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Remaining Useful Life Prediction and Uncertainty Quantification of 

Proton Exchange Membrane Fuel Cell Under Variable Load

Mathieu Bressel, Mickael Hilairet, Daniel Hissel,

and Belkacem Ould Bouamama

the gas diffusion layer (GDL), and they are far from being

fully understood [4]. The degradation also depends on the

operating conditions which makes the prediction of the power

loss difficult [5].

This is the reason why Prognostics and Health Management

(PHM) of PEMFC is gaining awareness in the research field.

It allows extending the life of this electrochemical converter

due to monitoring [6], diagnosis [7], [8], prognostic [9], and

corrective actions at a decision level. By selecting specific

features from sensors, one can build indicators of the State of

Heath (SoH) of a system and track their evolutions in order

to predict the End of Life (EoL). Despite the fact that many

applications of Remaining Useful Life (RUL) prediction of

PEMFC can be found in the literature, none of the developed

approaches are able to predict the RUL when an unknown

variable profile of power is considered.

The prognostic activity aims at the development of a robust

algorithm to estimate the State of Health and to forecast

the future behavior of a system, but it should also be able

to quantify the confidence of the prediction. This is the

reason why, researches have been focused on uncertainty

quantification for prognostics [10]. Since data driven and

hybrid uncertainty quantification methods are mostly based on

sampling (i.e. Monte Carlo simulation), they remain compu-

tationally expensive [11]. The confidence in RUL prediction

can also be evaluated by analytical approaches such as First

Order Reliability Methods (FORM) which are much faster

to compute and can be possibly implemented in real time

[12]. Those techniques have been extensively used in the past

for material and structural reliability and start to be applied

to electrochemical systems. Although giving the confidence

in the RUL prediction is of great interest, only one paper

addresses this issue for PEMFC prognostics by using a Particle

Filter [13].

As a consequence, to tackle those limitations, the presented

work contributes to the observer-based prognostics by predict-

ing the RUL of a PEMFC subjected to an unknown µ-CHP

profile and by estimating the inherent uncertainty using an

Extended Kalman Filter (EKF) and the Inverse First Order

Reliability Method (IFORM). The aim is to develop a robust

algorithm that can be implementable in real time.

In the first section a brief description of the test bench and

the performed test can be found. section 3 presents the method-

ology for SoH estimation and uncertainty quantification using

an EKF. It also describes the IFORM algorithm which is then

Abstract—Although, Proton Exchange Membrane Fuel Cell is a 
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mechanisms. As a consequence, in the past years researches have 

been conducted to estimate the State of Health and now the 

Remaining Useful Life in order to extend the life of such devices. 

However, the developed methods are unable to perform prognostics 

with an online uncertainty quantification due to the computational 

cost. This paper aims at tackling this issue by proposing an 

observer-based prognostic algorithm. An Extended Kalman Filter 

estimates the actual State of Health and the dynamic of the 

degradation with the associated uncertainty. An Inverse First Order 

Reliability Method is used to extrapolate the State of Health until a 

threshold is reached, for which the Remaining Useful Life is given 

with a 90% confidence interval. The global method is validated 

using a simulation model built from degradation data. Finally, the 

algorithm is tested on a data set coming from a long term 

experimental test on a 8-cell fuel cell stack subjected to a variable 

power profile. 
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I. Introduction

Since fossil energy resources are reducing, an energy tran-

sition is required. One of the major problem that transition 

imposes is the storage of the electricity which can be tackled 

by the use of hydrogen as an energy vector which produces 

electricity through a fuel cell [1]. Those electrochemical 

converters, including the Proton Exchange Membrane Fuel 

Cell (PEMFC), receive a growing interest from industrial and 

scientific community worldwide. Indeed, they have a wide 

range of applications. PEMFC is a promising internal 

combustion engine substitute for clean and efficient trans-

portation applications, but also as a portable source of low 

power [2]. In addition, in a larger scale, fuel cells are capable 

of powering an entire building in electricity and heat in a 

combined manner (µ-CHP) [3]. However, those promising 

converters suffer from a limited lifetime due to mechanical 

and electrochemical degradation that avoid there widespread 

deployment. Those phenomena include corrosion of the 

carbon support, the catalyst particles ripening, the 

compression of
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Fig. 1. 10kW in-lab test bench

Table 1: Operating conditions

Parameter Value

Temperature 80◦C
Anode and cathode stoichiometry ratios 1.5-2

Absolute pressure anode/cathode 1.5 bar
Relative humidity anode/cathode 50%

Nominal current density inom 0.45 A.cm−2

Maximal current density imax 0.77 A.cm−2

applied to an 8-cell stack under a µ-CHP profile. A conclusion 
is provided in section 4.

