
HAL Id: hal-01558252
https://hal.science/hal-01558252v1

Preprint submitted on 7 Jul 2017 (v1), last revised 19 Jul 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Certification for Free!
Sylvain Boulmé, Alexandre Maréchal

To cite this version:
Sylvain Boulmé, Alexandre Maréchal. Toward Certification for Free!: Correct-By-Construction ML
Oracles with Polymorphic LCF Style. 2017. �hal-01558252v1�

https://hal.science/hal-01558252v1
https://hal.archives-ouvertes.fr

Toward Certification for Free!
∗

Correct-By-Construction ML Oracles with Polymorphic LCF Style

SYLVAIN BOULMÉ and ALEXANDRE MARÉCHAL,

Université Grenoble-Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France

How can we reduce the required e�ort to develop certi�ed programs in proof assistants such as Coq? A major
trend is to introduce untrusted oracles able to justify their answers by producing a certi�cate, i.e. a witness
of their computations. A trustworthy result is then built from this certi�cate by a certi�ed checker. This
alleviates the burden of proof, but producing certi�cates is a requirement which increases complexity of oracle
development.

We propose a design pattern, called Polymorphic LCF Style, that removes the need for certi�cates: ML
oracles directly compute the certi�ed result by invoking trusted operators and datastructures extracted from
Coq. But, oracles only handle these datastructures as polymorphic values, which forbids oracles to forge
incorrect results. This design thus delegates a part of the certi�cation to the ML typechecker. Correctness
comes from a weak parametricity property of imperative ML polymorphic types that we call parametric
invariance. We demonstrate the relevance of Polymorphic LCF Style for the certi�cation of a realistic library:
an abstract domain of convex polyhedra.

CCS Concepts: •Software and its engineering→ Polymorphism; •Theory of computation→ Program
veri�cation; Invariants; Type theory; •Mathematics of computing→ Solvers;

Additional Key Words and Phrases: Abstract Domain of Polyhedra, Coq, Linear Programming, Parametricity.

1 INTRODUCTION

This paper provides two contributions. First, we propose a new design pattern for developing
certi�ed programs, particularly adapted for problem solvers which solutions are hard to discover
but easy to verify. Our design pattern reduces the development e�ort in Coq (The Coq Development
Team 2016) by delegating part of the veri�cation to the OCaml typechecker (Leroy et al. 2016).
Second, we apply this design pattern to the development of a realistic library: a certi�ed abstract
domain of polyhedra. Let us start by introducing this case study.

Certifying an Abstract Domain of Polyhedra. A static analyzer may be used to prove the absence of
runtime errors – such as arithmetic or memory over�ows – in all possible executions of a program.
In abstract interpretation (Cousot and Cousot 1977), the analyzer attaches to each program point an
invariant, which is a property satis�ed by all reachable states at this point. These invariants belong
to classes of predicates called abstract domains that must provide operators for overapproximating
the disjunction of two invariants (join), their conjunction (meet), and the existential quanti�cation
of a variable in an invariant (proj). They must also provide tests for implication between invariants
(is_included) and unsatis�ability (is_empty). In the following, we focus on the abstract domain
of convex polyhedra on Q (Cousot and Halbwachs 1978), which is able to handle linear relations

∗In reference to the seminal “Theorems for Free!” of Wadler (1989)

This work was partially supported by the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”.
2017. Manuscript submitted to ACM

http://stator.imag.fr

2 Sylvain Boulmé and Alexandre Maréchal

(a) (b) (c)

Fig. 1. Three methods of certified computations: autarkic, certificate-driven and with LCF Style.

between numerical variables x , (x1, . . . ,xn) ∈ Q
n . For simplicity, we do not consider integer or

�oating point variables in this paper. A convex polyhedron is a conjunction of linear constraints of
the form

∑
i aixi ./ b where ai ,b are constants inQ and ./ is ≥, > or =. A polyhedron is represented

as a list of Cstr.t, which is the type of linear constraints.1
We now illustrate our method for developing a certi�ed abstract domain on operator is_empty

of type Cstr.t list -> bool. This operator checks the existence of a point of Qn satisfying the
constraints of the input polyhedron. We compare three ways of certifying in Coq that a true answer
from is_empty ensures the emptiness of its input polyhedron. The three certi�cation approaches
are illustrated on Figure 1.

Autarkic Approach. Our polyhedral operators could be directly implemented and proved correct
in Coq following the autarkic approach (Barendregt and Barendsen 2002). This approach allows
a safe o�ensive programming style (without runtime veri�cations). It also o�ers a very reduced
Trusted Computing Base (TCB): only the Coq proof-checker needs to be trusted (see Figure 1(a)).
The software can also be used independently from Coq thanks to a built-in Coq process named
extraction: it is exported to OCaml and then compiled – at the price of adding both the extraction
process and the OCaml compiler into the TCB.

However, the autarkic approach is very development-time consuming and restrictive, since it
forbids the use of e�cient C libraries like GMP (for multi-precision arithmetic) or GLPK (for linear
programming). Moreover, it enforces using exclusively Coq datastructures, which forbids many
algorithmic optimizations.

Skeptical Approach with Certi�cates. Fouilhé et al. (2013) developed the Veri�ed Polyhedra Library
(VPL), an abstract domain for the certi�ed Verasco static analyzer (Jourdan et al. 2015), by using
uncerti�ed code through a skeptical approach. Unlike most polyhedra libraries, the VPL uses the

1As we only deal with convex polyhedra, the adjective convex is often omitted in the remaining of the paper.

Correct-By-Construction ML Oracles with Polymorphic LCF Style 3

constraints-only representation of polyhedra in order to ease its certi�cation in Coq.2 Its abstract
domain is designed in a two-tier architecture:

(1) a backend, combining OCaml and C code, provides a set of untrusted oracles that perform
e�cient but unproved computations, and generate certi�cates driving the reconstruction of
a trusted result;

(2) a Coq frontend uses the backend oracles and certi�cates to provide the certi�ed operators
of the abstract domain (see Figure 1(b)).

The frontend is linked to the backend during its extraction from Coq into OCaml. The whole
software – backend and frontend – is �nally compiled by OCaml into binaries. Therefore, the TCB
of this approach contains the Coq proof-checker, its extraction process, and the ML compiler.

Implementing this skeptical approach requires �rst to introduce a certi�cate format that captures
the information needed to prove the correctness of the polyhedral operators. Fortunately, proving
their correctness reduces to verifying implications3 between polyhedra, in conjunction with other
simple veri�cations that depend on the operator. For example, polyhedron P is empty i� P ⇒ P∅,
where P∅ is a single contradictory constant constraint such as 0 ≥ 1. The emptiness of P∅ is thus
itself checkable by a simple rational comparison.

Farkas’ lemma gives a simple way to prove polyhedral implications (Farkas 1902). It states that
any nonnegative linear combination of the constraints of a polyhedron P is an obvious logical
consequence of P . For instance, x ≥ 3∧y ≥ 0 implies 2 · (x ≥ 3)+ 1 · (y ≥ 0) = 2x +y ≥ 6, meaning
that the set of points satisfying x ≥ 3 ∧ y ≥ 0 is included in the one that satis�es 2x + y ≥ 6.
Moreover, Farkas’ lemma states that any polyhedral implication can be proved thanks to such
simple computations on constraints and thus provides a theoretical foundation for designing the
certi�cate format of polyhedral operators (Besson et al. 2010). The formulation below is restricted
to polyhedra with non strict inequalities only, and Section 5.1 will provide a generalization to
polyhedra with equalities and strict inequalities.

Lemma 1.1 (Farkas 1902). Let P1 and P2 be two polyhedra containing only non strict inequalities.
Let us call Farkas combination of P1 any nonnegative linear combination of P1 constraints.
Any Farkas combination of P1 is a logical consequence of P1. Moreover, if P1 ⇒ P2 then

• either P1 is empty and there exists a Farkas combination of P1 producing the contradictory
constraint 0 ≥ 1,

• or each constraint of P2 is a Farkas combination of P1.

For instance, the polyhedron x ≥ 3∧y ≥ 0∧−2x−y ≥ −5 is empty, as shown by the combination
2 · (x ≥ 3) + 1 · (y ≥ 0) + 1 · (−2x − y ≥ −5) = 0 ≥ 1. In general, �nding the right combination
requires a Linear Programming (LP) solver (Chvatal 1983). Here, the OCaml oracle for is_empty

returns a certi�cate as the list of coe�cients which represents the previous Farkas combination.
The OCaml type of the oracle is thus

Back.is_empty: Cstr.t list -> Cert.t option

where the None answer means that the input polyhedron is not empty, and a Some answer gives
a certi�cate of type Cert.t allowing the frontend to establish the polyhedron emptiness. From
Cert.t, the frontend indeed computes the result of the combination with its own certi�ed Coq
datastructures and obtains 0 ≥ 1.
2Most polyhedra libraries maintain a double representation of polyhedra as constraints and as generators, i.e. vertices and
rays. Certifying them would require to prove the correctness of Chernikova’s conversion algorithm. Instead, Fouilhé looked
for e�cient polyhedra operators in constraints-only representation.
3Note that a polyhedral implication P1 ⇒ P2 is geometrically an inclusion between polyhedra P1 ⊆ P2.

4 Sylvain Boulmé and Alexandre Maréchal

Certi�cate generation does not guarantee the absence of bugs in the oracle. For instance, the
backend may not terminate normally on some inputs. This approach ensures however a partial
correctness property: when the oracle terminates and provides a certi�cate, the frontend uses the
certi�cate to compute a certi�ed result satisfying the formal speci�cation of the operator. It detects
if the backend went wrong and can then fail or return a trivially correct – but weak – result.

In an informal discussion, A. Fouilhé, the VPL developer, stated that the VPL certi�cates were
more complex than sketched above and that the code generating them was particularly di�cult to
develop and debug (wait Section 2.2 for more details). He concluded that simplifying this process
would be helpful.

Skeptical Method with LCF Style. In order to completely avoid the handling of certi�cates, we are
tempted by another style of skeptical certi�cation, called LCF style. The name “LCF” stands for
“Logic for Computable Functions” – a prover at the origin of ML where theorems were handled
through an abstract datatype (Gordon et al. 1978). This LCF style is still at the heart of HOL provers.

This style is much lighter than the preceding one, because it avoids the introduction of a certi�cate
format – i.e. an abstract syntax – in order to represent the certi�ed computations. Instead, the
OCaml oracle uses a factory of certi�ed operators (i.e. the “Factory” of Figure 1(c)) to perform
trusted computations. The key idea is that such a factory can only build logical consequences of
some given set of axioms. Thus, in our use, “LCF” also means “Logical Consequences Factories”.

For is_empty, the oracle has two versions of each constraint: the untrusted one, named BackCstr.t,
manipulated by the oracle, and the one extracted from Coq, named FrontCstr.t, on which the
oracle can only apply factory operators. Given an empty polyhedron, the backend uses an untrusted
solver to �nd the contradictory Farkas combination and then builds a certi�ed combination of type
FrontCstr.t using the factory operators extracted from Coq. Then, the frontend only has to check
that the resulting constraint is 0 ≥ 1.

Back.is_empty: (BackCstr.t * FrontCstr.t) list -> FrontCstr.t option

This style of certi�cation relies on one assumption: the frontend can trust results produced by
an external oracle that uses its certi�ed operators. This is not true in general: making FrontCstr.t

an abstract datatype is not su�cient to forbid an imperative OCaml program to cheat by returning
a contradictory constraint obtained from a previous run. Hence, this naive LCF style is unsound
for certi�cation.

Our contribution. This paper introduces the Polymorphic LCF Style, that we abbreviate as PFS
(Polymorphic Factories Style) for convenience, for developing correct-by-construction oracles in a
skeptical approach. More precisely, a PFS oracle can be trusted to preserve some invariant without
the need for an intermediate certi�cate. We experimented this design pattern by reimplementing
the certi�cation features of the VPL: it simpli�es both Coq and OCaml parts.

On our running example, PFS consists in abstracting the certi�ed datatype FrontCstr.t by a
polymorphic type 'c in the oracle, and providing the oracle with operators on this datatype grouped
in a factory of type 'c lcf. Polymorphism ensures that the oracle can only produce correct results
by combining its inputs using the operators of the factory. In other words, the type of the is_empty

oracle becomes

Back.is_empty: 'c lcf -> (BackCstr.t * 'c) list -> 'c option

Polymorphism of PFS brings the soundness that was missing in the naive LCF style. Results
produced by oracles are correct by construction provided that the operators of the factory preserve
the desired correctness property. We will explain how such correctness proofs are elegantly
expressed in Coq from the type of PFS oracles (see Section 3). Furthermore, PFS makes our oracles

Correct-By-Construction ML Oracles with Polymorphic LCF Style 5

�exible. We can easily pro�le or debug oracles, simply by changing the factory. If necessary, we
can still produce certi�cates as in the original VPL using an adequate factory, or even disable the
certi�cation for e�ciency using a “do-nothing” factory.

The performances of the original version of the VPL were analyzed by Fouilhé et al. (2013). They
are comparable with those of PPL (Bagnara et al. 2008) and NewPolka (Jeannet and Miné 2009),
two state-of-the-art – but unveri�ed – polyhedra libraries. Our new design seems to have a little
bene�t on VPL performances. More signi�cantly, it simpli�es the development while keeping the
same TCB than the original version. Thanks to PFS, the number of lines of code in the VPL modules
at the interface of OCaml and Coq has been divided by two, both for OCaml and Coq sides. And
it gives simpler and more readable code.4

Currently, the soundness proof of our approach is partial. On the one hand, we are able to
prove that our reasonings on PFS oracles – which are actually parametricity reasonings (Wadler
1989) – are correct. Indeed, they apply a weak parametricity property of polymorphic types, that
we call parametric invariance. This property has been formalized on system F with higher-order
references a la ML (Ahmed et al. 2002; Appel et al. 2007; Birkedal et al. 2011). We have adapted
this proof on a subset of imperative ML.Our proof is given in Appendix A. On the other hand,
we have not yet proved that our particular way to invoke Coq extraction is perfectly sound w.r.t.
the actual OCaml compiler. We only conjecture that it is. However, to our best knowledge, none
of the real world developments that mix Coq and OCaml code, including the certi�ed compiler
CompCert (Leroy 2009), come with such a proof; they rely on similar conjectures. See Section 4 for
a detailed discussion.

Actually, we are not the �rst to relate Coq extraction with parametricity reasoning. In a sense,
Bernardy and Moulin (2012, 2013) already looked for a generalization of Coq extraction in order
to internalize some parametricity reasonings within dependent type theory. The novelty of our
proposal is to use parametricity as a very cheap approach to reason about imperative ML code
in Coq. To our knowledge, since the proposal to get “theorems for free” from parametricity by
Wadler (1989), this paper describes its �rst application to the certi�cation of realistic software,
indeed implemented within widespread tools like Coq and OCaml.

Paper Overview. Section 2 incrementally details PFS on a slightly more complex example: operator
proj. It also illustrates why the original LCF style is unsound in this context. Section 3 shows how
to use PFS in Coq proofs. The soundness of our approach is discussed in Section 4. Section 5 reveals
the �exible power of polymorphic factories thanks to operator join. Benoy et al. (2005) have shown
how to derive a simple implementation of operator join from proj. We show that the certi�cation
of Benoy’s join boils down to de�ning a well-chosen instance of the factory expected by operator
proj. With this approach, the certi�cation of Benoy’s join becomes elegant and straightforward,
whereas the one of Fouilhé et al. (2013) was cumbersome because of many certi�cate rewritings.
Section 6 gives another example of PFS �exibility: using an adequate factory, we generate compact
certi�cates from PFS oracles in order to embed them in Coq tactics.

2 PFS ORACLES EXPLAINEDWITH A DETAILED EXAMPLE

This section gives a tutorial on PFS oracles, illustrated on operator proj of the abstract domain of
polyhedra. This operator performs the elimination of existential quanti�ers on polyhedra. More
precisely, given a polyhedron P and a variable x , (proj P x) computes a polyhedron P ′ such that
P ′ ⇔ ∃x , P . Let us consider the example of Figure 2. Predicate P0 expresses that q is the result of

4Our source code is available at http://github.com/VERIMAG-Polyhedra/VPL.

http://github.com/VERIMAG-Polyhedra/VPL

6 Sylvain Boulmé and Alexandre Maréchal

the Euclidean division of x by 3, with r as remainder. Predicate P1 “instantiates” P0 with x = 15.
Then, predicate P ′1 corresponds to the computation of ∃r , P1 (as a polyhedron on Q).

P0 ,

x = 3 · q + r
∧ r ≥ 0
∧ r < 3

[C1]
[C2]
[C3]

P1 , P0 ∧ x = 15 [C4]

P ′1 ,

x − 15 = 0
∧ q − 4 > 0
∧ 5 − q ≥ 0

[C ′1]
[C ′2]
[C ′3]

Fig. 2. Computation of P ′1 as “proj P1 r”

Geometrically, proj P x represents the orthogonal projection of a polyhedron P according to direc-
tion x . The standard algorithm for computing this projection is Fourier-Motzkin elimination (Fourier
1827). Ongoing research is trying to improve e�ciency with alternate algorithms (Howe and King
2012; Maréchal et al. 2017). But in our two-tier approach, the correctness proof of proj does not
need to consider these implementation details.

