
HAL Id: hal-01558202
https://hal.science/hal-01558202

Preprint submitted on 7 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation of business process tenant distribution in
the Cloud with a genetic algorithm

Guillaume Rosinosky, Samir Youcef, François Charoy

To cite this version:
Guillaume Rosinosky, Samir Youcef, François Charoy. Optimisation of business process tenant distri-
bution in the Cloud with a genetic algorithm. 2017. �hal-01558202�

https://hal.science/hal-01558202
https://hal.archives-ouvertes.fr

Optimisation of business process tenant
distribution in the Cloud with a genetic

algorithm

Guillaume Rosinosky12, Samir Youcef2, and François Charoy2

1 Bonitasoft, Grenoble, France,
guillaume.rosinosky@bonitasoft.com,

http://www.bonitasoft.com
2 Inria Nancy Grand Est - Université de Lorraine - CNRS

Abstract. With the generalization of the Cloud, software providers can
distribute their software as a service without investing in large infras-
tructure. However, without an effective resource allocation method, their
operation cost can grow quickly, hindering the profitability of the service.
This is the case for BPM as a Service providers that want to handle hun-
dreds of customers with a given quality of service. Since there are vari-
ations in the capacity and the number of users, the allocation method
must be able to adjust the resource and the allocation of customer on
these resources. In this paper we present a cost optimization model and a
heuristic based on genetic algorithms to adjust resource allocation to the
need of a set of customers with varying BPM task throughput. Experi-
mentations using realistic customer loads and cloud resources capacities
shows the gain of this method compared to previous approaches.

Keywords: elasticity, BPM, cloud, genetic algorithm

1 Introduction

From a customer point of view, consuming ”Business Process Management as a
Service” (BPMaaS) delivered by a service provider has advantages that IT peo-
ple widely acknowledge. It reduces the operational burden and allows to rely on
the provider for all the maintenance and provisioning of the service and to con-
centrate on the business dimension. From the provider point of view, it increases
the operational complexity. The provider must ensure that all his customers re-
ceive the same attention and the same quality of service at all time. He must
also ensure that he operates at the best possible cost. Public cloud providers bill
their resources on demand. The service provider wants to pay only for what is
really needed for his customers. The Business process service provider must pro-
vide the best service possible, according to the customer service level agreement
(SLA) while reducing the cost from the public cloud use. A Business Process
Management System (BPMS) deployment is complex. It includes application
servers, process engines and database management systems. If the BPMaaS is

multi-tenant, it can support several customers on the same software installa-
tion. Clustered installation can be deployed for high availability. Usage pattern
for customers are very diverse and the BPM task throughput evolves among the
day and the week. It is possible to distribute customers processes on different
deployments on different cloud compute instances in order to maintain the cost
of the overall infrastructure. In order to optimize the placement of customers
over the day, we can migrate them from an installation to another. For instance,
moving a customer from one expensive installation but powerful set of instances
to a cheaper one, but able to support less operations can be financially inter-
esting. However, migrations are critical since they can generate short disruption
of service on the customer side. This is mostly due to the migration of the pro-
cess data and of the executing processes We must control them and limit their
number.

In our previous work [15], we proposed an original strategy that relies on
time series segmentation on one side, and on iterative usage of our time slot
heuristic [14] on the other side, based on load evolution to select the best mi-
gration time. The resulting algorithm has two levels : one for finding the best
migration strategy (a matrix representing for each tenant the precise time slots
where they should be migrated), and an iterative algorithm with this informa-
tion. The strategy provided better results than the previous one and was more
effective in term of performances. We could deal with a high number of tenants
without performance issues. However results could be enhanced compared to
those obtained with an integer linear model solver. Here we propose a new inte-
ger linear programming (ILP) model as an alternative of the iterative heuristic,
and a genetic algorithm that aims at finding the cheapest migration strategy.
We obtain better results, and, as we will see in the experiment part, an insight
based on splitting groups of tenants for obtaining even cheaper configurations.

The next section of this paper is a state of art related to BPM elasticity in the
cloud. In the third section we describe our migration strategy model, our specific
genetic algorithm approach coupled to a solving of the model, and our iterative
heuristic. We study experimental results on both of the approaches compared to
the previous results and show how we achieve a surprising experimental result.
The last part concludes and presents the future work.

