of nodes in the graph; #edge: number of
edges; density : global density of the graph; #cc: number of connected components in
the graph; stable: size of the stable found in the largest connected component.
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regular HDF FHDF K2HDF
rna mdb sbind rna mdb sbind rna mdb sbind rna mdb sbind

time (s) 380 80 50 177 25 25 5460 150 40 320 40 25
edge reduction 96% 64% 61% 94% 47% 50% 77% 50% 53% 95% 54% 52%
#powernode 48 83 206 55 41 231 409 103 244 64 76 233
#poweredge 49 96 182 55 45 200 430 144 229 64 66 193
#remain 50 133 301 81 300 414 91 182 356 57 226 406
constraint ratio 1293.3 124 49.2 32.0 124 37.5 1293.3 124 37.5 1293.3 124 37.5
conflict ratio 1.49 2.32 0.2 0.12 2.18 0.11 0.13 1.1 0.27 0.1 2.81 0.16

Table 4: Network compression results. Compression time: time needed to fully
compress the graph (iterative search of all concepts); edge reduction: given by
#initial edges−#poweredges

#initial edges
; #powernode: number of power nodes in the compressed

graph; #poweredge: number of power edges; constraint ratio: the ratio between con-
straint numbers for the first biclique search, and edge cardinality; conflict ratio: the
ratio between conflict numbers for the first biclique search, and edge cardinality.

Time (s) Edge reduction
Royer et al. PowerGrASP Royer et al. PowerGrASP

rna 4 380 96% 96%
mdb 2 80 64% 64%
sbind 1 50 61% 61%

Table 5: Comparison of PowerGrASP and Royer et al. implementation.

Comparison with the Royer et al. implementation Oog As shown in Table 5,
PowerGrASP reaches a score equivalent to Oog. In fact, since both implement
the same strategy, edge reduction is very similar up to slight variations due to
non-determinism of motif choices with equal scores. Oog uses a dedicated algo-
rithm, making it much more scalable. Our goal at this step was to produce a
much more flexible framework however so that it could lead to qualitatively bet-
ter results with different strategies and the inclusion of background knowledge.

Benchmarks of the four methods. Benchmarks show that regular compression
(Royer et al. heuristic) yields best edge reduction in all cases, but is generally
slower. The other heuristics are faster, but reach a smaller edge reduction. HDF
is the fastest, which is expected because of (1) the easy computation of a node
degree of interest and (2) the important restriction of search space it induces,
as shown by the number of constraints and conflicts generated (the number of
constraints is related to the size of the problem to be solved, conflicts express the
practical combinatorial complexity of the search). HDF yields the smaller edge
reduction. FHDF and K2HDF bring slight improvements of edge reduction over
HDF, at the cost of more compression time. The time needed to compress rna
graph with FHDF is explained by the computation cost that increases with the
number of nodes (1825 for rna). K2HDF reaches a slightly higher edge reduction
mostly because the constraint is relaxed, allowing the exploration of a slightly
larger subset of concepts.
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Fig. 2: Cytoscape view of a bipartite RNA network compressed with Power-
GrASP where two types of molecules interact. The 15 nodes with a trian-
gle shape belongs to the so-called microRNA type and appear around the
central power node that contains most of the molecules of the mRNA type.

5 Discussion and Conclusion

The main goal of this paper was to introduce the Power graph compression is-
sue, a knowledge-discovery oriented kind of graph compression, in terms of a
decomposition problem in the formal concept analysis framework. The Galois
concept lattice is the fundamental structure underlying the search space of this
problem. If Power Graph compression is reducible to a choice (and an ordering)
of concepts, one can thus use FCA to formalize (1) algorithms of motifs enu-
meration (HDF for instance), (2) reduction methods of the search space (prop.
1 for instance), and (3) other approaches using FCA extensions like TCA and
pattern structure to obtains different visualizations.

For real applications, it is reasonable to look for an approximation of opti-
mal decompositions. We have proposed both concept generation heuristics and
a splitting strategy to reduce this search space. From the point of view of imple-
mentation, we have shown that a high level purely declarative approach using
Answer Set Programming allows a compact and flexible encoding of combinato-
rial searches in the space of concepts. Moreover, the resulting program is efficient
enough to handle formal contexts of reasonable size. Large biological networks
can be compressed in few minutes as shown in section 4, allowing a hierarchical
clustering of many biological entities based on network topology.
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Optimal compression of graphs including thousands of nodes is the ultimate
goal of this research, a goal that is not reached by the Royer et al. heuristic,
nor by the variants described in section 3. Our current implementation does
not works efficiently on large dense graphs. This is partly due to ASP memory
consumption since grounding needs all data to be encoded and loaded in memory
in order to explore the search space. Thus reduction strategies are of uttermost
importance to split the search space.

A number of improvements can be studied in future work along two main
research tracks. From a theoretical perspective, the links between an optimal
covering and an optimal decomposition in bicliques and cliques should be con-
sidered. It could be interesting to start from a solution for the covering problem,
allowing some edges to be covered several times and then refine this solution
to comply with all the constraints. This approach would be more compatible
with the FCA framework and a search for a global optimum. Moreover, some
overlapping configurations may be easily understandable in terms of application
and it may be interesting to relax some of the powergraph conditions. From an
application perspective, one could search for quasi-motifs, that is, motifs with
a few missing edges, which are known to groups proteins of the same family
in proteomes [5], and improve the resistance against noisy an incomplete data.
This method was used to treat various real-life graphs to reveals important
patterns [2]. Finally, knowledge discovery requires to integrate domain specific
knowledge like annotations, and metadata on the quality or significance of data.
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