In the following, we assume that for proving the correctness of our surrounding software
(typically, a static analyzer), we do not need to prove P ′ ⇔ ∃x , P but only (∃x , P) ⇒ P ′. Thus, we
only want to prove the correctness of proj as de�ned below.

De�nition 2.1 (Correctness of proj). Function proj is correct i� any result P ′ for a computation
(proj P x) satis�es (P ⇒ P ′) ∧ x < V (P ′) whereV (P ′) is the set of variables appearing in P ′ with
a non-null coe�cient.

The condition x < V (P ′) ensures that variable x is no longer bounded in P ′. As dynamic checking
of this condition is fast and easy, we only look for a way to build P ′ from P which ensures by
construction that P ⇒ P ′. For this purpose, we exploit Farkas’ lemma as follows. Internally, we
handle constraints in the form “t ./ 0” where t is a linear term and ./ ∈ {=, ≥, >}. Hence, each input
constraint “t1 ./ t2” is �rst normalized as “t1 − t2 ./ 0”. Then, we generate new constraints using
only the two operations of De�nition 2.2. Obviously, such constraints are necessarily implied by P .

De�nition 2.2 (Linear Combinations of Constraints). We de�ne operations + and · on normalized
constraints by

• (t1 ./1 0) + (t2 ./2 0) , (t1 + t2) ./ 0
where ./, max(./1, ./2) for the total increasing order induced by the sequence =, ≥, >.
• n · (t ./ 0) , (n · t) ./ 0

under preconditions n ∈ Q and, if ./ ∈ {≥, >} then n ≥ 0.

For example, P ′1 is generated from P1 by the script on the
right hand-side. Here tmp is an auxiliary constraint, where
variable x has been eliminated from C1 by rewriting using
equality C4.

tmp ← C4 + −1 ·C1
C ′1 ← C4
C ′2 ← 1

3 · (C3 + tmp)
C ′3 ← 1

3 · (C2 + −1 · tmp)

In the following, we study how to design – in OCaml– a certi�ed frontend Front.proj that
monitors Farkas’ combinations produced by an untrusted backend Back.proj. Section 3 will then
formalize Front.proj in Coq.

2.1 Simple (but Unsound) LCF Style

In a �rst step, we follow the LCF style introduced in Section 1. We thus consider two datatypes for
constraints: modules BackCstr and FrontCstr de�ne respectively the representation of constraints

Correct-By-Construction ML Oracles with Polymorphic LCF Style 7

for the backend and the frontend.
Each module is accessed both in the backend and in the
frontend, but the frontend representation is abstract for
the backend. Hence, the visible interface of FrontCstr for
the backend is given on the right-hand side. Type Rat.t

represents set Q, and add and mul represent respectively
operators + and · on constraints.

module FrontCstr: sig
type t
val add: t -> t -> t
val mul: Rat.t -> t -> t

end

Going back to our example, P ′1 is �rstly computed from P1 using backend constraints. This repre-
sentation allows �nding the solution by e�cient computations, combining complex datastructures,
GMP rationals and even �oating-point values. On the contrary, the frontend representation is
based on certi�ed code extracted from Coq. In particular, it uses internally the certi�ed rationals of
the Coq standard library, where integers are represented as lists of bits. Once a solution is found,
the backend thus rebuilds this solution in the frontend representation. For example, the following
function builds the certi�ed constraints of P ′1 from constraints of P1, according to the previous
Farkas combinations. Here, rational constants are written with an informal notation.

let build_P '1 (l: FrontCstr.t list): FrontCstr.t list =
match l with
| c1::c2::c3::c4::_ ->

let coeff = 1/3 and tmp = FrontCstr.add c4 (FrontCstr.mul −1 c1) in
[c4;

FrontCstr.mul coeff (FrontCstr.add c3 tmp);
FrontCstr.mul coeff (FrontCstr.add c2 (FrontCstr.mul −1 tmp))]

| _ -> failwith "unexpected input"

But making Back.proj return such a function is not so convenient. It is simpler to make Back.proj

compute the certi�ed constraints (of type FrontCstr.t), in parallel of its own computations. Hence,
we propose a �rst version of Back.proj, called Back.proj0, with the following type.

Back.proj0: (BackCstr.t * FrontCstr.t) list -> Var.t -> FrontCstr.t list

Let us de�ne two certi�ed functions: occurs: Var.t -> FrontCstr.t -> bool such that occurs x c

tests whether x ∈ V (c) and export: FrontCstr.t -> BackCstr.t that converts a frontend constraint
into a backend one. Then, we implement Front.proj as follows:

let Front.proj (p: FrontCstr.t list) (x: Var.t): FrontCstr.t list =
let bp = List.map (fun c -> (export c, c)) p in
let p' = List.map snd (Back.proj0 bp x) in
if List.exists (occurs x) p'
then failwith "oracle error"
else p'

Ideally – mimicking a LCF-style prover – function Back.proj0 uses type FrontCstr.t as a type of
theorems. It derives logical consequences of a list of constraints (of type FrontCstr.t) by combining
them with FrontCstr.mul and FrontCstr.add. Like in a LCF-style prover, there is no explicit “proof
object” as value of this theorem type.

Unfortunately, this approach is unsound. We now provide an example which only involves two
input polyhedra that are reduced to a single constant constraint. Let us imagine an oracle wrapping
function memofst given below. Assuming that it is �rst applied to the unsatis�able constraint 0 ≥ 1,
this �rst call returns 0 ≥ 1, which is a correct answer. However, when it is then applied to the
satis�able constraint 2 ≥ 0, this second call still returns 0 ≥ 1, which is now incorrect! This

8 Sylvain Boulmé and Alexandre Maréchal

unsoundness is severe, because even a faithful programmer could, by mistake, implement such a
behavior while handling mutable datastructures.

let memofst:FrontCstr.t -> FrontCstr.t =
let first = ref None in
fun c ->

match !first with
| None -> (first := Some c); c
| Some c' -> c'

2.2 Generating an Intermediate Certificate

To be protected against lying backends, we could introduce an intermediate datastructure repre-
senting a trace of the backend computation. Then, the frontend would use this trace to rebuild
the certi�ed result using its own certi�ed datastructures. Such a trace has the form of an Abstract
Syntax Tree (AST) and is called a certi�cate. This approach was used by Fouilhé et al. (2013) to
design the �rst version of the VPL. In the following, we detail the process of certi�cate generation
and why we prefer avoiding it.

We de�ne below a certi�cate type named pexp. It represents a type of polyhedral computations,
and depends on type fexp that corresponds to Farkas combinations. Constraints are identi�ed by
an integer. In pexp, we provide a Bind construct for computing auxiliary constraints like tmp in the
example of P ′1.

type fexp =
| Ident of int
| Add of fexp * fexp
| Mul of Rat.t * fexp

type pexp =
| Bind of int * fexp * pexp
| Return of fexp list

Figure 3 gives an example of certi�cate for P ′1, where each input constraint Ci is represented by
“Ident i”. The intermediate constraint tmp is bound to identi�er 5.

Bind (5, Add (Ident 4, Mul (−1, Ident 1)),

Return [Ident 4;

Mul (1/3, Add (Ident 3, Ident 5));

Mul (1/3, Add (Ident 2, Mul (−1, Ident 5)))])

Fig. 3. A certificate for P ′1

Next, we easily implement in Coq a Front.run interpreter of pexp certi�cates (corresponding to
the “checker” part of Figure 1) and prove that it only outputs a logical consequence of its input
polyhedron.

Front.run: pexp -> (FrontCstr.t list) -> (FrontCstr.t list)

Let us precise that when a pexp uses certi�cate identi�ers that have no meaning w.r.t to Front.run,
this latter fails. For the following, we do not need to precise how identi�ers are generated and
attached to constraints. We let this implementation detail under-speci�ed.

Now, we need to turn our Back.proj0 into a function Back.proj1 where each BackCstr.t con-
straint in input is associated to a unique identi�er.

Back.proj1: (BackCstr.t * int) list -> Var.t -> pexp

Correct-By-Construction ML Oracles with Polymorphic LCF Style 9

We get into another issue: Back.proj1 needs to deal with constraint identi�ers. In particular, it
must deal with fresh identi�ers for Bind according to their semantics in Front.run. But, this is very
painful to deal with such technical details inside the core of our backend oracles, which are already
full of tricky algorithms. This motivates the introduction of our new design pattern.

2.3 Polymorphic LCF Style

We generalize LCF style in order to solve its soundness issue, as justi�ed in Section 4. We also
conjecture that the approach of Section 3 provides a sound link between the backend and a Coq
extracted frontend, without the need for an intermediate AST. Moreover, an AST can still be
generated if needed for another purpose (see Section 6).

Our idea is very simple: instead of abstracting the “type of theorems” (i.e. type FrontCstr.t) using
an ML abstract datatype, we abstract it using ML polymorphism. Intuitively, the lying function
memofst from Section 2.1 exploits the fact that we have a static type of theorems, de�ned once for
all. But, when we interpret constraints of the result P ′ as theorems, they are relative to a given set
of axioms: the input constraints of P . Hence, we need to have a dynamic type, generated at each
call to the oracle. Using ML polymorphism, we actually express that our oracle is parameterized by
any of such dynamic type of theorems.

In practice, the type FrontCstr.t used in backend oracles, such as Back.proj, is replaced by 'c.
In order to allow the backend to build new “theorems” – i.e. Farkas combinations – we introduce a
polymorphic record type lcf (acronym of Logical Consequences Factory).

type 'c lcf = {

add: 'c -> 'c -> 'c;

mul: Rat.t -> 'c -> 'c

}

Then, the previous oracle Back.proj0 that we de�ned for the simple LCF style is generalized into

val Back.proj: 'c lcf -> (BackCstr.t * 'c) list -> Var.t -> 'c list

Intuitively, function Back.proj0 could now be rede�ned as (Back.proj {add=FrontCstr.add; mul=

FrontCstr.mul}).
We precise here that the type of Back.proj implementation must generalize the above signature,

and not simply unify with it. This directly forbids memofst trick. Indeed, if we remove the type
coercion from the preceding code of memofst, the type system infers memofst: '_a -> '_a where
'_a is an existential type variable introduced for a sound typing of references, see Wright (1995)
and Garrigue (2002). Hence, a cheating use of memofst would prevent Back.proj implementation
from having an acceptable type.

3 FORMALIZING PROJ FRONTEND IN COQ

In order to program and prove Front.proj in Coq, we need to declare Back.proj and its type in
Coq. This is achieved by turning Back.proj into a Coq axiom, itself replaced by the actual OCaml
function at extraction. However, such an axiom may be unsound w.r.t a runtime execution. In
particular, a Coq function f satis�es ∀x , (f x) = (f x). But, an OCaml function may not satisfy this
property, because of side-e�ects or because of low-level constructs distinguishing values considered
equal in the Coq logic. Section 3.1 recalls the may-return monad introduced by Fouilhé and Boulmé
(2014) to overcome this issue. Section 3.2 explains how PFS oracles are embedded in this approach.

10 Sylvain Boulmé and Alexandre Maréchal

3.1 Coq Axioms for External OCaml Functions

Let us consider the Coq example on the right
hand-side. It �rst de�nes a constant one as the
Peano’s natural number representing 1. Then, it
declares an axiom test replaced at extraction by
a function oracle . At last, a lemma congr is
proved, using the fact that test is a function.
The following OCaml implementation of oracle
makes the lemma congr false at runtime:
let oracle x = (x == one)

Definition one: nat := (S O).

Axiom test: nat → bool.
Extract Constant test ⇒ "oracle".

Lemma congr: test one = test (S O).
auto.

Qed.

Indeed (oracle one) returns true whereas (oracle (S O)) returns false, because == tests the
equality between pointers. Hence, the Coq axiom is unsound w.r.t this implementation. A similar
unsoundness can be obtained if oracle uses a reference in order to return true at the �rst call, and
false at the following ones.

Fouilhé and Boulmé (2014) solve this problem by axiomatizing OCaml functions using a no-
tion of non-deterministic computations. For example, if the result of test is declared to be non-
deterministic, then the property congr is no more provable. For a given type A, type ?A represents
the type of non-deterministic computations returning values of type A: type ?A can be interpreted
as P (A). Formally, the type transformer “ ?. ” is axiomatized as a monad that provides a may-return
relation{A: ?A→ A→ Prop. Intuitively, when “k : ?A” is seen as “k ∈ P (A)”, then “k { a” means
that “a ∈ k”. At extraction, ?A is extracted like A, and its binding operator is e�ciently extracted as
an OCaml let-in. See Fouilhé and Boulmé (2014) for more details.

For example, replacing the test axiom by “Axiom test : nat → ? bool” avoids the above
unsoundness w.r.t the OCaml oracle. The lemma congr can still be expressed as below, but it is
no longer provable.

∀ b b', (test one){b → (test (S O)){b' → b=b'.

3.2 Reasoning on PFS oracles in Coq

Let us now sketch how the frontend is formalized in Coq. We de�ne the type Var . t as positive –
the Coq type for binary positive integers. We build the module FrontCstr of constraints encoded
as radix trees over positive with values in Qc, which is the Coq type for Q. Besides operations
add and mul , module FrontCstr provides two predicates: (sat c m) expresses that a model
m satis�es the constraint c ; and (noccurs x c) expresses that variable x does not occur in
constraint c.

sat: t → (Var.t → Qc) → Prop.
noccurs: Var.t → t → Prop.

We also prove that sat is preserved by functions add and mul . Then, these predicates are lifted to
polyhedra p of type (list FrontCstr . t) .

Definition sat p m := List.Forall (fun c ⇒ FrontCstr.sat c m) p.
Definition noccurs x p := List.Forall (FrontCstr.noccurs x) p.

Because front_proj invokes a non-deterministic computation (the external oracle as detailed
below), it is itself a non-deterministic computation. Here is its type and its speci�cation:

front_proj: list FrontCstr.t → Var.t → ?(list FrontCstr.t).

Correct-By-Construction ML Oracles with Polymorphic LCF Style 11

Lemma front_proj_correctness: ∀ p x p',
(front_proj p x) { p' → (∀ m, sat p m → sat p' m) ∧ noccurs x p'.

We implement front_proj in PFS, as explained in Section 2.3. First, we declare a lcf record
type containing operations for frontend constraints. These operations do not need to be declared
as non-deterministic: in the Coq frontend, they will be only instantiated by pure Coq functions.
Then, back_proj is de�ned as a non-deterministic computation. The type of back_proj is given
uncurried in order to avoid nested “?” type transformers. At extraction, this axiom is replaced by a
wrapper of Back.proj from Section 2.3.

Record lcf A := { add: A → A → A; mul: Qc → A → A }.
Axiom back_proj: ∀ {A},

((lcf A) * (list (FrontCstr.t * A))) * Var.t → ?(list A).

Like in Section 2.3, back_proj receives each constraint in two representations: an opaque one of
polymorphic type A and a clear one of another type. For simplicity, this paper uses FrontCstr . t
as the clear representation.5

Now, let us sketch how we exploit our polymorphic back_proj to implement front_proj

and prove its correctness. For a given p : (list FrontCstr . t) , parameter A of back_proj is
instantiated with wcstr (sat p) where wcstr (s) is the type of constraints satis�ed by any model
satisfying s. In other words, wcstr (sat p) is the type of logical consequences of p, i.e. the type
of its Farkas combination. Hence, instantiating parameter A of back_proj by this dependent type
expresses that combinations from the input p and from the lcf operations are satis�ed by models
of p. Concretely, (front_proj p x) binds the result of (back_proj ((mkInput p) , x)) to
a polyhedron p ' and checks that x does not occur in p ' .

Record wcstr(s: (Var.t → Qc) → Prop) :=
{ rep: FrontCstr.t; rep_sat: ∀ m, s m → FrontCstr.sat rep m }.

mkInput: ∀ p, lcf(wcstr(sat p)) * list(FrontCstr.t * wcstr(sat p)).

Actually, we can see rep_sat above as a data-invariant attached to a rep value. This invariant is
trivially satis�ed on the input values, i.e. the constraints of p. And, it is preserved by lcf operations.
These two properties are re�ected in the type of mkInput . The polymorphism of back_proj is a
way to ensure that back_proj preserves any data-invariant like this one, on the output values.
The next section argues for the soundness of this Coq proof.

4 SOUNDNESS OF PFS ORACLES IN IMPERATIVEML

What are the conditions on the OCaml backend to ensure the correctness of our axiomatiza-
tion/proof in Coq? The backend must be at least type safe in the sense de�ned below. Actually, we
will precise this (too weak) �rst version in De�nition 4.2.

De�nition 4.1 (type safety (too weak version)). An external function is said type-safe if it only
accesses values of allocated locations according to the type of these locations, and if its result is
compatible with its declared types (see example and counter-example below). An OCaml function
is said type-safe if it is well-typed and if it only uses – directly or indirectly – type-safe external
functions.
5In order to avoid unnecessary conversions from FrontCstr.t to BackCstr . t (that would be hidden in back_proj
wrapper), our actual implementation uses instead an axiomatized type which is replaced by “BackCstr.t” at extraction:
this is similar to the implementation of Fouilhé and Boulmé (2014).