II. Expiremental setup

To observe the aging, a 900 hours continuous experimental test 

is performed on an 8-cells fuel cell stack with a surface of 220 

cm2 provided by the French Atomic Energy and Alternative 

Energies Commission (CEA). A 10kW test bench (Fig. 1) 

regulates the temperature by mean of a cooling system while 

the stoichiometry and pressure are controlled continuously. 

Moreover, the test bench supplies the fuel cell in humidified 

hydrogen and air at the anode and cathode respectively. Tab. I 

shows the operating conditions.During the long time test, the 

PEMFC is subjected to a µ-CHP profile of current while the 

stack voltage is recorded with an hourly sample time as seen 

on Fig. 2. It aims at simulating the power required for a 

building along a year and follows the seasons:

• Winter: maximal current density imax for about 250 hours

• Spring: 7 cycles of 24 hours between nominal current

density inom and inom

2 followed by inom

2 until 500 hours

• Summer: inom

2 for 100 hours, followed by 9 cycles of 24

hours between inom

2 and no power demand until t=800

hours

• Autumn: inom

2 until the end of the test

In addition, periodically during the test, static and dynamic

responses of the PEMFC are measured with polarization

curves (as shown in Fig. 3) and Electrochemical Impedance

Spectroscopy (EIS).

III. Prognostics of pem fuel cell

A. Generalities and method

Prognostics is the prediction of the remaining time before

one or more failure modes appear avoiding a system to fulfill

a given mission [14]. It is carried out in two steps: the actual

SoH of the system is estimated, then the evolution of this SoH

is forecasted until a threshold is reached. The time difference

between the predicted EoL and the current time tk is called

the RUL.

RUL(tk) = tEoL − tk (1)

Several approaches have been developed to predict the RUL

of PEMFC. They are divided into three categories [15]:

• Model based [16], [17], [18], [19]: the degradation is

expressed using an analytical relation. Although the phys-

ical models are used when expert knowledge is available,

it is often chosen to develop an empirical relation. The

latter is the approach used in this paper.

• Data based [20], [21], [22]: the degradation is learned

during the aging using tools from Artificial Intelligence.

Despite this approach requires a huge amount of data, it

is able to reproduce highly non-linear behaviors.

• Hybrid [23], [24], [25]: a model is used to improve the

training compared to pure data based methods. However,

implementing such algorithms in real time is difficult due

to the computational cost.

Despite the fact that model based method gives auspicious

results, it was never applied to estimate the RUL of a PEMFC

under a variable load. Moreover from all the methods de-

scribed above, only [13] addresses the issue of uncertainty

quantification by mean of a Particle Filter which is challenging

to implement online. As an extension of a previous work

[26] and to tackle the computational limitation, the method

presented in this paper (Fig. 4) allows a fast estimation of the

Fig. 2. Load current and recorded stack voltage
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Fig. 3. Polarization curves during aging

SoH and RUL of a PEMFC under a variable load with uncer-

tainty quantification. It consists of an offline analysis of the

PEMFC electro-chemical parameters degradations. Precisely, a

nonlinear optimization algorithm is applied to fit a model to the

recorded polarization curves. The output of this algorithm is

the evolution of the parameters of the model during the aging

as presented in section 3.B, an empirical model of degradation

is then built. Afterward, this model is used online with an

observer to estimate the SoH and the uncertainty of the state

at each sampling time (see section 3.C). Finally, considering

the SoH estimation as a random variable, an IFORM is applied

for the RUL and probability bounds estimation in section 3.D.