2 Related work

A lot of work has been devoted to elasticity in the cloud and more precisely
elasticity for BPM or orchestration systems. Schulte and al. [16] did a general
review on the topic and gives direction for future research. Here, we focus on
the resource allocation and scheduling parts and use a tenant-centric approach
based on BPM task throughput, instead of the BPM process-centric from other
approaches. We considers horizontal elasticity (adding or removing resources)
and vertical elasticity (using lower or higher end resources) at the same time.

Though not cloud-related, Djedovic et al. proposes in [4] a genetic algorithm
for BPM task scheduling to their corresponding resources. It is based on a repre-

sentation of each corresponding resource. Their goal is to minimize the waiting
time and the global resource cost. Rekik et al. [13] propose an integer pro-
gramming model based on general hardware metrics for BPM elasticity on the
cloud. Their approach is based on resource allocation and BPM task scheduling,
though very interesting, does not tackle multiple time slots, data migration or
multi-tenancy. Other attempts on BPM elasticity such as [9], [10], [5], [18] do
not tackle multi-tenancy or migration cost.

Numerous attempts on virtual machines has been done such as those of the
machine reassignment problem [1] who treats the migration cost. [7], [2] answered
to this problematic, but these approaches use hardware metrics, and aggregate
migration cost in the objective function. Moreover, virtual machine allocation is
different of our problem as the hardware is already defined.

This paper is an evolution of our previous work [15]. We described our ap-
proach based on time series segmentation for deducing the good time slot to
migrate tenants, and on the iterative use of an enhanced version of our time slot
heuristic. We also presented the corresponding ILP (Integer Linear Program-
ming) model. Results were encouraging compared to an intuitive approach, but
could be improved regarding the results that we obtain with a solver. In the next
section we present our new approach that provides better results and enhance
scalability.

3 Approach and model

In this section we present our fixed migration strategy model and our optimiza-
tion method that is based on a genetic algorithm.

Our approach is tenant-centric i.e we distribute customers (or tenants) as
a whole on BPM installations and their cloud resources. We consider that it is
easier and more realistic to manage deployment by customer rather than by pro-
cess since we consider the process, the business data and security configuration
that is specific for a tenant and that may be shared between executions. Our
assumptions are the following :

– a tenant is a customer of the BPMaaS. Tenants run BPM processes composed
of BPM tasks. In order to execute them, the BPMS needs computing power,
network bandwidth, disk and memory. It also relies on relational databases
for the persistence part and load balancers for clustered installations. These
metrics are difficult to relate to the business activity. Thus we adopt the
BPM task throughput as our main performance metric. It corresponds to
the number of completed BPM tasks for one period of time. As BPM task
states are persisted with transactions, this metric can be used for the whole
system. It is also meaningful for the customers. We assume that we know
in advance the BPM task throughput per second for each tenant and each
time slot. Our approach is offline.

– a cloud resource is one or several Cloud compute instances that we can use
for the database tier, BPM system tier, load balancer tier, etc. It is able to
support a full BPMS installation. Multiple cloud resource types correspond

to several types of IaaS cloud compute instance. An example on Amazon Web
Service3 (AWS) would be a combination of a r3.large for the persistence tier,
and c4.large for the BPMS tier. We assume that there is a price per time
slot for each cloud resource type. A cloud resource type, and by extension a
cloud resource has a capacity expressed in BPM task throughput.

– a cloud resource is able to host multiple tenants. For each time slot, the sum
of the task throughputs of a cloud resource’s tenants must not exceed the
capacity of the cloud resource. Each tenant must be assigned to an active
cloud resource at each time slot.

– we name migrations the action of moving the tenant data and process from
one cloud resource to another. It generates QoS breaks for the customers [3].
Thus, we limit the number of migrations for each tenant to a defined value.

We proposed in [15] a method based on an iterative heuristic that can gives
the list of cloud resources required and a mapping of tenants on each resource,
this for each time slot. We present it in the next section.