12 Sylvain Boulmé and Alexandre Maréchal

For example, the external constants Obj.obj: Obj.t -> 'a and Obj.magic: 'a -> 'b – which
are implemented by the identity function – are not type-safe, whereas an external constant like
Hashtbl.hash: 'a -> int – which actually only returns integers – is type-safe. However, at the
current state-of-the-art, we do not know whether type safety is su�cient. Indeed, the correctness
result on Coq extraction (Letouzey 2004, 2008) expresses that for any closed Coq term, the extracted
term performs the same computations as the source term. But, we do not know exactly at which
conditions the properties proved on a Coq function can be transferred into its extraction, when
the latter is applied to an input that is not itself extracted from Coq. Stating precisely such an
extended correctness result for Coq extraction is a challenge which is beyond the scope of this
paper. An intermediate step is to consider how we could prove the soundness of the particular
meta-reasoning done in Coq on our backend. This section shows that this meta-reasoning exploits
a weak parametricity property of ML polymorphic types, which we call parametric invariance.
This property expresses that (imperative) ML functions preserve any data-invariant attached to
their polymorphic type variables. It is proved with denotational models of ML reference types of
(Ahmed et al. 2002; Appel et al. 2007; Birkedal et al. 2011).

Section 4.1 recalls on examples the original parametricity of Wadler on pure system F. Section 4.2
illustrates how a Wadler’s proof based on parametric invariance can be expressed in Coq, using
the style of Section 3.2. Section 4.3 explains how parametric invariance is proved in the framework
provided by Ahmed et al. (2002); Appel et al. (2007); Birkedal et al. (2011); Hobor et al. (2010). At
last, Section 4.4 discusses the di�culties of establishing a full proof that our Coq design is sound.

4.1 Wadler’s Theorems for Free

Wadler (1989) demonstrates – on pure polymorphic lambda-calculus (i.e. system F with basic types)
– how to automatically deduce theorems about functions from their polymorphic types. These
theorems are themselves a consequence of a meta-theorem called parametricity, given here as two
statements:

(1) Any type T induces a relation LT M between values of T . Relation LT M is here noted as an
element of P (T ×T). IfT is a closed monomorphic type, then LT M is the extensional equality.
On polymorphic types, universal quanti�cation over types is interpreted as conjunction
over relations.

(2) for all closed terms t : T , we have (t , t) ∈ LT M.
This last property gives a “theorem for free” about t derived only from its type T . We illustrate this
on the following two examples pid:∀α ,α → α and discr:∀α ,α → int.

The relation L∀α ,α → αM associated to polymorphic type ∀α ,α → α is

{(f1, f2) | ∀ Rα x1 x2, (x1,x2) ∈ Rα ⇒ (f1 x1, f2 x2) ∈ Rα }

Hence, we deduce from (pid, pid) ∈ L∀α ,α → αM, that for any type T and x : T , by taking

Rα , {(x1, _) ∈ T ×T | x1 = x }

we have “∀x1,x1 = x ⇒ (pid x1) = x”. In other words, pid is identity.

Similarly, L∀α ,α → intM is {(f1, f2) | ∀Rα x1 x2, (x1,x2) ∈ Rα ⇒ (f1 x1) =int (f2 x2)}.
Hence, for any type T , taking Rα , T ×T , we deduce “∀(x1 x2 : T), (discr x1) = (discr x2)”.
Thus discr is constant.

Correct-By-Construction ML Oracles with Polymorphic LCF Style 13

Imperative ML languages do not satisfy Wadler’s parametricity, because they allow de�ning
non-constant functions of type 'a -> int, e.g. by returning a value depending on their number
of calls. This is also the case of ML languages providing a function like OCaml Hashtbl.hash (e.g.
a non-constant function of type 'a -> int). However, it seems that any OCaml implementation
of pid – that does not invoke (directly or indirectly) any external constant – is a pseudo-identity.
Actually, such a pid may not exactly be the identity because it may not terminate normally or
produce side-e�ects. More formally, we say that “pid is a pseudo-identity” when it satis�es “if
(pid x) returns normally a result y then y equals to x”.

In the following, we only consider parametric invariance: a weak version of parametricity
that associates to each type a predicate instead of a relation, i.e. a unary relation like {(x1, _) ∈
T × T | x1 = x } above. This predicate is here called an invariant: all values of a given ML type
satisfy its corresponding invariant.

4.2 Theorems for Free on ML Code through Coq Extraction

Wadler’s proof that pid is a pseudo-identity is now mimicked in Coq and its extraction process.
We actually follow the style of Section 3.2: a theorem about a ML polymorphic function is proved
“for free” by instantiating its polymorphic type variable on a dependent type.

Let us build a Coq function cpid which extraction is “let cpid x = pid x”, and which is proved
to be a pseudo-identity. In the Coq source, for a type B and a value x : B, (cpid x) invokes pid

on the type { y | y = x } , which constrains it to produce a value that is equal to x. Below,
operators >>= and ret are respectively the bind and unit operators of the may-return monad
presented in Section 3.1. Function proj1_sig returns the �rst component of a dependent pair of
type { y : B | y=x } : its result has type B.

Axiom pid: ∀ {A}, A → ? A.

Program Definition cpid {B} (x:B): ? B :=
(pid (A:={ y | y = x }) x) >>= (fun z ⇒ ret (proj1_sig z)).

Lemma cpid_correct A (x y:A): (cpid x) { y → y=x.

Let us point out that we cannot prove in Coq that pid – declared as the axiom given above – is
a pseudo-identity. Indeed, we provide a model of this axiom where pid detects – through some
dynamic typing operators – if its parameter x has a given type Integer and in this case returns a
constant value, or otherwise returns x. Such a counter-example already appears in (Vytiniotis and
Weirich 2007). This function is now provided in Java syntax.

final static Integer o = new Integer (0);
static <A> A pid(A x) {

if (x instanceof Integer) / / A i s I n t e g e r , b e c a u s e I n t e g e r i s f i n a l
return (A)o;

return x;
}

The soundness of cpid extraction is thus related to a nice feature of ML: type-safe polymorphic
functions cannot inspect the type to which they are applied. In other words, type erasure in ML
semantics ensures that ML functions handle polymorphic values in a uniform way: this is the
motivation for parametricity reasoning.

However, a similar counter-example can be built for OCaml by using an external C function that
is sound with type 'a -> 'a (i.e. for all ML type T , it behaves like a function of type T → T). Such

14 Sylvain Boulmé and Alexandre Maréchal

a function inspects the bit of its parameter that tags unboxed integers, and returns integer 0 when
instantiated on type int, or behaves like an identity otherwise. Here, we see that De�nition 4.1 is
not strong enough, since it allows such an implementation of type 'a -> 'a. We will thus �x this
de�nition in Section 4.4.

In summary, our Coq proof is not about pid, but about cpid which instantiates pid on a dependent
type. Actually, cpid and pid coincide, but only in the extracted code. We recover here an idea
of Bernardy and Moulin (2012, 2013): our parametricity proofs correspond to the fact that the
invariants instantiating polymorphic type variables in the Coq proofs are syntactically removed
by Coq extraction. The parametric invariance theorem presented in the next section ensures that
these invariants are still preserved on the extracted ML code.

4.3 Formalization of Parametric Invariance in Step-Indexed Kripke Models

The formalization of parametric invariance appears in (Birkedal et al. 2011) for a variant of System
F extended with higher-order references a la ML. Their article provides a denotational model for
this type system. The semantics of a type is called “unary logical relation” by Birkedal et al.: it
actually formalizes what we have called “invariant”. From our applications-centric point-of-view,
we prefer “invariant” to “unary logical relation”.

Let us now motivate why such a denotational model is necessarily complex. Let us consider
the following fixpoint function of type (('a -> 'b) -> ('a -> 'b)) -> 'a -> 'b which builds a
generic �xpoint operator from a higher-order ML reference, but without explicit recursion.

let fixpoint f =

let fix = ref (fun x -> failwith "init") in

(fix := fun x -> f (!fix) x);

!fix;;

Typically, any recursive function is then de�nable from fixpoint like the following Fibonacci
function:

let fib: int -> int =

fixpoint (fun f n -> if n <= 1 then n else f(n-1)+f(n-2))

In order to represent values storable at location fix in the heap, the set of heaps must itself be
represented as a kind of recursive set. Indeed, heaps are map from memory locations to values, and
values can contain functions depending on heaps. But such a recursive set can not be de�ned in
naive set-theoretic models of typed lambda-calculi. Thus, Ahmed et al. (2002) have proposed to
represent heaps by using a family of sets, itself indexed by a number of “computation steps” de�ned
from small-step semantics. Alternatively, in (Birkedal et al. 2011), heap invariants correspond to
worlds of a Kripke model that are recursively de�ned in a category of ultra-metric spaces.

This section summarizes how we have adapted the proof of parametric invariance outlined
by Birkedal et al. (2011) on a tiny subset of imperative ML. See Appendix A for the full details.
Actually, our proof is not fully faithful to Birkedal et al., because we do not de�ne worlds through
ultra-metric spaces. We instead keep the original step-indexed approach of Ahmed et al. (2002) and
further developed in (Appel et al. 2007; Hobor et al. 2010) that Birkedal et al. have generalized. This
more elementary approach is su�cient to prove parametric invariance. Birkedal et al. are indeed
more ambitious: they prove the soundness of a separation logic.

The step-indexed model of Ahmed et al. provides a denotational model for types of polymorphic
and imperative lambda-calculus. It also provides a proof of type safety w.r.t a small-steps semantics.
Birkedal et al. reformulates this model into a model of invariants. In other words, whereas Ahmed
et al. have a purely semantic de�nition of types, Birkedal et al. introduces a syntax for types. This

Correct-By-Construction ML Oracles with Polymorphic LCF Style 15

allows distinguishing between types (syntax) and invariants (semantics). This clari�es the powerful
interpretation of polymorphic types where type variables are substituted by invariants, which are
not necessarily themselves associated to an existing type. Let us recall the pid example where we
have replaced type variable 'a by invariant { y | y = x } which is not the one of a ML type. In
particular, the invariant of such a polymorphic type – called here a “parametric invariant” – is
impredicative (its variables range over all invariants, including itself). Hence, “type preservation”
theorem of Ahmed et al. is reformulated into an “invariant preservation” theorem. As underlined
above, this theorem demonstrates that ML evaluation preserves richer “types” than ML types.
This is a required step on the path to prove that, under some conditions that are still to precisely
determine, ML evaluation preserves types given in Coq through extraction.

A minor contribution of our formalization is to target a ML type system with the standard
value-form restriction (Wright 1995), which provides a sound type inference of polymorphic types
in presence of references. On the contrary, the type system studied by Ahmed et al. provides
unrestricted polymorphism, which requires explicit annotations from users. For example, in ML, an
expression like “ref(fun x -> x)” is of type “('_a -> '_a) ref” where type variable '_a can not
be generalized without breaking type preservation. This problem does not appear in imperative
system F. Indeed, either the user introduces a reference to a polymorphic value like “ref (Λα , λx:α ,x)”
of type “ref (∀α ,α → α)” which has no equivalent in ML (because this type is not in prenex form).
Or, the user introduces a polymorphic allocation like “Λα , ref (λx:α ,x)” of type “∀α , ref (α → α)”
and which semantics is to allocate a reference at each instantiation of α . Polymorphic ML values of
type “unit -> (('a -> 'a) ref)” have actually the same behavior: a reference is allocated at each
function call.

Moreover, as we consider the progress property as an orthogonal issue, we have slightly simpli�ed
the original framework by considering big-steps semantics instead of small-steps. This makes
straightforward our adaptation of Ahmed et al. proof.

Let us now detail the results of our formalization. It de�nes a partially ordered Kripke frame
(W ,v) whereW is a set equipped with a partial order v. A worldw ofW represents a heap context:
a �nite map from heap locations to sets of values. And w1 v w2 means that w2 extends w1 by
allocating new locations.6 This Kripke frame leads to a Kripke model of intuitionistic logic where
propositions are set of worlds that are closed for v

Prop , { p ∈ P (W) | ∀w1w2, (w1 v w2 ∧ w1 ∈ p) ⇒ w2 ∈ p }

GivenV the set of ML values, an invariant ι is by de�nition a function ofV → Prop. An invariant
context I is a �nite map from type variables α to invariants. Given a polymorphic type σ and an
invariant context I such that FV(σ) ⊆ dom(I), we associate to σ an invariant written JσKI . We do
not detail here the formal de�nition of JσKI and only use its properties detailed below.

The theorem of parametric invariance depends on the polymorphic typing of closed expressions
` e : σ – meaning that expression e has type σ – and usual big-steps semantics 〈e/h〉 ⇓ 〈v/h′〉 –
meaning that expression e for initial heap h evaluates to value v with �nal heap h′. This theorem is
actually a simple consequence of the “invariant preservation” theorem mentioned above. It su�ces
to ensure that any value computed from a well-typed closed expression satis�es the invariant
associated to its type.

6Worlds also contain a strati�cation (or step-indexed) level in order to build the recursive structure ofW by approximations.
This level bounds the number of dereference steps allowed to the current evaluation. Hence, w1 v w2 also forbids the
strati�cation level of w2 to increase w.r.t the one of w1. But, these details can remain hidden when applying our main
results.

16 Sylvain Boulmé and Alexandre Maréchal

Theorem (Parametric Invariance).
Under assumptions FV(σ) ⊆ dom(I) and ` e : σ and 〈e/h〉 ⇓ 〈v/h′〉
we have JσKI (v) , ∅

The following lemma of invariants instantiation is convenient for reasoning with parametric
invariants, as shown on the example below. It abstracts big-steps 〈e/h〉 ⇓ 〈v/h′〉 as the may-return
judgment w e { v – formally de�ned in Appendix – where the �nal heap h′ is hidden and the
initial heap h is abstracted as a world w . This is formally expressed by the following lemma.
Lemma (May-Return Abstraction). ∃w,w e { v ⇔ ∃h,∃h′, 〈e/h〉 ⇓ 〈v/h′〉

Lemma (Invariants Instantiation). Assuming FV(σ) ⊆ dom(I), invariant JσKI satis�es the
following properties according to the syntax of σ :

• for type variable α , JαKI = I [α]
• for basic type β , JβKI (v) = if ` v : β thenW else ∅
• for two open monomorphic types τ1 and τ2, propertyw ∈ Jτ1 → τ2KI (v) implies that for all

value v1 such thatw ∈ Jτ1KI (v1) and all value v2 such thatw (v v1) { v2, there existsw ′

such thatw v w ′ andw ′ ∈ Jτ2KI (v2)
• for all σ , for all invariant ι, if α < dom(I) then J∀α ,σKI (v) ⊆ JσKI ;{α 7→ι } (v) where I ; {α 7→ ι}
is the map extending I by associating invariant ι to type variable α .

Example (Reasoning with Parametric Invariants).
Let us assumew ∈ J∀α ,α → αKI (v) andw (v v1) { v2. We can prove v2 = v1.

Proof. We instantiate the parametric invariant in hypothesis w ∈ J∀α ,α → αKI (v). Let us
choose α < dom(I) and let us de�ne ι (v0) , { w ∈W | v0 = v1 }. We get w ∈ Jα → αKI ;{α 7→ι } (v).
Since JαKI ;{α 7→ι } (v1) =W , we have JαKI ;{α 7→ι } (v2) , ∅. Hence, v2 = v1. �

Our formalization also provides an inversion lemma to reason about may-return relations (see
Appendix). This allows conducting correctness proofs on frontend computations involving oracles
– like front_proj_correctness – in the style of Section 3.2.

4.4 Toward a Soundness Result about Coq Extraction in Presence of External Code

For the sake of simplicity, our formalization in Appendix involves only pure external constants
in OCaml (i.e. external constants that do not access the heap). But we can accept a large class of
external constants as soon as they satisfy our “invariant preservation” property. This leads us to
the following revised version of type safety.

De�nition 4.2 (Type Safety (Revised Version)). An OCaml function is said type-safe if it does use
– directly or indirectly – only external constants that satisfy their ML type and their associated
parametric invariant.

This revised version is thus strictly stronger than the unsound De�nition 4.1. For instance, it
may accept external polymorphic constants like “Weak.get: 'a Weak.t -> int -> 'a option” only
if some expert is able to ensure that they satisfy the associated parametric invariants.

However, for constants with a closed monomorphic type, the two versions of type safety are
equivalent. In other words, the invariant associated to a closed monomorphic type trivially holds
for any constant satisfying the type preservation property. Hence, we may hope to check such a
property on monomorphic external constants with standard static analysis tools.
Conjecture 4.3. Assuming that our oracle is type-safe (following De�nition 4.2), we conjecture

that our proof in Coq of Section 3.2 is sound: the property proved on the frontend in Coq cannot be
wrong when the front-end is extracted and linked to the actual oracle.

Correct-By-Construction ML Oracles with Polymorphic LCF Style 17

In order to prove this conjecture, we would need to extend the correctness of Coq extraction
proved by Letouzey (2004). Typically, we would expect a result stating that under some conditions
which remain to be precisely established, a function extracted from Coq could be applied to impure
ML values while still satisfying the properties proved in Coq.