The uncertainty computed by the EKF has been widely used

for assessing the accuracy of a state estimation [27], [28],

[29]. Nevertheless, in the consulted literature dealing with EKF

based prognostic, the setting of the filter for which the value of

the uncertainty is strongly dependent, is usually not discussed.

This issue might be solved using the Unscented Kalman Filter

[16], [30] or an online estimation of the process covariance

matrix for the EKF [31], [32].

As a novelty, the method presents the advantages of working

for different operating conditions (of temperature, load and

pressure) and for different PEMFC under the condition of

having the initial polarization curve and thus does not require

a lot of training comparing to data and hybrid based methods.

Moreover, the EKF allows to compute the uncertainty of the

estimates (due to the setting of the covariance matrices) and

can be used online as discussed in the section 3.E.

B. Design of the degradation model

To study the effect of the aging on the electrochemical

parameter’s value, a Levenberg-Marquardt optimization algo-

rithm extracts some parameters of the following equation on

every polarization curve (see Fig. 3) :

Vst = n.

(

E0 −A.T.ln

(

i

i0

)

−R.i−B.T.ln

(

1−
i

iL

))

with Vst the stack voltage, n is the number of cells of 

the stack, i the load current density, T the temperature, A 

the Tafel constant, and B the concentration constant. Since 

the voltage equation above is from a nonlinear nature, the 

Levenberg-Marquardt optimization method can only reach a 

local minimum. To overcome this issue, the algorithm is

Fig. 4. Model-based prognostics methodology for PEMFC

initiated with standard values found in the literature [33],

[34]. However, some optimization methods based on artificial

intelligence are able to find the global minimum [35], [36].

For the sake of clarity, only the result of the model fitting for

the first polarization curve is shown (see Fig. 5) for which the

extracted parameters are:

• The Open Circuit Voltage (OCV) E0 at nominal pressure

and temperature

• The exchange current density i0
• The overall resistance R (membranes, connectors, end

plates, etc.)

• The limiting current density iL

The OCV is dependent on the pressure following the Nernst

law [37]. Nevertheless, the pressure inside the channels is

kept constant due to the control unit and so does not affect

the value of E0. On this model fitting example, the Mean

Average Percentage Error (MAPE) is equal to 0.6 %. This

validated model allows to handle all the operating conditions

specified in the test protocol of the section II. It is noted that

other measurement method like the EIS allows to extract some

parameters value (for instance the membrane conductivity).

From the experimental data, the deviation of the chosen

parameters through time with respect to the initial polarization

curve is shown in Fig. 6.

Among them, the voltage E0 and the exchange current i0
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Fig. 6. Parameters deviation during aging

do not exhibit strong variations during the aging compared

to the global resistance R and the limit current density iL.

One can conclude that the catalytic activity does not reduce

through time and the volume of the channels remains the

same (the pressure loss is not affected during aging) and thus

those parameters are considered constant. On the contrary,

the resistance value changes by more than 70% while the

limit current density iL decreases of 60%. This can be due to

the dehydration or degradation of the polymer membrane, the

corrosion of the plates or the corrosion of the catalyst support

for the first [38]. The dehydration of the membrane, caused by

a poor water management, provokes a higher ionic resistance

and thus increase the loss by ohm effect locally. Moreover,

the latter leads to the formation of pin hole and cracks which

results in an higher gas crossover [39]. The decrease in the

limit current density might be provoked by the compression

of the GDL and the reduction of the electrochemical surface

area (ECSA). One major cause is the migration of the catalyst

particle (usually platinum) on the carbon support or their

dissolution into the membrane which leads to the decreasing

of the membrane conductivity [40]. Some details about the

degradation mechanisms can be found in Pei et al [41].

From Fig. 6, it is clear that the speed of degradation is highly

dependent on the current profile (e.g. cycles between nominal

and Open Circuit Voltage [42]). Due to the fact that the power

profile and the speed of degradation can not be expressed using

physical laws, it is chosen to describe the aging with a linear

equation. Moreover, by only measuring the stack voltage for

a given current, it is impossible to separate the loss caused by

the global resistance and the one caused by the limit current

due to the non-observability of the state space system. This

is the reason why, it is chosen to couple the deviation of the

two parameters with a single variable α(t) which reflects the

SoH:

R(t) = R0(1 + α(t)), IL(t) = IL0(1− α(t)), (3)

α(t) = βt (4)

with β nearly constant.