3.1 First allocation heuristic

Fig. 1. Exemple of a migration strategy

Our first heuristic has two parts : first we have to choose a migration strategy
i.e the time slots where each tenant can migrate, and second apply an heuristic

3 https://aws.amazon.com/

using this migration strategy in order to obtain, the cloud resources and the
placement of tenants on it. An example of migration strategy is shown in figure
1. In order to select a cheap migration strategy, we used time series segmentation
[11]. It allowed to select good migration times for each tenant. It provides better
results than an intuitive approach, but the comparison with the optimal solution
computed with a solver shows that it is far from the optimal cost. The new
approach we propose in this paper gives better results. We propose to use a
genetic algorithm able to find migration strategies that reduces the resource
cost, and an alternative to the iterative timeslot heuristic based on integer linear
programming. We present the latter in the following section.

3.2 A efficient model for migration strategies

Let the following variables :

– T , the set of cloud configuration types, with t its cardinality.
– I, the set of tenants with n its cardinality
– J , is T × I the set of all possible cloud configurations associated with each

tenant. its cardinality is m = t× n
– Cj , and Wj , respectively the cost and the capacity for the configuration j,

with j in J
– wi(k), the required capacity for the tenant i during time slot k
– K defines all the time slots, from 0 to D, where D + 1 is the number of time

slots.
– xj

i(k), the assignment of tenant i to configuration instance j during time
slot k

– yj(k), the activation of configuration j during time slot k
– M , the maximum number of migrations of tenants between cloud resources

on all time slots
– hi(k) with 0 ≤ k ≤ D−1. hi(k) is equal to 0 if the tenant i is not allowed to

be migrated between time slot k and k+1, and equal to 1, if it is allowed. The
set of all hi(k) (for each tenant and each time slot) is a migration strategy.

– migration strategies assume the maximum number of migrations allowed per
tenant : ∀i ∈ I

∑k∈K
k hi(k) = M where M is the number of migrations.

The objective for our model is to minimize the total cost for all active cloud
resources, for each time slot.

min

j∈J∑
j

k∈K∑
k

Cjyj(k) (1)

We must ensure that the following constraints are not violated

∀i ∈ I,∀k ∈ K
j∈J∑
j

xj
i(k) = 1 (2)

∀j ∈ J ,∀k ∈ K
i∈I∑
i

wi(k)xj
i(k) ≤Wjyj(k) (3)

∀j ∈ J ,∀i ∈ I,∀k ∈ K|hi(k) = 0, xj
i(k) = xj

i(k + 1) (4)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, xi
j(k) ∈ {0, 1}, yj(k) ∈ {0, 1} (5)

Equation 2 represents the obligation of a tenant to be placed at each time
slot on an active cloud resource. Equation 3 means that the sum of the required
capacity for each tenant on one cloud resource cannot exceed the capacity of the
cloud resource. Equation 5 represents the variables we use, one representing the
activity of a cloud resource at time (y), and the other representing the mapping
of each tenant on each cloud resource at each time (x).

Equation 4 represent the migration strategy. The equality constraint means
that for a tenant i and a time slot k, assignation values xi

j(k) will stay the
same on time slots k and k+ 1. When a tenant is authorized to migrate between
resource, there is no constraint for this tenant. Generalizing this on all resources
produces the desired effect, and enforces the maximum number of migrations
constraint we need.

As the iterative heuristic, this model needs a pre-defined migration strategy.
We present in the next sub section our genetic algorithm approach, who aims to
find the cheapest one.

3.3 Cost optimization via genetic algorithms

A genetic algorithm is a meta-heuristic belonging to the family of evolutionary
algorithms, and inspired by natural selection [17]. Its principle is to produce
directed random evolutions on a population of individuals until it obtains one or
several individuals with a good fitness value. Here is a description of the different
steps :

1. generation of an initial population of different individuals (also named chro-
mosomes).

2. evaluation of the fitness of the different individuals (in our case the cost)
3. selection of the individuals to use for computing future generations (parents)
4. offspring generation using the selected parents, mixing elements from each

one in the resulting individuals
5. random mutations application on the offspring
6. fitness evaluation of the resulting offspring
7. survivors selection between the offspring and the original population
8. process stop after a number of generations or a time limit or go back to step

3.

For each step, there are multiple approaches. In the following, we describe
the solution we have designed.

Individual representation We want to find the best migration strategy for
all the tenants and time slots. To represent an individual, we vectorize a mi-
gration strategy by concatenating migration strategies of each tenant (each one
corresponding to a vector of D boolean values). The size of the vector will be
|D| × |I|, with each element being equal to zero or one. For instance with two
tenants and three time slots, the first migrating on the second time slot and the
second tenant on the third time slot, we will have the following representation :
[0, 1, 0, 0, 0, 1].