The proof of (Letouzey 2004) suggests that this result probably requires to de�ne a type system
that both embeds CIC (the type system behind Coq) and impure ML, in order to de�ne the extraction
as a transformation within this type system. Such a type system would both allow expressing
the typing judgments and the evaluation rules of CIC and ML, with ML computations boxed in a
monad. Moreover, in this framework, CIC types would abstract step-indexed Kripke semantics of
their extraction.

Building such a framework seems far beyond the scope of this paper. Moreover, there would
probably still have a big gap between the ML fragment embedded in this hypothetical type system
and the actual OCaml implementation.

5 THE FLEXIBLE POWER OF PFS ILLUSTRATED ON CONVEX-HULL

This section provides an advanced usage of polymorphic factories through the join operator. It
illustrates the �exible power of PFS, by deriving join from the projection operator of Section 2.3.
On this join oracle, PFS induces a drastic simpli�cation by removing many cumbersome rewritings
on certi�cates. Indeed, we simply derive the certi�cation of the join operator by invoking the
projection operator on a direct product of factories. As we detail below, such a product computes
two independent polyhedral inclusions, in parallel.

In abstract interpretation, join approximates the disjunction of two
invariants. For the abstract domain of polyhedra, this disjunction
geometrically corresponds to the union of two polyhedra P ′ ∪ P ′′.
However, in general, such a union is not a convex polyhedron.
Operator join thus overapproximates this union by the convex
hull P ′ t P ′′ that we de�ne as the smallest convex polyhedron
containing P ′ ∪ P ′′. For instance, given

P ′ , {x1 ≤ 0, x2 ≤ 0,x1 ≥ −1, x2 ≥ −1}

P ′′ , {x1 ≥ 0, x2 ≥ 0,x1 + x2 ≤ 1}
then, as illustrated on the right hand-side �gure,
P ′tP ′′ , {x1 ≥ −1, x2 ≥ −1, x1+x2 ≤ 1, x2−x1 ≥ −1, x2−x1 ≤ 1}

The correctness of join, given in De�nition 5.1, is reduced to two implications themselves proved
by Farkas’ lemma. More precisely, on a computation (join P ′ P ′′), the oracle produces internally
two lists of Farkas combinations that build a pair of polyhedra (P1, P2) satisfying P ′ ⇒ P1 and
P ′′ ⇒ P2. Then, the front-end checks that P1 and P2 are syntactically equal. If the check is successful,
it returns polyhedron P1.

De�nition 5.1 (Correctness of join). Function join is correct i� any result P for a computation
(join P ′ P ′′) satis�es (P ′ ⇒ P) ∧ (P ′′ ⇒ P) .

5.1 Extended Farkas Factories

The factory operations of De�nition 2.2 are su�cient to compute any result of a projection, but they
do not su�ce for the convex-hull and more generally for proving all kinds of polyhedra inclusions.
The de�nition 5.2 given here completes this set of operations. The following lemma ensures its

18 Sylvain Boulmé and Alexandre Maréchal

completeness for proving polyhedra inclusions. It extends Lemma 1.1 for polyhedra with equalities
and strict inequalities.

De�nition 5.2 (Extended Farkas Combination). Besides operations + and · of De�nition 2.2, an
extended Farkas combination may invoke one of the three operations:

• weaken: ⇓ (t ./ 0) , t ≥ 0, for all linear term t and ./∈ {=, ≥, >}.
• cte(n, ./) , n ./ 0 assuming n ∈ Q and n ./ 0.
• merge: (t ≥ 0) & (−t ≥ 0) , (t = 0), for all linear term t .

Lemma 5.3 (Extended Farkas Lemma). Let P1 and P2 be two convex polyhedra on Q such that
P1 ⇒ P2. Then,

• either P1 is empty and a contradictory constant constraint (e.g. 0 > 0) is a Farkas combination
of P1,

• or each constraint of P2 is an extended Farkas combination of P1.

Proof. The proof has three cases.
(1) If P1 is unsatis�able, then we build the expected contradictory constant constraint using

Fourier-Motzkin elimination, i.e. by successive projection of each variable of P1. Actually,
this contradictory constant is built by using only operations from De�nition 2.2.

(2) Otherwise, let “t ./ 0” be a constraint of P2 such that ./∈ {≥, >}. By hypothesis, P1 ⇒
P2, so in particular P1 ⇒ t ./ 0. By de�ning the complementary of ./ (written ./) as
{≥, >}\{./}, we get that polyhedron P1 ∧ −t ./ 0 is unsatis�able. By the proof of case (1),
there exists a contradictory constant constraint −λ0 ./′ 0 where ./′∈ {≥, >,=} such that
−λ0 =

∑k
i=1 λi .ti − λk+1.t and for all i , λi ≥ 0 and P1 ⇒ ti ≥ 0. Moreover λk+1 > 0,

otherwise P1 would be unsatis�able. Thus, we have t = 1
λk+1
· (λ0 +

∑k
i=1 λi .ti).

Hence, constraint t ≥ 0 is generated by combining only constraints of P1 and constraint
cte(λ0, ≥) with operators + and ·, and possibly a �nal ⇓. If λ0 > 0, then constraint t > 0
is also generated in a similar way but from cte(λ0, >) (and avoiding ⇓). Let us consider
the case where ./ is > and λ0 = 0. In this case, ./′ is > (because 0 ./′ 0 is contradictory)
whereas ./ is ≥. Thus, there exists i ∈ [1,k] such that λi > 0 and ti > 0 is a constraint of
P1. Hence, t > 0 is generated from P1 constraints using only operations of De�nition 2.2.

(3) If P1 is satis�able. Let “t = 0” be a constraint of P2. We build this constraint as the result of
operator “&” on the two extended Farkas combinations associated to inclusions P1 ⇒ t ≥ 0
and P1 ⇒ −t ≥ 0.

�

From now on, we only consider extended Farkas combina-
tions and omit the adjective “extended”. De�nition 5.2 leads
to extend our factory type as given on the right hand-side.
Here, constant top of the factory corresponds to a constraint
noted> and de�ned as a shortcut for cte(0,=) that encodes
constraint 0 = 0. Hence, > is neutral for operations + and ·
on constraints. It is thus a very convenient default value in
our PFS oracles.
Fields weaken and merge correspond respectively to opera-
tors ⇓ and &. Type cmpT is our enumerated type of compar-
isons representing {≥, >,=}.

type 'c lcf = {
top: 'c;
add: 'c -> 'c -> 'c;
mul: Rat.t -> 'c -> 'c;
weaken: 'c -> 'c;
cte: Rat.t -> cmpT -> 'c;
merge: 'c -> 'c -> 'c;

}

Correct-By-Construction ML Oracles with Polymorphic LCF Style 19

5.2 Encoding join as a Projection

Most polyhedra libraries use the double representation of polyhedra, as constraints and as gener-
ators. Computing the convex hull P ′ t P ′′ using generators is easy. It consists in computing the
union of generators and in removing the redundant ones. In constraints-only, the convex hull is
computed as a projection problem, following the algorithm of Benoy et al. (2005). The convex hull
is the set of convex combinations of points from P ′ and P ′′, i.e.{

x | x ′ ∈ P ′, x ′′ ∈ P ′′, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = α ′ · x ′ + α ′′ · x ′′
}

(1)

To express that a point belongs to a polyhedron in a more computational way, we introduce
the following matrix notation. We denote x ′ ∈ P ′ by A′x ′ ≥ b ′, where each line of this system
represents one constraint of P ′. Similarly, x ′′ ∈ P ′′ is rewritten into A′′x ′′ ≥ b ′′. The previous set
of points (1) becomes{

x | A′x ′ ≥ b ′, A′′x ′′ ≥ b ′′, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = α ′ · x ′ + α ′′ · x ′′
}

(2)

Then, by projecting variables α ′, α ′′, x ′ and x ′′, we obtain P ′ t P ′′. Note that we cannot use
directly operator proj to compute this projection because the set of points (2) is de�ned with a
nonlinear constraint x = α ′ · x ′ +α ′′ · x ′′. To overcome this issue, we apply the changes of variable
y ′ := α ′ · x ′ and y ′′ := α ′′ · x ′′. By multiplying matrix A′x ′ ≥ b ′ by α ′ and A′′x ′′ ≥ b ′′ by α ′′,
we obtain equivalent systems A′y ′ ≥ α ′ · b ′ and A′′y ′′ ≥ α ′′ · b ′′. The set of points (2) is now
described as

PH ,
{
x | A′y ′ ≥ α ′ · b ′, A′′y ′′ ≥ α ′′ · b ′′, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = y ′ +y ′′

}
(3)

For our previous example, PH is the set of points x , (x1,x2) that satisfy

−y ′1 ≥ 0, −y ′2 ≥ 0, y ′1 ≥ −α
′, y ′2 ≥ −α

′

y ′′1 ≥ 0, y ′′2 ≥ 0, −y ′′1 − y
′′
2 ≥ −α

′′

α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1
x1 = y

′
1 + y

′′
1 , x2 = y

′
2 + y

′′
2

Operator join �nally consists in projecting variables α ′, α ′′, y ′ and y ′′ from PH . The presence
of equalities or strict inequalities requires an additional pass that follows the projection, involving
operators weaken and merge of the factory. We omit this step in the paper in order to keep our expla-
nations simple. Moreover, in practice, encoding (3) could be done more e�ciently by considering
less variables, exploiting the fact that α ′′ = 1 − α ′ and y ′′ = x − y ′. But as this complicates the
understanding and does not a�ect much the certi�cation, we will not consider this improvement.

In the following, we compare certi�cate style to PFS for proving join from results of proj. In
order to have a simpler presentation, we limit here to the case where polyhedra contain only non
strict inequalities.

5.3 Proving join with Certificates

As previously explained about De�nition 5.1, the correctness of join is ensured by building P
from two Farkas combinations, one of P ′ and one of P ′′. Fouilhé et al. (2013) described how to
extract such combinations from the result of the projection of PH . As in the rest of the polyhedra
library they developed, they proceeds in a skeptical way with certi�cates. Thus, their join has the
following type:

Back.join1 : (BackCstr.t * int) list -> (BackCstr.t * int) list ->
pexp * pexp

20 Sylvain Boulmé and Alexandre Maréchal

It takes the two polyhedra P ′ and P ′′ as input, and each of their constraint is attached to a unique
identi�er, as explained in Section 2.2. It returns two certi�cates of type pexp, one for each inclusion
P ′ ⇒ P and P ′′ ⇒ P of De�nition 5.1.

Let us now detail how Fouilhé et al. retrieve such certi�cates from the projection of PH . Consider
operator Back.proj2_list that extends Back.proj2 from Section 2 by projecting several variables
one after the other instead of a single one. Assume that Back.proj2_list PH [x1, . . . ,xq] returns
(P, Λ) where Λ is a certi�cate of type pexp showing that P is a logical consequence of PH . Actually,
Λ can be viewed as a matrix where each line contains the coe�cients of a Farkas combination of
PH , and it ful�lls

Λ · PH = P (4)
Fouilhé et al. showed that Λ can be decomposed into three parts: Λ1 speaking about constraints of
P ′, Λ2 speaking about constraints of P ′′ and Λ3 speaking about remaining constraints.

{x | A′y ′ ≥ α ′ · b ′︸ ︷︷ ︸
Λ1

, A′′y ′′ ≥ α ′′ · b ′′︸ ︷︷ ︸
Λ2

, α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1, x = y ′ +y ′′︸ ︷︷ ︸
Λ3

}

Note that equation (4) holds whatever the value of variables α ′, α ′′, y ′ andy ′′. The key idea is to
assign values to the projected variables α ′, α ′′, y ′ and y ′′ in encoding (3). Considering assignment
σ1 , (α ′ = 1, α ′′ = 0, y ′′ = 0), it becomes {x | A′y ′ ≥ b ′︸ ︷︷ ︸

Λ1

, 0 ≥ 0︸︷︷︸
Λ2

, 1 ≥ 0, 0 ≥ 0, 1 + 0 = 1, x = y ′︸ ︷︷ ︸
Λ3

}

that simpli�es into
{x | A′x ≥ b ′︸ ︷︷ ︸

Λ1

, 1 ≥ 0︸︷︷︸
Λ3

} (5)

which is equivalent to P ′. Let us call λ the coe�cient of 1 ≥ 0 in Λ3. Then, we deduce from
(Λ1 · A′)x ≥ b ′ + λ · (1 ≥ 0) = P that P ′ ⇒ P . The same reasoning applied with assignment
σ2 , (α ′ = 0, α ′′ = 1, y ′ = 0) leads to P ′′ ⇒ P .

5.4 Proving join with a Direct Product of Polymorphic Farkas Factories

In PFS, the oracle of join has the following type :

Back.join : 'c1 lcf -> (BackCstr.t * 'c1) list ->
'c2 lcf -> (BackCstr.t * 'c2) list -> 'c1 list * 'c2 list

Polyhedra P ′ and P ′′ come with their own polymorphic type, respectively 'c1 and 'c2. The polymor-
phic type of Back.join ensures that it returns a pair of polyhedra (P1, P2) of type 'c1 list * 'c2 list

such that P ′ ⇒ P1 and P ′′ ⇒ P2. In practice, P1 and P2 should represent the same polyhedron. As a
consequence, Back.join must take as parameters two factories, one for each polymorphic type.

We said that for computing the convex hull, join projects variables α ′, α ′′, y ′ and y ′′ from PH .
Recall that the projection operator that we de�ned for PFS in Section 2.3 has type

Back.proj: 'c lcf -> (BackCstr.t * 'c) list -> Var.t -> 'c list

As we did for the certi�cate approach, let us de�ne Back.proj_list that extends Back.proj by
projecting a list of variables.

Back.proj_list: 'c lcf -> (BackCstr.t * 'c) list -> Var.t list -> 'c list

At this point, we instantiate the factory of Back.proj_list in order to produce the pair of
polyhedra with their two distinct polymorphic types. Indeed, although the parameter 'c lcf of
Back.proj_list is designed to be provided by the frontend, nothing prevents it from being tuned

Correct-By-Construction ML Oracles with Polymorphic LCF Style 21

by the backend. This is where the �exibility of PFS comes into play! We combine the two factories
of types 'c1 lcf and 'c2 lcf into a new one of type ('c1*'c2) lcf as follows.
let factory_product (lcf1: 'c1 lcf) (lcf2: 'c2 lcf) : ('c1 * 'c2) lcf =
{

top = (lcf1.top , lcf2.top);
add = (fun (c1,c2) (c1 ',c2 ') -> lcf1.add c1 c1', lcf2.add c2 c2 ');
mul = (fun r (c,c') -> lcf1.mul r c, lcf2.mul r c');
weaken = (fun (c,c') -> lcf1.weaken c, lcf2.weaken c');
cte = (fun r cmp (c,c') -> lcf1.cte r cmp c, lcf2.cte r cmp c');
merge = (fun (c1,c1 ') (c2,c2 ') -> lcf1.merge c1 c1', lcf2.merge c2 c2 ');

}

This new factory computes with frontend constraints from P ′ and P ′′ in parallel: it corresponds to
the direct product of the two Farkas factories. Still, to be able to use such a factory, each backend
constraint must be attached to a frontend constraint of type 'c1 * 'c2.

Constraints of P ′ – that have type (BackCstr.t * 'c1) – are converted into type (BackCstr.t *

('c1 * 'c2)) by being attached to constraint lcf2.top of type 'c2. Similarly, constraints of type
(BackCstr.t * 'c2) are attached to constraint lcf1.top of type 'c1. Then, we apply the changes of
variabley ′ := α ′ ·x ′ andy ′′ := α ′′ ·x ′′ as explained above. But actually, we do not need to apply these
changes of variable on frontend constraints. As mentioned earlier, the two Farkas combinations of
join are found by evaluating the result of the projection of PH on two assignments, respectively σ1
and σ2. This evaluation makes variables y ′ and y ′′ both vanish, as in Equation (5). Thus, to build
the frontend version of constraints of PH , we evaluate them directly on each assignment as follows:

BackCstr.t −→ BackCstr.t * ('c1 * 'c2)

A′x ′ ≥ b ′

A′1x
′ ≥ b ′1 −→ A′1y

′ ≥ b ′1 , (
[
A′1y

′ ≥ α ′b ′1
]
σ1︸ ︷︷ ︸

A′1x
′≥b′1

, [>]σ2)

...
A′px

′′ ≥ b ′p −→ A′py
′ ≥ b ′p , (

[
A′py

′ ≥ α ′b ′p
]
σ1︸ ︷︷ ︸

A′px
′≥b′p

, [>]σ2)

A′′x ′′ ≥ b ′′

A′′1 x
′′ ≥ b ′′1 −→ A′′1y

′′ ≥ b ′′1 , ([>]σ1 ,
[
A′′1y

′′ ≥ α ′′b ′′1
]
σ2︸ ︷︷ ︸

A′′1x
′′≥b′′1

)

...
A′′qx

′ ≥ b ′′q −→ A′′qy
′′ ≥ b ′′q , ([>]σ1 ,

[
A′′qy

′′ ≥ α ′′b ′′q
]
σ2︸ ︷︷ ︸

A′′qx ′′≥b′′q

)

Finally, we add constraints α ′ ≥ 0, α ′′ ≥ 0, α ′ + α ′′ = 1. As others, these constraints need to
have type BackCstr.t * ('c1 * 'c2). However, they contain variables α ′ and α ′′ that were not
present in the input polyhedra P ′ and P ′′. Here again, we build directly their evaluation in σ1 and
σ2. Constraints 1 ≥ 0 and 0 ≥ 0 are built in types 'c1 or 'c2 thanks to operator cte from factories
lcf1 and lcf2. Note that α ′ + α ′′ = 1 is not given here because it evaluates to (>,>), and can
therefore be discarded.