C. Observer-based SoH estimation

1) Problem formulation: The joint estimation of the SoH

αk (indicator of degradation of the fuel cell) and the parameter

βk (speed of degradation) is based on the discrete nonlinear

system:

xk+1 = Axk|k + wk (5)

yk = g(xk, uk) + vk (6)

where xk = [αk βk]
T is the state of the system, uk represents

the inputs (current load, temperature), yk the output voltage,

wk and vk are process and observation noises supposed Gaus-

sian with zero mean and of variances Q and R respectively.

Since the time constant for degradation is in the order of

few hours, the thermal, electrical and hydraulic dynamics of

the fuel cell are ignored. The stack voltage Vst seen in the

previous section, expressed with regard to the SoH, is used

as a measurement. In this joint state and parameter estimation

problem, the transition matrix is:

A =

[

1 Ts

0 1

]

(7)

with Ts the sampling period of the observer and the regular

discrete EKF is expressed as [43]:

Initialization

x0|0 = E[x(t0)]
P0|0 = V ar[x(t0)]

Prediction

xk|k−1 = Axk−1|k−1

Pk|k−1 = APk−1|k−1A
T +Q

Correction

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +R)−1

with Hk = ∂g(xk,uk)
∂xk
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Pk|k = (I −KkHk)Pk|k−1

xk|k = xk|k−1 +Kk(Vstk − g(xk, uk))

Despite the fact that the EKF is a linear algorithm, it

has proven its effectiveness in estimation problems [44]. It

is possible to estimate the non-linear SoH and its derivative

for different current, temperature and speed of degradation

β. Moreover, the EKF is able to give the uncertainty of the

estimate through the covariance matrix of the estimates error

Pk [45]. This motivated the choice of the EKF.

2) Setting and uncertainty of the state estimation: In the

initialization of the EKF, the initial state vector x0|0 and

covariance of the state P0|0 are required. Since the initial

SoH and the speed of degradation are assumed unknown,

x0|0 = [0 0]T . The setting of the initial covariance matrix is

performed by solving the algebraic Riccati equation in steady

state when Pk|k = Pk−1|k−1 :

APk|kA
T − Pk|k −APk|kH

T
k MHkPk|kA

T +Q = 0 (8)

with M = (HkPk|kH
T
k + R)−1 and Hk the observation

matrix. Similar results can be obtained by running the EKF

with a lower sample time for about a thousand iterations.

The output of the filter above is the optimal state estimation

x⋆
k given by the conditional probability density function:

p(xk|yk) ∼ N(x̂k, Pk) (9)

where x̂k is the expected value and Pk is the covariance matrix

of the estimation error defined by:

Pk =

[

σ2
αk

0
0 σ2

βk

]

(10)

In the Kalman theory, Pk is a function of the process and

measure noise variances which are ”usually” used as tuning

variables. Nevertheless, to obtain the true uncertainty of the

state estimate, Q and R have to be correctly set. The value of

the measurement noise variance is obtained from computing

the square of the standard deviation of the measured voltage

seen in Fig. 2 [45]. Once that the test bench records the voltage

with a different sampling rate Tsbench
, the discrete variance of

measurement noise for the observer could be expressed as:

RTs

∼=
σ2.Ts

Tsbench

(11)

Computing the analytical value of the process noise variance

Q is a complicated task [32], it is therefore chosen to obtain

it by minimizing a cost function J of the SoH obtained on a

constant load aging long term test performed on the same test

bench. The diagonal term Q11 is set to zero, once that αk is

the integral of βk in the model.

Q =

[

Q11 0
0 Q22

]

(12)

J(Q22) =
1

n

n−1
∑

k=0

(α̂k − αk))
2.k (13)

with α̂k the estimation of the SoH at sample k, αk the

real SoH at sample k, and n is the number of samples of
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Fig. 7. Simulation and estimation of the stack voltage

the test. Furthermore, since the algorithm has to give more

accurate results in time, the quadratic function is multiplied

by the sample number. If the EKF runs at a different sampling

rate Ts than the test bench, the variance of the process noise

could be evaluated as following:

QTs

∼=
Q22.Ts

Tsbench

(14)

If Q is positive definite and the system is observable, then

P k→∞
k|k is unique, finite positive-semi-definite solution to the

algebraic Riccati equation, independent of P0|0 and the steady 

state EKF is asymptotically unbiased. With this setting of the 

noises, the diagonal terms of the covariance matrix Pk give the 

uncertainty on the State of Health and speed of degradation 

estimation [46].