Population initialization We initialize the population with all the segmen-
tation algorithm combinations, and with random individuals with the correct
number of mutations for each tenant.

Fitness evaluation We want to find the migration strategies that produces
the cheapest cost. The fitness score corresponds to the total cost of all the
active resources on the time slots. To evaluate it on the different individuals, we
compute the allocation and placement of the tenants on the cloud resources. In
our case, we run our iterative time slot heuristic [15] or a solver on our model
presented in section 3.2, for each individual. We keep the cloud resources and
tenants assignation distribution in memory for the next steps, and of course the
fitness score.

Parent selection For this step, we use a classical rank selection strategy. We
sort the population by fitness and we select randomly, and with a higher priority,
the individuals with the higher rank for parents.

A specific mutation : co-hosted tenant migration mutation strategy
In classic approaches, mutation updates randomly individuals, depending on a
mutation rate, switching scalar values from zero to one or the other way around
[17]. In our case, we cannot use this approach, as the number of migrations for
each tenant is bounded. We developed two alternative mutations more suited to
our problem.

Fig. 2. Basic tenant mutation vs cohosted mutation

In the first one, we reassign to another hour some existing mutations. We
consider a random tenant, a random origin migration authorization (value equal
to one in the migration strategy matrix) and a random migration non authorized
for the same tenant (value equal to zero in the migration strategy matrix). We
authorized this on multiple tenants (i.e mutation points). However, this approach
was not very effective in our case, and the gain was poor even after lots of
iterations.

Our plan was to accelerate the convergence speed. The time slot algorithm
[14], [15] uses a resource-based approach. Moving tenants located on the same
resource at different time slots never frees the resource. In figure 2, we compare a
basic tenant mutation and our co-hosted tenant mutation approach. We consider
three tenants from 1 to 3, and hours as time slot, from 5am to 12pm. The tenants
are initially placed on the resource R1, that costs 2$ per hour. For all the time
slots it is possible to move all these tenants to the cheaper resource R2 - in
this case, the sum of their current load permits it. Moving the authorization of
migration of tenant 1 to 7 am will not be sufficient to free the expensive resource
R1. Indeed, moving tenant 1 and tenant 2 to another cheaper resource would
be more costly than to let all the tenants on the resource R1, as there would be
two active resources. Even if this approach may be better in the long run, our
iterative time slot heuristic considers time slots separately.

Our alternative approach consists in shifting the authorization to migrate
for each co-hosted tenant at the designed time slot for the reference tenant’s
resource. For this, for each tenant, we iteratively move back the time slots until
we find an authorization to migrate (or until we attain the beginning of the
time slot space), and if we find one, we set it to zero while setting to one the
”destination” time slot. If the ”destination” time slot is already set to one, we
ignore this behavior. The example on the right side of figure 2 describes this
principle. There, it is possible to migrate all the tenants of resource R1 to the
cheaper resource R2, and thus save money. We present this new behaviour in
algorithm 1.

Offspring generation : the tenant crossover strategy The crossover tech-
nique we use consist in switching for some random tenants their migration time.
First, two children identical to two migration strategies parents are generated.
Then, depending on the ncp number of cut points, ncp tenants will see their
migration hours switched in the children, as in figure 3.

Generational replacement We use a traditional approach where the entire
population is replaced by the offspring, except for the best individuals from
the original population (named elites). They replace the less fit offspring in the
future population.

Termination condition We use a time limit end condition. This will allow us
to compare different solutions based on this limit.

Algorithm 1 Cohosted mutation

1: procedure Cohosted mutation(candidate, mutationRate, distributions, muta-
tionPointsNumber, timeslotQuantity, tenantQuantity)

2: if random(1) ≤ mutationRate then
3: tenantsToMove← ∅
4: for mp in mutatationPointsNumber do
5: concernedT imeSlot← int(random(timeslotQuantity))
6: destinationT imeslot← int(random(timeslotQuantity))
7: tenantToMove← int(random(tenantQuantity))
8: concernedResource← distributions.getResource(concernedTenant, concernedT imeslot)
9: cohostedTenants← distributions.getTenants(concernedResource, concernedT imeslot)