BackCstr.t −→ BackCstr.t * ('c1 * 'c2)
α ′ ≥ 0 −→ α ′ ≥ 0 , (

[
α ′ ≥ 0

]
σ1︸ ︷︷ ︸

1≥0

,
[
α ′ ≥ 0

]
σ2︸ ︷︷ ︸

0≥0

)

α ′′ ≥ 0 −→ α ′′ ≥ 0 , (
[
α ′′ ≥ 0

]
σ1︸ ︷︷ ︸

0≥0

,
[
α ′′ ≥ 0

]
σ2︸ ︷︷ ︸

1≥0

)

22 Sylvain Boulmé and Alexandre Maréchal

As an example, let us focus on the proof that P ′ and P ′′ both imply −x1 − x2 ≥ −1, which is a
constraint of P ′ t P ′′. We build PH as described above, and obtain from its projection a frontend
constraint, that is

(−x1 ≥ 0, 0 ≥ 0) + (−x2 ≥ 0, 0 ≥ 0) + (1 ≥ 0, 0 ≥ 0) + (0 ≥ 0, −x1 − x2 ≥ −1)

= (−x1 − x2 ≥ −1, −x1 − x2 ≥ −1)

The left hand side of each term is the frontend constraint of type 'c1, and the one on the right
hand side is of type 'c2. From P ′ point of view, we obtain −x1 − x2 ≥ −1 as the combination of
−x1 ≥ 0, −x2 ≥ 0 and the constant constraint 1 ≥ 0 that comes from α ′ ≥ 0. On the other hand,
−x1 − x2 ≥ −1 is a constraint of P ′′ and is directly returned as a frontend constraint of type 'c2.
The projection returns such results for each constraint of the convex hull P ′ t P ′′.

In conclusion, with a well chosen factory, we de�ne our PFS join as a simple call to proj_list.
This makes our implementation much simpler than Fouilhé’s one, where the two certi�cates of join
are obtained from the one of proj_list by tedious rewritings that perform on-the-�y renamings of
constraint identi�ers.

6 GENERATING COMPACT CERTIFICATES FROM A PFS ORACLE

We designed PFS in order to avoid certi�cate generation in a skeptical approach based on Coq
extraction. Yet, certi�cates are still useful for other applications. This section demonstrates that
PFS is also relevant in this case.

For example, Boulmé and Maréchal (2017) have embedded the guard oracle of the VPL inside a
Coq tactic that simpli�es Coq proofs thanks to polyhedral computations. This tactic requires an
OCaml oracle that produces a Coq AST – i.e. a kind of certi�cate – typechecked by the Coq kernel.
This AST represents a polyhedral computation, itself encoded as a value of a Coq inductive type
– similar to the pexp type of Section 2.2. The tactic then applies a Coq version of the Front.run

interpreter of Section 2.2 to this certi�cate of type pexp.
Certi�cates could also provide a way to reduce the TCB w.r.t. our current approach. We could

imagine certifying each run of our OCaml oracles by generating a Coq term representing this run.
For example, this term would be dumped in a Coq source �le (in Gallina syntax) and checked by
the Coq compiler. Coq extraction and OCaml would no longer be part of the TCB. With respect to
the above tactic, this would also avoid trusting the dynamic loading of oracles in the Coq runtime.
But, obviously, this approach would make our library much more complicated to integrate into
realistic software.

Now, let us explain why PFS is very relevant to implement certi�cate generating oracles. As
detailed in Section 2.3 and in Section 5, polymorphic factories provide an abstract layer that
simpli�es the implementation of oracles. The code generating certi�cates can then be easily
factorized for a family of oracles, as illustrated in Section 6.1. Moreover, by de�ning a well chosen
factory, we produce a compact AST without slowing too much its generation. This factory actually
produces a DAG, from which the �nal AST is extracted after a dependency analysis. For example,
intermediate results that are actually not needed for the AST are discarded. Similarly, when an
intermediate computation is used at least twice, we de�ne a binder that stores this result into an
intermediate variable. These two optimizations, explained in Section 6.3, avoid useless or redundant
computations in the AST interpreter. Another optimization is performed on the DAG: top nodes
are eliminated, and multiplication by constants are factorized. Section 6.2 gives the factory that
produces the DAG, and how this last optimization is applied on the �y.

Correct-By-Construction ML Oracles with Polymorphic LCF Style 23

6.1 Factorizing the AST Generation from PFS Oracles

The DAG datastructure provides the interface below, which helps to wrap PFS oracles of the VPL.
Type dsctr is the type of nodes in the DAG. Constant dag_factory provides a factory instance for
our PFS oracles. Function import converts an input polyhedron into an input suitable for oracles.
Finally, function export converts the output of oracles into an AST of type pexp.

type dcstr
val dag_factory: dcstr Back.lcf
val import: BackCstr.t list -> (BackCstr.t * dcstr) list
val export: ('a * dcstr) list -> pexp

From this interface, wrapping a given PFS oracle into an AST producing oracle is straightforward.
For example, we de�ne below ast_proj which wraps the Back.proj PFS oracle of Section 2.3.

let ast_proj (p: BackCstr.t list) (x: Var.t): pexp =
export (Back.proj dag_factory (import p) x)

Below, Section 6.2 de�nes dag_factory and import that makes the PFS oracle builds the DAG.
Section 6.3 describes the analysis of this DAG in export to produce a compact AST.

6.2 A Factory Producing a DAG

For simplicity, we illustrate the generation of the DAG on the following sub-factory of the one of
Section 5.1.

type 'c lcf = { top: 'c; add: 'c -> 'c -> 'c; mul: Rat.t -> 'c -> 'c }

During the DAG generation, we eliminate the neutral element top that induces useless nodes. We
also factorize multiplications by rational constants. These propagations are directly achieved by
the operations of dag_factory.

type dcstr = {
def: op;
mutable id: int;
mutable nbusers: int;
(∗ o t h e r om i t t e d f i e l d s ∗)

} and op =
| Ident_
| Top
| Add_ of dcstr * dcstr
| Mul_ of Rat.t * dcstr

The type dcstr of nodes in the DAG is implemented on
the right hand-side. This is a record type with a �eld def

containing the “operation” at this node. An operation of
type op corresponds either to an input constraint (construc-
tor _Ident) or to an operation on constraints. Operations
_Add and _Mul refer to nodes of type dcstr, and such a node
can be shared between several operations by pointer shar-
ing. Mutable �elds of dcstr, like id and nbusers, are only
used during function export. They represent auxiliary data
on the node, which are computed by the dependency anal-
ysis and useful to generate the �nal AST.

We call a node dc1 a direct ancestor of a node dc2 i� dc2

appears in dc1.def (i.e. as arguments of Add_ or Mul_). It corresponds to the fact that the computation
represented by dc1 depends on the result of the computation represented by dc2. Here, dc2 is a
reference that may have several direct ancestors but, by construction, it can not be a direct or
indirect ancestor of itself.

Most new nodes of the DAG are generated through a call to (make_dcstr d) where d is a value of
type op. This call initializes �eld def with value d and other �elds with default values (these latter
being only used in export). The only exception is on Ident_ nodes that are created with a positive
�eld id giving their name in the �nal AST.

let make_dcstr ?id:(i=0) d : dcstr = { def=d; id=i; nbusers =0; (∗ . . . ∗) }

24 Sylvain Boulmé and Alexandre Maréchal

n · > → > 1 · c → c n1 · (n2 · c) → (n1 × n2) · c

> + c → c c + > → c (n1 · c1) + (n2 · c2) →

n1 ·
(
c1 +

n2
n1
· c2

)
if n1 > 0

n2 ·
(
n1
n2
· c1 + c2

)
if n1 < 0

Fig. 4. Elimination of Top Nodes and Factorization of Mul_ Nodes in the DAG

Let us now detail the implementation of import and dag_factory. On a given polyhedron p,
function import associates a new Ident_ node to each constraint c of p. The name of each of these
nodes – given by its �eld id – corresponds to the position of c in the list p.

let import p = List.mapi (fun i c -> (c, make_dcstr ~id:(i+1) Ident_)) p

In dag_factory, functions smart_mul and smart_add are smart constructors of nodes which eliminate
Top nodes and factorize Mul_ nodes as much as possible.

let dag_factory = {top = make_dcstr Top; add = smart_add; mul = smart_mul}

This process corresponds to applying the rewriting rules of Figure 4, where >, + and · represent
a node where the �eld def is respectively Top, Add_ and Mul_ and where c , c1 and c2 are some
other existing nodes. Since these smart constructors assume that their node in inputs are already
rewritten, they only perform O (1) rewriting steps at each call. Moreover, (smart_mul n c) assumes
that scalar n is not zero and that if n is negative then c is an equality. These two last assumptions
are of course valid on our PFS oracles, and they are preserved by the rewriting rules of Figure 4.

For instance, on a witness “n1 ·c1 +n2 ·
(
> +

n1
n2
· c2

)
” generated from a PFS oracle (where n1 > 0),

the factory builds a node corresponding to “n1 · (c1 + c2)”. Let us remark that some useless nodes,
such as “n1

n2
· c2”, are generated in the DAG during this process. But they do not pollute the �nal

AST, thanks to the dependency analysis of the next section.

6.3 Producing the AST

We aim here to produce certi�cates like examples given in Figure 3 at page 8, where derived
constraints used in at least two Farkas combinations (of type fexp) are named by a Bind instead of
having their combination duplicated. This is achieved by function export. We now summarize how
this function builds a compact AST using a named representation in binders, and where unbound
names represent input constraints (while giving their position in the input list).

The oracle, instantiated with dag_factory, returns a list of output constraints of type (BackCstr.t

* dsctr). Function export �rst extracts dsctr values from this list, and obtains the list of roots from
which we start our dependency analysis on the DAG. By analyzing descendants of each root, we
look for nodes that have at least two direct ancestors (among the descendants of the roots). Such
nodes are then sorted according to a topological sort and are named with unique positive integers
(in �eld id) above the maximum name of reachable _Ident nodes. These nodes induce a Bind node
associating their id �eld to their Farkas combination. On the contrary, descendants of roots which
have a null id �eld – they have thus exactly one direct ancestor – are directly replaced by their
Farkas combination in the AST without an intermediate Bind node.

In conclusion, PFS completely hides the issue of handling binders in the core of our oracles. This
handling is factorized over our PFS oracles within a dedicated component, able to produce compact
certi�cates.

Correct-By-Construction ML Oracles with Polymorphic LCF Style 25

7 RELATEDWORKS AND CONCLUSION

The skeptical approach has been pioneered in the design of two interactive provers, Automath
(de Bruijn 1968) and LCF (Gordon et al. 1979). Both provers reduce the soundness of a rich
mathematical framework to the correctness of a small automatic proof checker called the kernel.
But, their style is very di�erent. LCF is written as a library in a functional programming language
(ML) which provides the type of theorems as an abstract datatype. Its safety relies on the fact
that objects of this type can only be de�ned from a few primitives (i.e. the kernel). Each of them
corresponds to an inference rule of Higher-Order Logic in natural deduction. On the contrary,
Automath introduces a notion of “proof object” and implements the kernel itself as a typechecker,
thanks to Curry-Howard isomorphism. LCF style is more lightweight – both for the development
and the execution of proof tactics – whereas the proof object style allows a richer logic (e.g. with
dependent types). Nowadays, the kernel of skeptical interactive provers is still designed according
to one of this style: Coq has proof objects whereas HOL provers are in LCF style.

Since the 90’s, the skeptical approach is also applied in two kinds of slightly di�erent contexts:
making interactive provers communicate with external solvers like Maple (Harrison and Théry
1998), and verifying the safety of untrusted code, like in “Proof Carrying Code” (Necula 1997). In
Coq, it is also applied to the design of proof tactics communicating with external solvers (Armand
et al. 2011, 2010; Besson 2006; Grégoire et al. 2008; Magron et al. 2015), and to certify stand-alone
programs like compilers or static analyzers which embed some untrusted code (Besson et al. 2010;
Blazy et al. 2015; Jourdan et al. 2015; Tristan and Leroy 2008).

Beyond interactive provers, producing certi�cates of unsatis�ability has become mandatory for
state-of-the-art Boolean SAT-solvers. Indeed, certi�cates of unsatis�ability have been required
for the UNSAT tracks since SAT Competition 2013. In 2016, they were required – in DRAT
format (Wetzler et al. 2014) – for all solvers in the Main track of the SAT Competition.7

Actually, there are now so many works related to the skeptical approach that it seems impossible
to be exhaustive. With respect to all these works, the contribution of this paper is to propose a
design pattern, called Polymorphic LCF Style (abbreviated as PFS), in order to certify in Coq the
results of an untrusted ML oracle. This pattern is illustrated on a new implementation of the VPL,
a certi�ed abstract domain of convex polyhedra initially developed in (Fouilhé et al. 2013) and used
in the certi�ed Verasco static analyzer (Jourdan et al. 2015). To summarize, the VPL contains a
set of oracles producing witnesses that correspond to non-negative linear constraints which are
logical consequences of their inputs.

In Polymorphic LCF style, oracles produce these witnesses as ordinary ML values (e.g. linear
constraints). In other words, instead of building an AST that the Coq frontend uses to compute
the certi�ed value, the oracle directly generates this value by using certi�ed operators of the Coq
frontend. This provides several advantages over AST style. First, it makes the oracle development
easier. Without an AST to build, it naturally removes cumbersome details such as handling of
binders. Second, polymorphism ensures that oracle results are sound by construction. In the
polyhedra library, it means that oracles can only produce logical consequences of their input.
This property is proved for free from the types of the oracles, in the spirit of the “theorems for
free” coined by Wadler (1989). At last, polymorphism makes witness generation very �exible and
modular. Generating a compact AST is still possible if necessary, e.g. for embedding an oracle
within a Coq tactic.

We strongly believe that PFS could be used with other applications. For instance, the nonlinear
support based on Handelman’s theorem that was added into the VPL by Maréchal et al. (2016)
could be easily certi�ed using a factory that provides nonlinear multiplications.
7http://baldur.iti.kit.edu/sat-competition-2016

http://baldur.iti.kit.edu/sat-competition-2016

26 Sylvain Boulmé and Alexandre Maréchal

ACKNOWLEDGMENTS

We especially thank Michaël Périn and David Monniaux for their fruitful suggestions all along this
work.

REFERENCES

Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. 2002. A Strati�ed Semantics of General References Embeddable in
Higher-Order Logic. In Symposium on Logic in Computer Science (LICS). IEEE, 75.

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A Very Modal Model of a
Modern, Major, General Type System. In Principles of Programming Languages (POPL). ACM Press, 109–122.

Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Benjamin Werner. 2011. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In Certi�ed Programs and Proofs (CPP) (LNCS), Vol. 7086.
Springer, 135–150.

Michaël Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry. 2010. Extending Coq with Imperative Features
and Its Application to SAT Veri�cation. In Interactive Theorem Proving (ITP) (LNCS), Vol. 6172. Springer, 83–98.

Roberto Bagnara, Patricia M. Hill, and Enea Za�anella. 2008. The Parma Polyhedra Library: Toward a Complete Set of
Numerical Abstractions for the Analysis and Veri�cation of Hardware and Software Systems. Science of Computer
Programming 72, 1–2 (2008). arXiv:cs/0612085

Henk Barendregt and Erik Barendsen. 2002. Autarkic Computations in Formal Proofs. Journal of Automated Reasoning 28, 3
(2002), 321–336.

Florence Benoy, Andy King, and Frédéric Mesnard. 2005. Computing Convex Hulls with a Linear Solver. Theory and Practice
of Logic Programming 5, 1-2 (January 2005).

Jean-Philippe Bernardy and Guilhem Moulin. 2012. A Computational Interpretation of Parametricity. In Symposium on
Logic in Computer Science (LICS). IEEE Computer Society.

Jean-Philippe Bernardy and Guilhem Moulin. 2013. Type-theory in color. In International Conference on Functional program-
ming (ICFP). ACM Press.

Frédéric Besson. 2006. Fast Re�exive Arithmetic Tactics the Linear Case and Beyond. In Types for Proofs and Programs
(TYPES) (LNCS), Vol. 4502. Springer, 48–62.

Frédéric Besson, Thomas P. Jensen, David Pichardie, and Tiphaine Turpin. 2010. Certi�ed Result Checking for Polyhedral
Analysis of Bytecode Programs. In Trustworthy Global Computing (TGC) (LNCS), Vol. 6084. Springer, 253–267.

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, and Hongseok Yang. 2011. Step-
indexed Kripke Models over Recursive Worlds. In Principles of Programming Languages (POPL). ACM Press, 119–132.

Sandrine Blazy, Delphine Demange, and David Pichardie. 2015. Validating Dominator Trees for a Fast, Veri�ed Dominance
Test. In Interactive Theorem Proving (ITP) (LNCS), Vol. 9236. Springer, 84–99.