3) Simulation results: To verify the effectiveness of the

damage tracking algorithm, an aging fuel cell is simulated 

on Matlab-Simulink©R using an Intel i5 Processor, 2.40GHz 

clock frequency and 4GB RAM. The current profile described 

in section 2 is used as the input of a PEMFC model where 

the parameters R(t) and IL(t) evolve through time at different 

constant degradation rates. Fig. 7 shows the simulated voltage 

and its estimation by the EKF. The result of the estimation 

of the SoH α(t) and the speed of degradation β(t) with 

the 99% probability bounds (3σ) are shown in Fig. 8. To 

evaluate the performance of this damage tracking algorithm, 

the Root Mean Square Error (RMSE) of the voltage, SoH and 

speed of degradation is computed (see Tab. II). The MAPE, 

which allows to evaluate the relative error, would be a better 

indicator. Nevertheless it can not be used for assessing the 

state estimation accuracy since α and β cross the zero-value.

Variable RMSE

Voltage V st 0.89%
State of Health α 0.23%

Speed of degradation β 0.018%

Although the load current varies, the voltage is accurately

estimated by the EKF. Moreover, the SoH α(t) is correctly

estimated with a high confidence. The EKF requires about

100 samples to converge and to estimate correctly the speed

of degradation β(t). To improve the convergence time, one

Table II. Accuracy of the EKF estimation
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Fig. 8. Simulation and estimation of the SoH and speed of degradation

can run the algorithm at a higher sampling rate. As a result,

the estimation will be more noisy and it should be avoided.

This algorithm is able to estimate a new speed of degradation

within 100 hours, which is well suited to a µ-CHP profile.

Nevertheless, in transportation application, the PEMFC works

with much faster dynamics of current what makes the prog-

nostic more difficult. This issue will be subjected to future

research.

D. IFORM for RUL estimation

1) IFORM algorithm: Most of the uncertainty quantifi-

cation methods for the remaining useful life are based on

Monte Carlo simulation which is computationally expensive.

This is the reason why analytical method as the First Order

Reliability Method is extensively used for effective failure

probability calculation [47]. On the contrary, the IFORM

is able to estimate the unknown parameters (e.g. RUL for

prognostics) for a given failure probability level [48]. The

IFORM algorithm requires a so called limit state function

g(u, y) which represents the limit between healthy state and

failure mode in the random variable Standard Normalized

Space (see Fig. 9). In this paper, the PEMFC is considered

out of use when the SoH α reach a threshold αmax. As a

consequence, the limit state function is expressed using the

Fig. 9. Limit state function and Most Probable Point

forecasted RUL which depends on the actual SoH and speed

of degradation [49]:

RULk =
αmax − αk

βk.Ts

(15)

g(u, y) = RULk(u)− y (16)

where u is the vector of random state variable x = [αk, βk]
T

expressed in the standard normalized space and y is the

number of clock. The uncertain parameters have to satisfy the

constraint:

Pf = Φ(−βtarget) (17)

where the failure probability Pf is calculated using the Cu-

mulative Distribution Function (CDF) of the reliability index

βtarget (not to confuse with the speed of degradation βk). The

later is defined as the distance between the origin and the Most

Probable Point (MPP) in the standard normalized space:

||u|| = βtarget (18)

The IFORM algorithm aims at finding the MPP using numeri-

cal minimum search techniques satisfying the constraints for a

given Pf (where βtarget = Φ−1(Pf )). The iterative procedure

follows the steps bellow:

1) The counter j is set to zero and an initial guess for the

MPP is chosen xj = {xj
1, x

j
2}

2) The coordinates are transformed into normal space us-

ing the mean and variance from the EKF (µi and σi

respectively):

u
j
i =

x
j
i − µi

σi

(19)

3) The gradient vector of the limit state function is com-

puted:

ai =
∂g

∂ui

=
∂g

∂xi

.
∂xi

∂ui

(20)

4) The next point is computed using:

uj+1 = −
a

|a|
.βtarget (21)

5) xj+1 is computed by transforming back into the orig-

inal space and the steps are repeated from 3 until the

algorithm converges (usually in 4-5 iterations).