10: for tenantincohostedTenants do
11: if candidates [tenant] [destinationT imeslot] = 0 then
12: shiftT imeslot← concernedT imeslot
13: while shiftT imeslot ≥ 0 do
14: shiftT imeslot← timeslot− 1
15: if candidates [tenant] [shiftT imeslot] = 1 then
16: candidates [tenant] [shiftT imeslot] = 0
17: candidates [tenant] [destinationT imeslot] = 1
18: break

return candidate

Fig. 3. Crossover heuristic

Adapted algorithm workflow We switched the mutation phase and the
crossover phase. The cohosted mutation requires to have the cost of the migra-
tion strategy in the population. We compute the cost in the fitness evaluation
phase. The crossover phase generates potentially unknown (not yet computed)
migration strategies. Thus, we do it after the mutation phase. In our case, ”par-
ents” are mutated instead of the offspring.

We can use our technique both with our iterative heuristic [15] and with an
optimization of our model presented in part 3.2 with the solver. In the next
section, we present our experiments and the corresponding results.

4 Experimentation

Our experiment allows us to show that we enhance the results from our previous
approach, and obtain good results with both our iterative heuristic [15] and

the model presented in section 3.2 when using our genetic algorithm approach
presented in section 3.3.

We conducted tests with the same cloud resources price and size, and the
same seeds than in our previous work [15]. We limit ourselves to configuration
of two compute resources (see table 1).

DB inst. type AS inst. type price task TP task TP per $

db.m3.medium m3.medium 0.177 16.400 92.656
db.m3.medium c4.large 0.223 23.157 103.845
db.r3.large c4.large 0.399 55.164 138.255
db.r3.large c4.xlarge 0.518 58.067 112.100
db.r3.xlarge c4.large 0.674 65.113 96.607
db.r3.large c4.2xlarge 0.757 61.474 81.208
db.r3.xlarge c4.xlarge 0.793 83.236 104.963
db.r3.xlarge c4.2xlarge 1.032 89.149 86.384
db.r3.2xlarge c4.2xlarge 1.587 105.794 66.663
db.r3.2xlarge c4.4xlarge 2.063 107.585 52.150
db.r3.4xlarge c4.4xlarge 3.173 115.283 36.332
db.r3.4xlarge c4.8xlarge 4.126 129.279 31.332

Table 1. cloud configuration price, mean task throughput, and mean task throughput
by dollar

For the customer part, we vary the number of tenants (10, 25, 50 and 100),
and we use different throughputs of BPM task per second based on data from
the BPMS BonitaBPM4 customers. We use minimum and maximum throughput
per second found in the anonymized execution history table (table 2). We have
then generated each tenant’s initial time slot load randomly following an uniform
distribution between the two throughputs. Our next step was to generate the
variation of load between time slots by adding or removing a random value
limited to one quarter of the difference between the maximum and the minimum
load (tenant gap of 0.25) as in [15].

customer days minimum maximum

A 4 1 120
B 1 14 16
C 45 0 120
D 7 1 3
E 45 5 120
F 550 0 4

Table 2. For each customer, the day interval, the minimum and the maximum task
throughput per second for each hour.

For our experiments, we used the python library Inspyred [6] for the genetic
algorithm that integrate well with our environment.

4 http://www.bonitasoft.com/

4.1 Experiment Parameters

In order to obtain significant and realistic results, we used the following param-
eters:

– four values for the number of tenants : 10, 25, 50 and 100
– time slot size of one hour as the cost model of compute instances of AWS
– we limit the allowed number of migration to 4 per day
– we consider a 2 days period (thus limiting migrations to 8)
– we limit the number of elites individuals to 5
– we chose a mutation rate of 0.4
– we chose a population size of 20
– we chose a number of mutation points correspond to the number of tenants

divide by 5
– we limit the Genetic algorithm computation time to 600 or 1800 seconds
– we limit the solver computation time to 5 seconds

4.2 First experiment results

Fig. 4. Mean genetic algorithm gain on best initial segmented population for 600 second
of running time

On figure 4 we show the relative gain of this new approach compared to our
previous approach (segmentation) in red (in the upper part of the figure), and
on the adapted strategy in blue (in the lower part of the figure). The adapted
strategy corresponds to the intuitive approach where for each tenant, we book the
cheapest resource able to withstand all the load of the studied time slots. This
approach do not need migrations but can become very expensive. As expected,

the gain is better for 10 tenants than for 100 tenants since the system has more
time to search for the cheapest solution. For 10 tenants, we obtain more than 10
% enhancement on the original approach, and more than 45 % on the intuitive
approach. However for 100 tenants, we have only a 1 % enhancement.