Sylvain Boulmé and Alexandre Maréchal. 2017. A Coq Tactic for Equality Learning in Linear Arithmetic. (April 2017).
https://hal.archives-ouvertes.fr/hal-01505598 preprint.

Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming Languages and Systems (PLS) (LNCS), Vol. 7792.
Springer, 41–60.

Vasek Chvatal. 1983. Linear Programming. W. H. Freeman.
Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a uni�ed lattice model for static analysis of programs by

construction or approximation of �xpoints. In Principles of Programming Languages (POPL). ACM Press.
Patrick Cousot and Nicolas Halbwachs. 1978. Automatic discovery of linear restraints among variables of a program. In

Principles of Programming Languages (POPL). ACM Press.
N.G. de Bruijn. 1968. The Mathematical Language AUTOMATH, Its Usage, and Some of Its Extensions. In Symposium on

Automatic Demonstration (LNM), Vol. 125. Springer, 29–61.
Julius Farkas. 1902. Theorie der einfachen Ungleichungen. Journal für die Reine und Angewandte Mathematik 124 (1902).
Alexis Fouilhé and Sylvain Boulmé. 2014. A Certifying Frontend for (Sub)Polyhedral Abstract Domains. In Veri�ed Software:

Theories, Tools, Experiments (VSTTE) (LNCS), Vol. 8471. Springer, 200–215.
Alexis Fouilhé, David Monniaux, and Michaël Périn. 2013. E�cient Generation of Correctness Certi�cates for the Abstract

Domain of Polyhedra. In Static Analysis Symposium (SAS) (LNCS), Vol. 7935. Springer, 345–365.
Joseph Fourier. 1827. Histoire de l’Académie, partie mathématique (1824). Mémoires de l’Académie des sciences de l’Institut de

France 7 (1827).
Jacques Garrigue. 2002. Relaxing the Value Restriction. In Asian Programming Languages and Systems Symposium (APLAS)

(LNCS), Vol. 2998. Springer, 31–45.
Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C. Newey, and Christopher P. Wadsworth. 1978. A Metalanguage

for Interactive Proof in LCF. In Principles of Programming Languages (POPL). ACM Press, 119–130.

http://arxiv.org/abs/cs/0612085
https://hal.archives-ouvertes.fr/hal-01505598

Correct-By-Construction ML Oracles with Polymorphic LCF Style 27

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. 1979. Edinburgh LCF. LNCS, Vol. 78. Springer.
Benjamin Grégoire, Loïc Pottier, and Laurent Théry. 2008. Proof Certi�cates for Algebra and Their Application to Automatic

Geometry Theorem Proving. In Automated Deduction in Geometry (ADG) (LNCS), Vol. 6301. Springer.
John Harrison and Laurent Théry. 1998. A Skeptic’s Approach to Combining HOL and Maple. Journal of Automated

Reasoning 21, 3 (1998), 279–294.
Aquinas Hobor, Robert Dockins, and Andrew W. Appel. 2010. A Theory of Indirection via Approximation. In Principles of

Programming Languages (POPL). ACM Press, 171–184.
Jacob M. Howe and Andy King. 2012. Polyhedral Analysis using Parametric Objectives. In Static Analysis Symposium (SAS)

(LNCS), Vol. 7460. Springer, 41–57.
Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical Abstract Domains for Static Analysis. In Computer

Aided Veri�cation (CAV).
Jacques-Herni Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015. A Formally-Veri�ed C

Static Analyzer. In Principles of Programming Languages (POPL). ACM Press, 247–259.
Xavier Leroy. 2009. Formal veri�cation of a realistic compiler. Commun. ACM 52, 7 (2009). arXiv:inria-00415861
Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2013-2016. The OCaml

System. INRIA.
Pierre Letouzey. 2004. Certi�ed functional programming, Program extraction within Coq proof assistant. Ph.D. Dissertation.

Université de Paris XI Orsay.
Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Computability in Europe (CiE) (LNCS), Vol. 5028. Springer,

359–369.
Victor Magron, Xavier Allamigeon, Stéphane Gaubert, and Benjamin Werner. 2015. Formal Proofs for Nonlinear Optimization.

Journal of Formalized Reasoning 8, 1 (2015), 1–24.
Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, and Michaël Périn. 2016. Polyhedral Approximation

of Multivariate Polynomials Using Handelman’s Theorem. In Veri�cation, Model Checking, and Abstract Interpretation
(VMCAI) (LNCS). Springer, 166–184.

Alexandre Maréchal, David Monniaux, and Michaël Périn. 2017. Scalable Minimizing-Operators on Polyhedra via Parametric
Linear Programming. In Static Analysis Symposium (SAS) (LNCS), Vol. 10422. Springer. https://hal.archives-ouvertes.fr/
hal-01555998

George C. Necula. 1997. Proof-Carrying Code. In Principles of Programming Languages (POPL). ACM Press, 106–119.
François Pottier and Didier Rémy. 2005. The Essence of ML Type Inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). MIT Press, Chapter 10, 389–489.
The Coq Development Team. 2016. The Coq proof assistant reference manual – version 8.6. INRIA.
Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal Veri�cation of Translation Validators: a Case Study on Instruction

Scheduling Optimizations. In Principles of Programming Languages (POPL). ACM Press, 17–27.
Dimitrios Vytiniotis and Stephanie Weirich. 2007. Free Theorems and Runtime Type Representations. Electronic Notes in

Theoretical Computer Science 173 (2007), 357–373.
Philip Wadler. 1989. Theorems for Free!. In Functional Programming Languages and Computer Architecture (FPCA). ACM

Press, 347–359.
Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. 2014. DRAT-trim: E�cient Checking and Trimming Using Expressive

Clausal Proofs. In Theory and Applications of Satis�ability Testing (SAT) (LNCS), Vol. 8561. Springer, 422–429.
Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and Symbolic Computation 8, 4 (1995), 343–355.

http://arxiv.org/abs/inria-00415861
https://hal.archives-ouvertes.fr/hal-01555998
https://hal.archives-ouvertes.fr/hal-01555998

28 Sylvain Boulmé and Alexandre Maréchal

A PARAMETRIC INVARIANCE FOR A TINY ML

We formalize parametric invariance for the tiny expression language of De�nition A.3. This
language supports polymorphic higher-order functions with references, which allows deriving a
polymorphic �xpoint like in Section A.1. It is an “intermediate” language that only aims to provide
a simple framework to formalize parametric invariance. A usual source expressions like “ref e”
needs to be translated into this intermediate language as “let x = e in ref x” (using a fresh
variable x). See Example A.8 for other examples. Such a translation should preserve operational
semantics and static typing.

Our framework is quite closed to usual ML frameworks – like for instance (Pottier and Rémy
2005) – except that we specialize the de�nitions in order to simplify our formalization of parametric
invariance. Our framework is thus not well-suited to prove other desirable properties of ML
languages like progress or type inference. See Section A.5 for a discussion about extensions of this
framework. It is also inspired by (Birkedal et al. 2011).

This formalization is organized as follows. Section A.1 provides a non-trivial example of reasoning
by parametric invariance. Section A.2 de�nes a ML subset: its syntax, its big-step semantics, and
its type system. Section A.3 de�nes semantics of our ML types as invariants. It also proves the core
theorem of our formalization – called invariant preservation (Theorem A.32). This theorem states
that well-type expressions of type σ can only compute values satisfying invariant JσK associated to
type σ . It is thus very similar to type preservation theorems. Its proof relates “evaluation-steps” to
“typing-steps” and shows that evaluation preserves invariants (and types). Section A.4 reformulates
Theorem A.32 with a layer of abstraction, in order to hide explicit reasoning on heaps. This
allows correctness proofs based on Polymorphic Factory Style. In particular, parametric invariance
(Theorem A.37) is simply a reformulation of Theorem A.32 in this more abstract layer.

A.1 Parametric Invariance and Higher-Order References

Before presenting the proof of parametric invariance on a small subset of imperative ML in next
sections, let us illustrate its expressive power on higher-order imperative code. This example
suggests that this proof cannot be elementary. First, we de�ne below a generic fixpoint function
of type (('a -> 'b) -> ('a -> 'b)) -> 'a -> 'b from a higher-order ML reference, but without
explicit recursion.

let fixpoint f =

let fix = ref (fun x -> failwith "init") in

(fix := fun x -> f (!fix) x);

!fix;;

Typically, any recursive function is then de�nable from fixpoint like the following Fibonacci
function:

let fib: int -> int =

fixpoint (fun f n -> if n <= 1 then n else f(n-1)+f(n-2))

Second, we certify – by parametric invariance on the type of fixpoint – a while_loop function
which is extracted on the following ML function of type ('a -> bool)-> ('a -> 'a)-> 'a -> 'a:

let while_loop cond body init =

fixpoint (fun loop s -> if (cond s) then loop (body s) else s) init

Our de�nition of while_loop in Coq proves a “loop-invariant” theorem which mimics the usual
Hoare logic rule for partial correctness. Below, S is the type of explicit states (corresponding to the

Correct-By-Construction ML Oracles with Polymorphic LCF Style 29

above variable 'a on OCaml extraction) and I is the invariant. The Hoare’s logic rule is embedded
through the dependent types of body , of init and of the result. Here, cond is restricted to be pure.

Axiom fixpoint: ∀ {A B}, ((A → ? B) → (A → ? B)) → ? (A → ? B).

Program Definition while_loop {S} (I: S → Prop) (cond: S → bool)
(body: {s | I s ∧ cond s = true } → ? {s | I s})
(init: {s | I s })

: ? {s | I s ∧ cond s = false}
:= fixpoint (A:={s | I s}) (B:={s | I s ∧ cond s = false})

(fun loop s ⇒
match (cond s) with
| true ⇒ (body s) >>= loop
| false ⇒ ret (A:={s | I s ∧ cond s = false}) s
end)

>>= (fun f ⇒ f init).

Note that this “Program Definition” generates proof obligations that are automatically dis-
charged by Coq.

Let us insist on the fact that this parametricity reasoning is valid for any fixpoint function of
the above type, even for the following wrong memoized �xpoint which mixes up the outputs of
recursive calls.
let wrong_fixpoint f =

let memo = ref None in

let rec fp x =

match !memo with

| None -> let y=(f fp x) in (memo:=Some y); y

| Some y -> y

in fp

A ML function of type (('a -> 'b)-> ('a -> 'b))-> 'a -> 'b – such as wrong_fixpoint above
– may not correctly compute the �xpoint of its argument. Typically, when replacing fixpoint by
wrong_fixpoint in fib example, it does not compute the expected Fibonacci function. However,
parametric invariance makes ML typing ensures “for free” that such a function computes a correct
�xpoint (modulo normal termination) in the while_loop example. This would be also the case for
any tail-recursive computation.

This example illustrates the power of ML typing, expressed by parametric invariance. From the
code of fixpoint or wrong_fixpoint above, ML typechecker is able to infer a type which corresponds
to a kind of Hoare logic rule for such “loop operators”.

A.2 Semantics and Typing of a Tiny ML

Our intermediate language is parameterized by a simple set of basic monomorphic constants and
their type. For the sake of simplicity, we restrict these constants to ben-ary functions withn ≤ 1 like
the one of Example A.1. By using other constructs of our intermediate language of De�nition A.3,
we can embed standard programming constructs as macros – like in Example A.8 – or as de�nitions
like in fixpoint example.

Example A.1 (Basic Values and their Type). Our set of basic constants contains at least the three
disjoint types:

unit , {()} bool , {true, false} nat , N

30 Sylvain Boulmé and Alexandre Maréchal

The set of basic constants also includes the following unary functions

not bool → bool
true 7→ false
false 7→ true

pos nat → bool
0 7→ false

n ∈ N+ 7→ true

assert bool → unit
true 7→ ()

succ nat → nat
n 7→ n + 1

pred nat → nat
n ∈ N+ 7→ n − 1

De�nition A.2 (Basic Values and their Type).
• We assume an (enumerable) set C of basic constants written c (e.g. implicitly c ∈ C).
• We assume a �nite set of basic types such that each basic type β is a subset of C which is

disjoint other basic types.
• A type b of constants follows the syntax b ::= β | β → β
• We assume a total typing function ∆ from C to types b such that forall c if ∆(c) = β for

some β , then c ∈ β .
• Moreover, for each constant c such that ∆(c) = β1 → β2, we assume an evaluation function
Ec given as a partial map from β1 to β2.

De�nition A.3 (Syntax of Intermediate Expressions). We de�ne the abstract syntax of expressions
e using the following BNF

e ::= refa | a := a | !a
| fail | (a a) | e t e
| let x = e in e | a

a ::= v | x v ::= c | ` | λx , e

• non-terminal a represents atomic expressions;
• non-terminal v represents values;
• terminal x represents variables;
• terminal c represents basic constants of De�ni-

tion A.2;
• terminal ` represents locations.

We note FV(e) the set of unbound variables in e .

In our formalization, we use several kinds of �nite maps. The following de�nition provides
generic notations for all these kinds of maps.

De�nition A.4 (Generic Finite Maps). We provide the following notations for �nite maps m from
keys k ∈ K to data d ∈ D:

• K ⇀ D is the set of �nite maps from K to D
• dom(m) ⊆ K for the set of keys inm;
• im(m) ⊆ D for the set of data inm;
• m[k] for the data associated to k inm (if k ∈ dom(m));
• ∅ for the empty map; {k 7→ d } for a singleton;
• (m1;m2) for the update ofm1 by bindings ofm2;
• m\E for the update ofm by removing all keys belonging to set E;
• m1 vm2 for the property dom(m1) ⊆ dom(m2) ∧ ∀k ∈ dom(m1),m1[k] =m2[k]

De�nition A.5 (Heaps). A heap h is a �nite map from locations ` to values v .

De�nition A.6 (Stacks). A stack s is a �nite map from variables x to valuesv . Partial operator “s[x]”
is extended into a total operator “s[e]” returning an expression where each unbound occurrence
of a variable x in dom(s) has been substituted in e by s[x]. Indeed, as we will only put closed
values into stacks, we do not need to use a fully capture-avoiding operator. For example, we de�ne
s[λx , e] , λx , (s\{x })[e]. The other straightforward cases are left to the reader.

Correct-By-Construction ML Oracles with Polymorphic LCF Style 31

De�nition A.7 specializes usual big-step semantics of ML to our expression language. Our
semantics “〈e/h〉 ⇓n 〈v/h′〉” is parameterized by a natural number n expressing the number of
dereference steps performed by the evaluation. This number n will be used in Section A.3 to
approximate heap invariants by an indirection model (Hobor et al. 2010). Usual big-step semantics
is property ∃n, 〈e/h〉 ⇓n 〈v/h′〉.

De�nition A.7 (Big-Step Semantics). Big-steps semantics is inductive property “〈e/h〉 ⇓n 〈v/h′〉”
expressing that expression e for initial heap h terminates normally on a heap h′ and returns a value
v in n steps (where n is a natural number).

` < dom(h)

〈refv/h〉 ⇓0 〈`/h; {` 7→ v}〉

` ∈ dom(h)

〈!`/h〉 ⇓1 〈h[l]/h〉
` ∈ dom(h)

〈` := v/h〉 ⇓0 〈()/h; {` 7→ v}〉

c1 ∈ dom(Ec2)

〈(c2 c1)/h〉 ⇓0 〈Ec2 (c1)/h〉

〈{x 7→ v}[e]/h〉 ⇓n 〈v ′/h′〉
〈(λx , e v)/h〉 ⇓n 〈v

′/h′〉

〈e1/h〉 ⇓n 〈v/h
′〉

〈e1 t e2/h〉 ⇓n 〈v/h
′〉

〈e2/h〉 ⇓n 〈v/h
′〉

〈e1 t e2/h〉 ⇓n 〈v/h
′〉

〈v/h〉 ⇓0 〈v/h〉

〈e1/h〉 ⇓n1 〈v1/h1〉 〈{x 7→ v1}[e2]/h1〉 ⇓n2 〈v/h
′〉

〈let x = e1 in e2/h〉 ⇓n1+n2 〈v/h
′〉

There is no rule associated to “fail”, because this operator raises an error.

Example A.8 (Standard Macros). In each macros below, variables x , x1 and x2 are variables which
do not occur free in expressions at the left of the “,”.

ref e , let x = e in refx !e , let x = e in !x

(e2 e1) , (let x1 = e1 in let x2 = e2 in (x2 x1))
t (let x2 = e2 in let x1 = e1 in (x2 x1))

e1; e2 , let x = e1 in e2

if e then e1 else e2 , let x1 = e in
let x2 = not x1 in
(assertx1; e1) t (assertx2; e2)

De�nition A.9 (Syntax of Types). We note type variables as α . A �nite set of type variables is
written A. The abstract syntax τ (resp. σ) of monomorphic (resp. polymorphic) types is given by:

τ ::= α | β | τ → τ | refτ σ ::= ΠA,τ

A type b = β1 → β2 is syntactically identi�ed as a τ type. We also abusively identify “τ ” and “Π ∅.τ ”.
Moreover, types σ are implicitly considered modulo α-renaming. At last, we de�ne FV(σ) as the
set of unbound type variables in σ .