Two criteria for the convergence must be satisfied (using

tolerance δ1 and δ2):

• The MPP must lie in the limit state function:

|g(xj)− y| ≤ δ1 (22)

• The coordinates of the point are nearly constant between

two iterations:

|xj+1 − xj | ≤ δ2 (23)

One can obtain probability bounds by repeating this

algorithm for different Pf . For example, with Pf =
{0.05, 0.5, 0.95}, the algorithm estimates the RUL and the

90% probability bounds. Details about the general method-

ology and computational considerations can be found in [50]

and [12] respectively.
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2) Simulation results: The estimation of the SoH, speed

degradation and uncertainty by the EKF is given as input

of the IFORM algorithm. The simulated PEMFC stack (see

Fig. 7) has a maximum parameter deviation αmax = 70%
at tEoL = 800 hours. This is considered as an indicator of

good prediction even if the PEMFC can still operate afterward.

Fig. 10 shows the estimation of the Remaining Useful Life

with 90% probability bounds and the Prognostic Horizon

metric (PH). The PH is the time for which the prediction

is bounded in an allowable error a (i.e. a = 0.1 whether

80 hours). Fig. 11 shows the a − λ performance metric. It

quantifies the accuracy of the RUL prediction that must lies

within a cone-shaped bounds (here a = 0.15) [51].
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Fig. 11. RUL estimation and the a− λ performance metric

Since, the Remaining Useful Life depends on the speed

of degradation, one can notice different possible EoL (e.g.

between t = 200 h and t = 500 h, the EoL seems to be

extended to 900 hours). For instance, at t = 200h, the real

EoL can not be forecasted once that the degradation model is

not a function of the current profile. Moreover, since the EKF

requires about 100 samples to converge, the RUL follows the

same dynamic. In this simulation case, the PH is of about 260

hours (10.8 days) and the a−λ is equal to 158 hours (6.6 days)

which is enough time for planning a PEMFC replacement

before failure. Moreover, the average Relative Accuracy RA

is equal to 90% between t = 540 hours and the failure time

tEoL. It is noted that the uncertainty on the RUL estimation is

also bounded by the PH metric at t = 550 hours and this can

be used to compare with other uncertainty quantification of

prediction methods even if the distribution is not a Gaussian

[51]. This methodology gives auspicious results in the RUL
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Fig. 12. αk and βk estimation with the 99% confidence interval

estimation with a high certainty after 550 hours and an high

accuracy after 640 hours. The uncertainty decreases with time

and the algorithm is able to re-evaluate the RUL when a

change of speed of degradation is detected.

E. Experimental results and discussion

1) Results: The SoH and RUL estimation method presented

above is applied to the 8-cell stack from section 2 (see Fig. 2).

First, a polarization curve is performed where the initial set of

parameters {E0, I0, R0, IL0} is extracted using the Levenberg-

Marquardt method (see section 3.B). Then, the EKF estimates

hourly the SoH αk and speed of degradation βk as seen in

Fig. 12.

One can notice that the estimation is affected when charac-

terizations are performed. Indeed, a recovery effect happens on

the stack voltage and leads to a better SoH. This phenomena

can be due to the re-standardization of the conditions of

temperature and by a proper evacuation of the liquid water in

the PEMFC. Moreover, as expected from the parameters study

of section 3.B, the current profile (i.e. the seasons) affects

the speed of degradation which seems to be correctly tracked

by the EKF. This leads to a re-evaluation of the RUL by the

IFORM algorithm (see Fig. 13). This over and underestimation

could be avoided with a physical model linking the speed

of degradation and the operating conditions. The chosen
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threshold for EoL of the PEMFC is a maximum parameter

deviation αmax = 75% which seems to be reached twice:

t = {704, 820}. As a consequence, different EoL seems to

appear:

• 100 < t < 400, tEoL = 800 h

• 570 < t < 700, tEoL = 700 h

• 704 < t < 820, tEoL = 820 h

• 820 < t, tEoL = 950 h

Similarly to the simulation case, several performance met-

rics are used. The real values of α(t) and β(t) can not be

obtained in-lab, thus it is impossible to evaluate the perfor-

mance of the EKF on the state estimation. Nevertheless, one

can assess the good estimation of the EKF with the RMSE

of the stack voltage which is of about 9%. The PH (with

a=0.1) is equal to 200 hours (8.3 days) as seen on Fig. 13. On

Fig. 14, one can see that the a− λ indicator (with a=0.15) is

reached at t = 160 hours (6.7 days) and from t = 540 hours

till tEoL the RA is of about 87%. Likewise the simulation

case, the uncertainty is bounded by the PH metric at t = 520
hours. The global method is able to estimate the RUL with a

high confidence after 500 hours which is suited for a µ-CHP

application.

2) Computational considerations: The total time required

to run the EKF along this 900 hours data-set on an Intel i5

Processor, 2.40GHz clock frequency and 4GB RAM, is of

about 1.2 seconds. When the IFORM algorithm is included,

the total time is about 1.64 second. This can be explained by

the fact that for each new sample, the IFORM algorithm takes

in average 5 iterations before convergence. For the sake of

comparison, a Particle Filter (PF) is used on the same data-set

as an estimator with different settings. With N=2000 particles,

the PF is giving better accuracy than EKF for the voltage

estimation, nevertheless the total time is up to 4 hours and

28 minutes. For an estimation accuracy similar to the EKF

(N=100 particles), the algorithm requires 5 min 45 seconds to

compute the prediction. The accuracy and prediction time are

resumed in Tab. III.

3) Discussion: The state estimation of the EKF is highly

dependent on the setting of the covariance of the measurement

and process noises. This issue is addressed in this paper.

Nevertheless, the measurement noise is considered constant

which is not the case in practice (i.e. the noise is greater at high

current as seen in Fig. 2). The result of the algorithm could be

Table III. Performance comparison between PF and EKF

Estimator RMSEV Total computational time

EKF and IFORM 9.02% 1.64s
PF (N=100) 9.03% 5min45s

PF (N=2000) 4.2% 4h28min

enhanced with an online standard deviation estimation of the 

measure noise [52] and a process noise chosen in accordance 

to this measure noise [53].

The method gives auspicious results despite an unknown 

variable speed of degradation and a recovery effect. Indeed, 

in real situations, the profile might not be fully known (i.e. 

lowering of the required power during mild winter) and the 

characterizations may not be performed periodically (absence 

of recovery). Moreover, the algorithm is able to provide the 

uncertainty of the SoH and RUL estimation with a low compu-

tational cost compared to the other uncertainty quantification 

methods. However, the time required by the EKF to converge 

makes the RUL estimation in vehicle applications challenging 

(due to higher dynamics) and it will be subject of further 

research.

IV. Conclusion

An observer-based prognostic algorithm for PEMFC is 

presented which is able to estimate the SoH and RUL with 

the inherent uncertainty. The aging of the PEMFC is predicted 

using an EKF and an empirical model of degradation which 

is based on a parameters analysis. The parameters of a static 

PEMFC model are obtained using a Levenberg-Marquardt 

optimization algorithm with a high accuracy for all the consid-

ered load current. The setting of the EKF is discussed which 

allows obtaining the state and the uncertainty of the estimates. 

These information are provided to an IFORM for fast and 

accurate RUL estimation and uncertainty quantification.

The presented method is able to give prognostic results 

for PEMFC under a µ-CHP current profile with an unknown 

speed of degradation, which would reflect better the yearly 

power demand of a real PEMFC in stationary applications. 

However, in vehicle applications, the required power follows 

higher dynamics, and so the RUL estimation algorithm has to 

be able to converge faster, or the method has to be adapted 

for the prediction of the average behavior in a specified time 

window. The RUL estimation and uncertainty quantification 

of PEMFC under a transportation cycle will be the subject of 

a future paper.
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