It appears that either the iterative usage of the heuristic, the genetic algo-
rithm or the two of them is more efficient for a small number of tenants for the
same number of generations. This is why we conducted experiments where we
apply the proposition to subsets of the tenants and we aggregated the results as
described in the next section.

4.3 Splitting the tenants in subgroups or the splitting strategy

For this solution, we split the set of tenants in small groups selected randomly.
We tested different size of splitted groups with various number of tenants and we
applied the previous method keeping the same total computation time. Figure
5 shows the results we obtained with the genetic algorithm and the iterative
heuristic. The x axis corresponds to the size of the groups of tenants. The y axis
shows the relative gain compared to the results with no partition. A subset size
with the same size as the number of tenants corresponds to no split, the gain is
zero.

Fig. 5. Gain depending on splitting strategy for various split quantities.

We obtain the best results with partitions of 5 tenants in all cases. For the
experiments we ran, the gain varies from 5% to 15%. We have no good explana-
tion today for this result but it is reproducible. Our tests with the solver give
the same results for the size of the groups than with the heuristic. In the next
subsection we present our results with groups of 5 tenants.

4.4 Results for solver and iterative heuristic

We implemented our model (presented in subsection 3.2) using PuLP [12] with
the Gurobi solver [8]. With only some parameters it is possible to launch the
genetic algorithm against the heuristic or against the solver. However, for execu-
tion time and cost reasons, we were not able to test every set of parameters. For
instance, with our current implementation, we managed to obtain results with
the solver only up to a size of 25 tenants for the partition. Indeed, the duration of
the initialization part and the required memory makes it impossible to run with
more tenants. Thus we have limited our extensive tests to parts of 5 tenants, for
a total of 50 and 100 tenants. However, as we can see, the results are interesting,
and stay close to the results of the heuristic. Figure 6 shows the absolute gain we
obtained, and the corresponding percentage compared to the adapted approach
cost, for 600 seconds and 1800 seconds of running time. We also present the
non-splitted result for the segmented approach (results of the previous paper),
and the splitted segmented approach where we apply time series segmentation
on the groups of 5 tenants instead of all the tenants simultaneously.

Fig. 6. Mean cost comparison for 50 and 100 tenants per group of 5

For 1800 seconds of execution time of the genetic algorithm, splitted heuristic
give the best results. Mean distribution costs are 51.34 % for 50 tenants, and
51.72 % for 100 tenants of the naive coast. Using the solver gives good results but
more expensive (respectively 55 % and 54.19 %). For 600 seconds of execution
time, the results are more balanced : they vary between 54.2% and 55.64%.
The genetic algorithm does not enhance the results a lot for both approaches
after 600 seconds : 3% for the heuristic and less than 1 % for the solver. Still,

it enhances the initial splitted segmented results from 61.3 % to 51.34% for 50
tenants, and from 59.34 % to 51.72 % for 100 tenants.

We observe that the splitted segmented approach allows to gain more than
2 % , and to unleash the results of the genetic algorithm. Without splitting we
gain of around 1 % for 600 seconds of genetic algorithm compared to the origi-
nal population (non splitted segmented). When splitting, the genetic algorithm
results in a gain of 7.1 % for 50 tenants, and 4.69 % for 100 tenants compared
to the splitted segmented strategy. The absolute gain compared to the adapted
heuristic remains worthwhile : we save 1702 $ for 50 tenants and 3319 $ for 100
tenants for a cost of respectively 3498$ and 6874$. The respective gain compared
to our previous work is 425 $ and 763 $. For two days of operations, it could
save 11445 $ per month for 100 tenants.

5 Conclusion

In this paper, we proposed a method for cost optimization of BPMaaS deploy-
ment based on tenant migration strategies and a genetic algorithm. We presented
a new integer programming optimization model. Both allows to obtain substan-
tial gains for BPMaaS providers. The result we obtain when we group the tenants
is surprising. It may be explained by the size of the objective space. The fact
that it is reproducible for different number of tenants shows that testing multiple
sizes may allow providers to save on the operation.