De�nition A.10 (Typing Contexts). A typing context is a �nite map Γ from variables x to types σ .
We de�ne A ` Γ as the property FV(im(Γ)) ⊆ A

De�nition A.11 (Type Substitution). A typing substitution η is a �nite map from type variables α
to monotypes τ . We de�ne the following notions:

• property A ` η is FV(im(η)) ⊆ A ∧ dom(η) ∩A = 0

32 Sylvain Boulmé and Alexandre Maréchal

• type η[σ] is the capture-avoiding substitution in type σ replacing each unbound occurrence
of α of dom(η) by η[α]

De�nition A.12 specializes the usual ML typing rules to our expression language. Following
standard approach (Wright 1995), we apply value-form restriction to automatic type generalization
on “let/in”. For our language, this restriction corresponds to generalize only the type of bound
expressions that are syntactically atomic. Without restrictions on the bound expression, a function
like memofst described in Section 2.3 would have a polymorphic type 'a -> 'a. This would break
type safety, since after a �rst call “(memofst true)”, memofst will always return Boolean true

whatever is its argument.
In ML semantics, only values in the stack can be polymorphic. The values in the heap are

monomorphic: their type is �xed at allocation. It could be an open type however. The issue in
memofst example comes from the fact that a bound expression allocates a reference on a open
type, and generalizing over this type makes it “escape from its scope”. The value-form restriction
is a straightforward way to avoid type generalization when the bound expression allocates new
references.

De�nition A.12 de�nes judgment “〈A/Γ〉 ` e : σ ” expressing that ifA ` Γ, expression e is a “source”
expression compatible with type σ . In particular, e can not contain any location `. Expression with
locations are only generated during evaluation. And, in our simple formalization, we do not need
to type them. Moreover, we deduce from the rules that when e is a group expression, then σ can
actually be only some monomorphic type τ (since only rule Gen can build a non-monomorphic
type).

De�nition A.12 (Typing). Inductive property 〈A/Γ〉 ` e : σ is de�ned by the rules below.

〈A/Γ〉 ` c : ∆(c)
〈A/Γ; {x 7→ τ1}〉 ` e : τ2
〈A/Γ〉 ` λx , e : τ1 → τ2

A ` η {x 7→ Π dom(η),τ } v Γ

〈A/Γ〉 ` x : η[τ]

FV(τ) ⊆ A

〈A/Γ〉 ` fail : τ
〈A/Γ〉 ` a : τ

〈A/Γ〉 ` refa : refτ
〈A/Γ〉 ` a : refτ
〈A/Γ〉 ` !a : τ

〈A/Γ〉 ` a1 : refτ 〈A/Γ〉 ` a2 : τ
〈A/Γ〉 ` a1 := a2 : unit

〈A/Γ〉 ` a1 : τ1 〈A/Γ〉 ` a2 : τ1 → τ2

〈A/Γ〉 ` (a2 a1) : τ2

〈A/Γ〉 ` e1 : τ 〈A/Γ〉 ` e2 : τ
〈A/Γ〉 ` e1 t e2 : τ

Gen
A ∩A′ = ∅ 〈A ∪A′/Γ〉 ` a : τ

〈A/Γ〉 ` a : ΠA′.τ

〈A/Γ〉 ` e1 : σ 〈A/Γ; {x 7→ σ }〉 ` e2 : τ
〈A/Γ〉 ` let x = e1 in e2 : τ

De�nition A.13 (Typing of Closed Expressions). Property “A ` e : σ ” for polymorphic typing of
closed source expressions is a short cut of 〈A/∅〉 ` e : σ .
Lemma A.14 (Auxiliary Results on Typing). Under the assumptions 〈A/Γ〉 ` e : σ with A ` Γ,

we have the following properties:
wellformed type FV(σ) ⊆ A
wellformed expression FV(e) ⊆ dom(Γ)
weakening A ⊆ A′ and Γ v Γ′ implies 〈A′/Γ′〉 ` e : σ

Proof. Each of result is proved – in the above order – by induction on 〈A/Γ〉 ` e : σ . �

Correct-By-Construction ML Oracles with Polymorphic LCF Style 33

A.3 An Step-Indexed Kripke Model of ML Types

Our main goal is to interpret ML types as invariants about ML values. We �rst introduce informally
the notion that we have in mind.

De�nition A.15 (Informal Notion of Invariant). An invariant context I is a �nite map from type
variables to subsets of values. For type σ such that FV(σ) ⊆ dom(I), invariant JσKI is the set of
(closed) values of type σ that preserve I .

For system F, a valuev : τ1 → τ2 satis�es invariant Jτ1 → τ2K i� for all valuesv1 of Jτ1K, any value
computed from (v v1) satis�es Jτ2K. However, extending this approach to ML is not straightforward.
For example, let us consider the ML value returned by “(!fix)” expression inside fixpoint example.
This value depends on the heap location “fix” in which it is stored. Hence, the invariant on “fix”
depends on the invariant “(!fix)’ which itself depends on the invariant of “fix”. More generally,
an invariant associated to a value may depend on an invariant associated to a set of locations in the
heap, which in turns may depend on invariant associated to their value in the heap, etc. Hence, we
need to introduce a notion of “value invariant” and a notion of “heap invariant” which are mutually
recursive. This does not seem possible to de�ne this directly in a consistent way.

Inspired by strati�ed semantics (Ahmed et al. 2002), we re�ne our informal notion of invariant
by using a strati�ed notion of heap invariant. We consider each invariant as an “observer” using
evaluation in order to deconstruct values. We stratify our invariants according to a natural number
– called here the “fuel” – which bounds the number of dereferences that they need to observe values.
A value invariant of fuel 0 can not check any invariant on the heap. A heap invariant of fuel n can
only apply to locations which values satisfy a value invariant of fuel n. A value invariant of level n
can only check heap invariants of fuel (strictly) below n.

We aim to associate to each well-typed value an invariant of the appropriate fuel level. In other
words, the invariant satis�ed by a value is computed in same time than this value. The level of
invariants is computed dynamically, thanks to the “n” parameter of ⇓n evaluation. Actually, we
produce all invariants inside an evaluation run, starting from an empty heap invariant – a heap
invariant that does not constrain any location of the heap. Such an empty heap invariant can be
de�ned at any fuel level and is satis�ed by any (initial) heap. Hence, once an initial fuel n has been
chosen, we can produce only invariants of levels lower or equals to n. We know from ⇓ de�nition
that such a n exists for any value produced by ⇓ and any �nite observation about this value.

In the next, we formalize these ideas by adapting the step-indexed model of polymorphic higher-
order imperative functions developed in (Hobor et al. 2010). Our step-indexed model is a Kripke
model, where “world” represents “heap predicate”. Such a heap predicate is a �nite map associating
heap locations to a predicate satis�ed by the value at this location. Theorem A.32 expresses that
heap updates preserve the world progressively built by successive allocations.

As explained above, in order to de�ne this notion of world in a consistent way, we need to
stratify it according to a notion a fuel level. Hence De�nition A.16 introduces Wn as the set of
“heap predicates” with fuel (strictly) below “n”. Set Pn is the set of value predicates depending on
heap predicates inWn .

De�nition A.16 (Worlds = Heap Predicates). Given L the set of locations ` and V the set of values
v , we de�ne setsWn and Pn by mutual induction over natural number n

W0 , ∅ Wn+1 ,Wn ∪ {n} × (L⇀ Pn) Pn , V → P (Wn)

34 Sylvain Boulmé and Alexandre Maréchal

From the de�nitions above, we now de�ne W the set of heap predicates and P the set of value
predicates

W ,
⋃
n∈N

Wn P , V → P (W)

A worldw ∈W is thus of the form (n,Ψ): we notew .n (resp. w .Ψ) this �rst (resp. second) projection
of w . Such a w .n is an approximation level, while w .Ψ corresponds to a predicate for the heap at
w .n level.

Here, let us remark that we have:
• w ∈Ww .n+1 and w .Ψ ∈ L⇀ Pw .n .
• forall n,Wn ⊆Wn+1 ⊆W and Pn ⊆ Pn+1 ⊆ P .

While evaluation consumes fuels, we need to approximate already-computed invariants to a
lower level of fuel. De�nition A.17 formalizes this notion of approximation.

De�nition A.17 (World Approximation). For a predicate p ∈ P , we de�ne
⌊
p
⌋
n of Pn satisfying⌊

p
⌋
n (v) , {w ∈ p (v) | w .n < n}

We extends this operator for Ψ ∈ L⇀ P into bΨcn of L⇀ Pn by

bΨcn , {` 7→ bΨ[`]cn }`∈dom(Ψ)

At last, given w ∈W , we de�ne bwcn ofWn+1 by

bwcn , (n, bw .Ψcn)

From these de�nitions, we deduce immediately the following properties:
• If n ≥ n′ and p ∈ Pn′ ,

⌊
p
⌋
n = p. Moreover if n2 ≤ n1, then for all v ,

⌊⌊
p
⌋
n1

⌋
n2

(v) =⌊
p
⌋
n2

(v).
• If n > n′ and w ∈Wn′ and p ∈ P , w ∈ p (v) ⇔ w ∈

⌊
p
⌋
n (v)

• If w ∈W , then bwcw .n = w . Moreover if n2 ≤ n1 ≤ n, then
⌊
bwcn1

⌋
n2
= bwcn2 .

For n ≤ w .n, computing bwcn is called “aging w”, following terminology of (Hobor et al.
2010).

• If Ψ,Ψ′ ∈ L⇀ Pn such that Ψ v Ψ′, then bΨcn′ v bΨ
′cn′ .

This property is called stability of v by approximations.

De�nition A.18 (World Satis�ability). Property w h expresses the condition at which a heap h
satis�es a world w . It is de�ned as

dom(h) = dom(w .Ψ) ∧ ∀` ∈ dom(h),∀n ∈ N,n < w .n ⇒ bwcn ∈ w .Ψ[`](h[`])

This property is closed by aging: if n ≤ w .n and w h then bwcn h. This ensures that
satis�ability of heap predicates is preserved while evaluation consumes fuel (by dereferencing heap
locations).

Informally, a heap predicate w2 extends a heap predicate w1 if the evaluation of expression may
lead from heaps satisfying w1 to heaps satisfying w2. Hence, the domain of the heap predicate may
increase (new locations are allocated) while the fuel may decrease (less dereferences are authorized).

De�nition A.19 (World Extension). The order w v w ′ is de�ned as

w ′.n ≤ w .n ∧ bw .Ψcw ′ .n v w ′.Ψ

Correct-By-Construction ML Oracles with Polymorphic LCF Style 35

Proof. Verifying that v is an order on worlds is straightforward. In particular, for transitivity,
from w1 v w2 and w2 v w3, we get by transitivity of ≤ on N, by transitivity of v on �nite maps,
and by stability of approximations that

w3.n ≤ w1.n ∧
⌊
bw1.Ψcw2 .n

⌋
w3 .n

v w3.Ψ

We conclude by noticing
⌊
bw1.Ψcw2 .n

⌋
w3 .n
= bw1.Ψcw3 .n . �

This partially ordered Kripke model leads to an intuitionistic logic for the standard Kripke
intuitionistic propositions.

De�nition A.20 (Propositions). By de�nition a “proposition over heaps” is a subset ofW closed
for world extension:

Prop , {p ∈ P (W) | ∀w1w2,w1 v w2 ∧w1 ∈ p ⇒ w2 ∈ p }

Let us remark that for n ≤ w .n, we have w v bwcn . Hence, all propositions are also closed by
aging.

De�nition A.21 (Invariant). An invariant ι is a function of V → Prop.

However, our model also involves predicates over worlds which are not closed for world extension.
This is in particular the case of the predicate “w e ⇓ ι” of De�nition A.22 – meaning that “any
value computed by e satis�es ι in an extension ofw”. Typically, if w = (0, ∅) then w !` ⇓ ι holds for
any invariant ι. This may not be the case if w .n ≥ 1 and ` ∈ dom(w .Ψ). This predicate is not even
closed for aging.

De�nition A.22 (Evaluation Invariant). For a given invariant ι, the property w e ⇓ ι is de�ned
as

∀nhv h′, 〈e/h〉 ⇓n 〈v/h
′〉 ∧w h ∧ 0 ≤ n ≤ w .n

⇒ ∃w ′.w v w ′ ∧w ′.n = w .n − n ∧w ′ h′ ∧w ′ ∈ ι (v)

Lemma A.23.

w v ⇓ ι ⇔ w ∈ ι (v)

Proof. Assuming e = v in De�nition A.22, we deduce by inversion of ⇓n that h = h′ and n = 0.
Hence, w ′.n = w .n and dom(w ′.Ψ) = dom(h) = dom(w .Ψ). Thus w ′ = w and w ∈ ι (v).
The inverse implication is straightforward. �

Now, we de�ne our semantics for types as invariants. We start from type variables: this leads to
the notion of invariant context.

De�nition A.24 (Invariant Context). An invariant context I is a �nite map from type variables α
to invariants ι.

We now lift this interpretation from type variables to an arbitrary type σ as an invariant JσKI .

De�nition A.25 (Types as Invariants). Given σ such that FV(σ) ⊆ dom(I), the proposition JσKI (v)
is de�ned recursively over σ syntax and by case analysis overv (missing cases correspond implicitly

36 Sylvain Boulmé and Alexandre Maréchal

to proposition ∅).

JαKI , I [α] JβKI (c) , { w ∈W | ∆(c) = β }

Jrefτ KI (`) ,
{
w | {` 7→

⌊
Jτ KI

⌋
w .n } v w .Ψ

}

Jτ1 → τ2KI (v) , { w | ∀w
′v1, (w v w ′ ∧w ′ ∈ Jτ1KI (v1)) ⇒ w ′ (v v1) ⇓ Jτ2KI }

JΠA,τ KI (v) ,
⋂

I ′ | A=dom(I ′)
∧ dom(I)∩A=∅

Jτ KI ;I ′ (v)

Proof. We check JσKI : V → Prop by induction on σ :
• for σ ≡ α , by hypothesis on I , we have I [α] ∈ V → Prop.
• for σ ≡ β , trivial.
• for σ ≡ refτ , we have the following hypotheses

w v w ′ {` 7→
⌊
Jτ KI

⌋
w .n } v w .Ψ

By transitivity of v on �nite maps and stability of approximations, we get
⌊
{` 7→

⌊
Jτ KI

⌋
w .n }

⌋
w ′ .n
v w ′.Ψ

which reduces to
{` 7→

⌊
Jτ KI

⌋
w ′ .n } v w ′.Ψ

• for σ ≡ τ1 → τ2, we have the following hypotheses

w1 v w2 w1 ∈ Jτ1 → τ2KI (v) w2 v w ′ w ′ ∈ Jτ KI (v1)

By transitivity of v, we have w1 v w ′ and thus

w ′ (v v1) ⇓ Jτ2KI
which proves that w2 ∈ Jτ1 → τ2KI (v).
• for σ ≡ ΠA,τ , we conclude from the fact that – by induction hypothesis – Jτ KI ;I ′ (v) ∈ Prop.

�

At last, we lift our interpretation of types into an interpretation of typing contexts.

De�nition A.26 (Typing Contexts as Stack Invariants). For an invariant context I , a context Γ such
that dom(I) ` Γ, and a stack s , we de�ne JΓKI (s) ∈ Prop as

JΓKI (s) , { w | dom(s) = dom(Γ) ∧ ∀x ∈ dom(s),w ∈ JΓ[x]KI (s[x]) }

Proof. Property JΓKI (s) ∈ Prop is directly deduced from the fact that for all x ∈ dom(s), we
have JΓ[x]KI (s[x]) ∈ Prop. �

Now, we introduce auxiliary lemmas in order to prove our theorem of “invariant preservation”
below.

Lemma A.27 (Extension of Invariant Context). Given two invariant contexts I and I ′ such
that dom(I) ∩ dom(I ′) = ∅. We have the following properties:

• if FV(σ) ⊆ dom(I) then JσKI = JσKI ;I ′
• if dom(I) ` Γ then JΓKI = JΓKI ;I ′

Proof. Immediate by induction on σ syntax (and de�nition of JΓKI from JΓ[x]KI). �

Correct-By-Construction ML Oracles with Polymorphic LCF Style 37

De�nition A.28 (Type Substitution in Invariant Context). Let us assume I and η such that dom(I) `
η. Invariant η[I] ∈ dom(η) ⇀ (V → Prop) is de�ned by

η[I] , {α 7→ Jη[α]KI }α ∈dom(η)

We have the following property:

FV(τ) ⊆ dom(I) ∪ dom(η) implies Jτ KI ;η[I] = Jη[τ]KI
Proof. Immediate by induction on τ syntax. �

Lemma A.29 (Type Substitution in Invariants). Under assumptions

σ = Π dom(η),τ dom(I) ` η

we have
JσKI (v) ⊆ Jη[τ]KI (v)

Proof. In JσKI (v) de�nition (see De�nition A.25), we instantiate I ′ by η[I], de�ned at De�ni-
tion A.28. �

Lemma A.30 (Substitutions of Atomic Expressions). Let us assume a stack s and an atomic
expressions a such that FV(a) ⊆ dom(s). Then s[a] is a value.

Proof. From a syntax, either a is already a value v: then s[v] is still a value. Otherwise a is
variable x such that x ∈ dom(s). Thus s[x] is value. �

Lemma A.31 (Simple Small Steps). Given f a �nite map from N to expressions, the property e ⇓ f
is de�ned as

∀nhv h′, 〈e/h〉 ⇓n 〈v/h
′〉

⇒ ∃i ∈ dom(f), 〈f [i]/h〉 ⇓n 〈v/h′〉
If e ⇓ f and ∀i ∈ dom(f),w f [i] ⇓ ι, thenw e ⇓ ι.

Proof. Let us assume e ⇓ f and 〈e/h〉 ⇓n 〈v/h′〉 ∧w h ∧ 0 ≤ n ≤ w .n.
Given i ∈ dom(f) such that 〈f [i]/h〉 ⇓n 〈v/h′〉.
Then w f [i] ⇓ ι gives a w ′ that we can use directly for proving conclusion of w e ⇓ ι. �

Theorem A.32 (Invariant Preservation). Assuming the following hypotheses

〈A/Γ〉 ` e : σ A = dom(I) A ` Γ w ∈ JΓKI (s)

Then,
w s[e] ⇓ JσKI

Proof. By induction on 〈A/Γ〉 ` e : σ .
• 〈A/Γ〉 ` c : ∆(c) where ∆(c) = β .

For any w ∈W , we have w ∈ JβKI (c). Since s[c] = c , by lemma A.23, we have w s[c] ⇓
JβKI .

• 〈A/Γ〉 ` c : ∆(c) where ∆(c) = β1 → β2.
Assuming w ′ and v such that

w v w ′ w ′ ∈ Jβ1KI (v)

Assuming 〈(c v)/h〉 ⇓n 〈v ′/h′〉 and w ′ h, we get

n = 0 h = h′ v ∈ dom(Ec) v ′ = Ec (v) ∈ β2

38 Sylvain Boulmé and Alexandre Maréchal

By De�nition A.2, we have ∆(v ′) = β2.
Hence, we have w ′ ∈ Jβ2KI (v

′).
Since s[c] = c , we conclude that w ∈ Jβ1 → β2KI (s[c]).

• 〈A/Γ〉 ` λx , e : τ1 → τ2. Assuming

w ∈ JΓKI (s) w v w ′ w ′ ∈ Jτ1KI (v1)

we de�ne s ′ , s; {x 7→ v1} or equivalently, s ′ , (s\dom(x)); {x 7→ v1}.
Because JΓKI (s) ∈ Prop, we have w ′ ∈ JΓKI (s). And thus, w ′ ∈ JΓ; {x 7→ τ1}KI (s

′).
By induction, we have w ′ s ′[e] ⇓ Jτ2KI .
Because (s[λx , e] v1) ⇓ {1 7→ s ′[e]}, we deduce from Lemma A.31 that w ′ (s[λx , e] v1) ⇓
Jτ2KI .
Hence w ′ ∈ Jτ1 → τ2KI (s[λx , e]).

• 〈A/Γ〉 ` x : η[τ].
From hypothesis w ∈ JΓKI (s), we deduce

x ∈ dom(s) w ∈ JΠ dom(η),τ KI (s[x])

By Lemma A.29, we have w ∈ Jη[τ]KI (s[x])
• 〈A/Γ〉 ` fail : τ .

We have fail ⇓ ∅. Thus, from Lemma A.31, w fail ⇓ Jτ K.
• 〈A/Γ〉 ` refa : refτ .

Since 〈A/Γ〉 ` a : τ , we have FV(a) ⊆ dom(Γ) = dom(s). Thus, by Lemma A.30, s[a] is a
value.
By induction on hypothesis 〈A/Γ〉 ` a : τ and by Lemma A.23, value s[a] satis�es w ∈
Jτ KI (s[a]).
Assuming 〈ref s[a]/h〉 ⇓n 〈v/h′〉, we deduce that v is a location ` such that

` < dom(h) n = 0 h′ = h; {` 7→ s[a]}

We de�ne
w ′ , (w .n,w .Ψ; {` 7→ (τ ,

⌊
Jτ KI (s[a]))

⌋
w .n })

Assuming w h, we have

w ′ h′ w ′ ∈ Jrefτ KI (`)

Since w v w ′ and w ′.n = w .n, we conclude that

w s[refa] ⇓ Jrefτ KI
• 〈A/Γ〉 ` !a : τ .

By induction on hypothesis 〈A/Γ〉 ` a : refτ , value s[a] is a location ` satisfying w ∈
Jrefτ KI (`).
Assuming 〈!`/h〉 ⇓n 〈v/h′〉, we deduce that

n = 1 ` ∈ dom(h) v = h[`] h′ = h

Assuming w .n ≥ 1 and w h, we have

bwcw .n−1 ∈
⌊
Jτ KI

⌋
n (h[`])

Hence, we de�ne w ′ , bwcw .n−1 and we have

w v w ′ w ′.n = w .n − 1 w ′ h w ′ ∈ Jτ KI (h[`])

We conclude that
w s[!a] ⇓ Jτ KI

Correct-By-Construction ML Oracles with Polymorphic LCF Style 39

• 〈A/Γ〉 ` a1 := a2 : unit. By induction on hypotheses

〈A/Γ〉 ` a1 : refτ 〈A/Γ〉 ` a2 : τ

values s[a1] and s[a2] satisfy

w ∈ Jrefτ KI (s[a1]) w ∈ Jτ KI (s[a2])

In particular, s[a1] is some location `.
Assuming 〈` := s[a2]/h〉 ⇓n 〈v/h′〉, we deduce that

n = 0 v = () h′ = h; {` 7→ s[a2]}

Assuming w h, we have w h′.
Since, w ∈ JunitKI (v), we conclude that

w s[a1 := a2] ⇓ JunitKI
• 〈A/Γ〉 ` (a2 a1) : τ2. By induction on hypotheses

〈A/Γ〉 ` a2 : τ1 → τ2 〈A/Γ〉 ` a1 : τ1
values s[a2] and s[a1] satisfy

w ∈ Jτ1 → τ2KI (s[a2]) w ∈ Jτ1KI (s[a1])

From the de�nition of Jτ1 → τ2KI , we have

w (s[a2] s[a1]) ⇓ Jτ2KI
• 〈A/Γ〉 ` e1 t e2 : τ . By induction hypotheses, we have

w s[e1] ⇓ Jτ KI w s[e2] ⇓ Jτ KI
Since (e1 t e2) ⇓ {1 7→ e1}; {2 7→ e2}, we deduce from Lemma A.31 thatw (e1 t e2) ⇓ Jτ KI

• 〈A/Γ〉 ` a : Π dom(A′),τ .
Let us consider any invariant context I ′ such that dom(I ′) = A′. Because A ` Γ and
A ∩A′ = ∅, we have JΓKI ;I ′ (s) = JΓKI (s) (Lemma A.27).
We apply induction hypothesis on 〈A ∪A′/Γ〉 ` a : τ and w ∈ JΓKI ;I ′ (s). Because s[a] is a
value (Lemma A.30), we have w ∈ Jτ KI ;I ′ (s[a]) (Lemma A.23). Hence, we conclude

w ∈ JσKI (s[a])

• 〈A/Γ〉 ` let x = e1 in e2 : τ . Let us assume

〈s[let x = e1 in e2]/h〉 ⇓n 〈v/h′〉 w .n ≥ n w h w ∈ JΓKI (s)

We have

n = n1 + n2 〈s[e1]/h〉 ⇓n1 〈v1/h1〉 〈(s; {x 7→ v1})[e2]/h1〉 ⇓n2 〈v/h
′〉

By induction hypothesis on 〈A/Γ〉 ` e1 : σ , we get w1 such that

w v w1 w1.n = w .n − n1 ≥ n2 w1 h1 w1 ∈ JσKI (v1)

Since w1 ∈ JΓKI (s), we have

w1 ∈ JΓ; {x 7→ σ }KI (s; {x 7→ v1})

By induction hypothesis on 〈A/Γ; {x 7→ σ }〉 ` e2 : τ , we get w ′ such that

w1 v w ′ w ′.n = w1.n − n2 = w .n − n w ′ h′ w ′ ∈ Jτ KI (v)

By transitivity, we have w v w ′. Thus, we conclude

w s[let x = e1 in e2] ⇓ Jτ KI

40 Sylvain Boulmé and Alexandre Maréchal

�

Let us consider the importance of restricting Gen-rule on this proof. Indeed, let us imagine a too
weak rule like

A ∩A′ = ∅ 〈A ∪A′/Γ〉 ` e : τ
〈A/Γ〉 ` e : ΠA′.τ

Replaying the above proof for Gen-rule (by replacing a with e), we get by induction that

w s[e] ⇓ Jτ KI ;I ′

Here, assuming

〈s[e]/h〉 ⇓n 〈v/h′〉 w .n ≥ n w h

From w s[e] ⇓ Jτ KI ;I ′ we get w ′ such

w v w ′ w ′.n = w .n − n w ′ h′ w ′ ∈ Jτ KI ;I ′ (v)

Now, we are stuck and can not conclude w ′ ∈ JσKI (v) because w ′ depends on I ′. Restricting e to
atomic expressions is a simple way to ensure that w ′ = w (for any I ′). However, we may imagine
to relax Gen-rule by authorizing expressions that do not allocate new locations. In this case, we
should be able to prove w ′ = bwcw .n−n (for any I ′) and conclude w ′ ∈ JσKI (v). This may help
to still prove the theorem when value restriction is relaxed thanks to subtyping as suggested by
Garrigue (Garrigue 2002).

A.4 Toolkit for PFS Correctness Proofs

In the following, we distinguish between well-typed source expressions and intermediate expressions
generated during evaluation of the former ones. Indeed, the latter may contain locations, whereas
the former can not. In order to reason on intermediate expressions, we thus need to extend
our notion of typing. Below, we use a semantic de�nition of this intermediate typing. Roughly,
an intermediate expression is a closed expression obtained by substitutions from a well-typed
(but possibly open) expression. The intermediate typing depends on a world ensuring that the
substitution satis�es the expected invariant.

De�nition A.33 (Intermediate Typing of Expressions). Given an invariant context I and an expres-
sion e , we de�ne Je : σKI ∈ Prop by

Je : σKI , { w ∈W | ∃ e0 Γ s, e = s[e0] ∧ dom(I) ` Γ ∧ 〈dom(I)/Γ〉 ` e0 : σ ∧ w ∈ JΓKI (s) }

Proof. Je : σKI ∈ Prop because JΓKI (s) ∈ Prop. �
Lemma A.34 (Basic Properties of Intermediate Typing). Typing of intermediate expressions

satis�es the following properties:
(1) dom(I) ` e : σ implies Je : σKI =W
(2) Jv : σKI ⊆ JσKI (v)

Proof.
(1) We take e0 , e and Γ , ∅ and s , ∅. By de�nition, JΓKI (s) =W .
(2) Direct consequence of Theorem A.32 and Lemma A.23.

�

As in our Coq examples, we use a may-return relation. This relation abstracts big-steps semantics,
by hiding the �nal heap h′ and abstracting the initial heap h as a world w .

Correct-By-Construction ML Oracles with Polymorphic LCF Style 41

De�nition A.35 (May-Return Relation). Property w e { v is de�ned as
∃nh h′, 〈e/h〉 ⇓n 〈v/h

′〉 ∧ w h ∧ 0 ≤ n ≤ w .n

Lemma A.36 (May-Return Abstraction).
∃w,w e { v ⇔ ∃nh h′, 〈e/h〉 ⇓n 〈v/h

′〉

Proof. ⇒-way is straightforward from the de�nition of may-return relation.
Let us prove the⇐-way. Let us assume 〈e/h〉 ⇓n 〈v/h′〉. We de�ne trivial predicate >n ∈ V → Pn
by

>n (v) ,Wn

Then, we de�ne w0 a world of fuel n associating a trivially true predicate to each location of h:

w0 , (n, {` 7→ >n }`∈dom(h))

By de�nition, for ` ∈ dom(h), for any w ∈Wn and for all v , we have w ∈ w0.Ψ[`](v).
Hence, w0 h and w0.n = n. Thus, w0 e { v . �

Parametric Invariance has two statements given below. The weaker statement only applies to
“source” expressions, whereas the stronger one also applies to “intermediate” expressions. Of course,
the stronger one implies the weaker one.

Theorem A.37 (Parametric Invariance). The two following statements hold.
weaker statement Under assumptions

dom(I) ` e : σ 〈e/h〉 ⇓n 〈v/h
′〉

we have
JσKI (v) , ∅

stronger statement Under assumptions

w ∈ Je : σKI w e { v

there existsw ′ such that

w v w ′ w ′ ∈ JσKI (v)

Proof. The stronger statement is a direct consequence of the de�nitions and of Theorem A.32.
Using Lemma A.34 and A.36, we deduce the weaker statement from the stronger one. �

Lemma A.38 (Invariant of Functions). Under assumptions

w ∈ Jτ1 → τ2KI (v) w ∈ Jτ KI (v1) w (v v1) { v2

There existsw ′ such that

w v w ′ w ′ ∈ Jτ2KI (v2)
Proof. This a simple consequence of De�nition of Jτ1 → τ2KI (in De�nition A.25) and A.35. �

Example A.39 (Reasoning with Parametric Invariants). Let us assume
w ∈ JΠ{α },α → αKI (v) w (v v1) { v2

We can prove v2 = v1.

Proof. Let us choose α < dom(I) and let us de�ne

I ′[α](v0) , { w ∈W | v0 = v1 }
We get w ∈ Jα → αKI ;I ′ (v).
Since JαKI ;I ′ (v1) =W , we deduce from Lemma A.38 that JαKI ;I ′ (v2) , ∅. Hence, v2 = v1. �

42 Sylvain Boulmé and Alexandre Maréchal

We have given above a simple example of “parametricity reasoning”. However, in PFS, we also
need to reason on frontend computations involving oracles and not just have a parametricity
reasoning on oracles like above. The lemma below (combined with the preceding ones) allows
conducting the proof of front_proj_correctness, sketched in Section 3.2.

Lemma A.40 (May-Return Inversion).
(1) w v1 { v2 implies v1 = v2
(2) Under assumptions

w ∈ J(λx , e v) : τ KI w (λx , e v) { v ′

We have

w ∈ J{x 7→ v}[e] : τ KI w {x 7→ v}[e] { v ′

(3) Under assumptions

e ≡ let x = e1 in e2 w ∈ Je : τ2KI w e { v

There exists τ1, v1 andw1 satisfying the following properties

w ∈ Je1 : τ1KI w e1 { v1 w v w1 w1 ∈ J{x 7→ v1}[e2] : τ2KI

w1 {x 7→ v1}[e2] { v

Proof. By inversions on big-step semantics and typing judgment. �

A.5 Discussion about Extensions

Following the initial approach of (Ahmed et al. 2002) based on small-steps semantics, Theorem A.32
can be generalized in order to also ensure safety. Of course, this generalization should also be
expressible for a pretty big-step semantics (Charguéraud 2013).

Extending the present formalization for product and sum types is straightforward: the product of
two types is interpreted as the conjunction of their invariants; the sum of two types is interpreted
as the disjoint union of their invariant. More formally,

Jτ1 × τ2KI ((v1,v2)) , Jτ1KI (v1) ∩ Jτ2KI (v2) Jτ1 + τ2KI (inji v) , JτiKI (v) for i ∈ {1, 2}
Generalization to exception-handling should be also straightforward. Intuitively, exceptional

values are monomorphic closed values. Hence, they only embed a trivial invariant. Thus, w.r.t
invariant preservation, exception-handling has only an e�ect on the heap, which is quite similar to
“let − in” construct.

The original model of (Ahmed et al. 2002) also deals with recursive types. However, we have not
yet considered how this treatment of recursive types could be adapted in our context.

	Abstract
	1 Introduction
	2 PFS oracles Explained with a Detailed Example
	2.1 Simple (but Unsound) LCF Style
	2.2 Generating an Intermediate Certificate
	2.3 Polymorphic LCF Style

	3 Formalizing proj Frontend in Coq
	3.1 Coq Axioms for External OCaml Functions
	3.2 Reasoning on PFS oracles in Coq

	4 Soundness of PFS Oracles in Imperative ML
	4.1 Wadler's Theorems for Free
	4.2 Theorems for Free on ML Code through Coq Extraction
	4.3 Formalization of Parametric Invariance in Step-Indexed Kripke Models
	4.4 Toward a Soundness Result about Coq Extraction in Presence of External Code

	5 The Flexible Power of PFS Illustrated on Convex-Hull
	5.1 Extended Farkas Factories
	5.2 Encoding |join| as a Projection
	5.3 Proving |join| with Certificates
	5.4 Proving |join| with a Direct Product of Polymorphic Farkas Factories

	6 Generating Compact Certificates from a PFS Oracle
	6.1 Factorizing the AST Generation from PFS Oracles
	6.2 A Factory Producing a DAG
	6.3 Producing the AST

	7 Related Works and Conclusion
	Acknowledgments
	References
	A Parametric Invariance for a Tiny ML
	A.1 Parametric Invariance and Higher-Order References
	A.2 Semantics and Typing of a Tiny ML
	A.3 An Step-Indexed Kripke Model of ML Types
	A.4 Toolkit for PFS Correctness Proofs
	A.5 Discussion about Extensions