Our method can probably be used with other metrics than BPM task through-
put, if they can be expressed as a scalar for both the cloud resources and the
tenants. We can consider for instance the number of processes, or the number
of HTTP requests that lead to transactional processing. Our methods could be
generalized on systems non related to BPMS using multi-tenancy and tenant-
related persisted data.

Next steps include a better tuning of the genetic algorithm, that can be
reached by auto-tuning methods like hyper-parameter optimization. We have
not tested variations of the genetic algorithm parameters apart of some intuitive
guesses and a selection of the best mutation rate, and it could certainly enhance
the results. We also want to study more realistic customer profiles showing sea-
sonality.

6 Acknowledgment

The authors would like to thank Gurobi for the usage of their optimizer, and
Amazon Web Services for the EC2 instances credits (this paper is supported by
an AWS in Education Research Grant Award).

References

1. Challenge ROADEF/EURO 2012 : Machine Reassignment,
http://challenge.roadef.org/2012/en/sujet.php

2. Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search
for machine reassignment: A solution approach to the ROADEF/EURO challenge
2012. Annals of Operations Research (Dec 2014)

3. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Live database migration for
elasticity in a multitenant database for cloud platforms. CS, UCSB, Santa Barbara,
CA, USA, Tech. Rep 9, 2010 (2010)

4. Djedović, A., Žunić, E., Avdagić, Z., Karabegović, A.: Optimization of business
processes by automatic reallocation of resources using the genetic algorithm. In:
Telecommunications (BIH), 2016 XI International Symposium on. pp. 1–7. IEEE
(2016)

5. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable Business Pro-
cess Execution in the Cloud. In: 2014 IEEE International Conference on Cloud
Engineering (IC2E). pp. 175–184 (Mar 2014)

6. Garrett, A.: inspyred: Bio-inspired Algorithms in Python — inspyred 1.0 docu-
mentation (2014), http://pythonhosted.org/inspyred/

7. Gavranović, H., Buljubašić, M., Demirović, E.: Variable Neighborhood Search for
Google Machine Reassignment problem. Electronic Notes in Discrete Mathematics
39, 209–216 (Dec 2012)

8. Gurobi Optimization, I.: Gurobi Optimizer Reference Manual (2015),
http://www.gurobi.com

9. Hoenisch, P., Schuller, D., Schulte, S., Hochreiner, C., Dustdar, S.: Optimization
of Complex Elastic Processes. IEEE Transactions on Services Computing 9(5),
700–713 (Sep 2016)

10. Janiesch, C., Weber, I., Kuhlenkamp, J., Menzel, M.: Optimizing the Perfor-
mance of Automated Business Processes Executed on Virtualized Infrastructure.
pp. 3818–3826. IEEE (Jan 2014)

11. Lovrić, M., Milanović, M., Stamenković, M.: Algoritmic methods for segmentation
of time series: An overview. Journal of Contemporary Economic and Business
Issues 1(1), 31–53 (2014)

12. Mitchell, S., OSullivan, M., Dunning, I.: PuLP: a linear programming toolkit
for python. The University of Auckland, Auckland, New Zealand, http://www.
optimization-online. org/DB FILE/2011/09/3178. pdf (2011)

13. Rekik, M., Boukadi, K., Assy, N., Gaaloul, W., Ben-Abdallah, H.: A Linear Pro-
gram for Optimal Configurable Business Processes Deployment into Cloud Feder-
ation. pp. 34–41. IEEE (Jun 2016)

14. Rosinosky, G., Youcef, S., Charoy, F.: An Efficient Approach for Multi-tenant
Elastic Business Processes Management in Cloud Computing Environment. pp.
311–318. IEEE (Jun 2016)

15. Rosinosky, G., Youcef, S., Charoy, F.: Efficient migration-aware algorithms for
elastic BPMaaS (2017)

16. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic Business
Process Management: State of the art and open challenges for BPM in the cloud.
Future Generation Computer Systems (2014)

17. Whitley, D.: A genetic algorithm tutorial. Statistics and computing 4(2), 65–85
(1994)

18. Xu, J., Liu, C., Zhao, X., Yongchareon, S., Ding, Z.: Resource Management for
Business Process Scheduling in the Presence of Availability Constraints. ACM
Transactions on Management Information Systems 7(3), 1–26 (Oct 2016)

