
HAL Id: hal-01558155
https://hal.science/hal-01558155

Submitted on 7 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARMHEx: embedded security through
hardware-enhanced information flow tracking

Muhammad Abdul – Wahab, Pascal Cotret, Mounir – Nasr Allah, Guillaume
– Hiet, Vianney Lapotre, Guy Gogniat

To cite this version:
Muhammad Abdul – Wahab, Pascal Cotret, Mounir – Nasr Allah, Guillaume – Hiet, Vianney Lapotre,
et al.. ARMHEx: embedded security through hardware-enhanced information flow tracking. RESSI
2017 : Rendez-vous de la Recherche et de l’Enseignement de la Sécurité des Systèmes d’Information,
May 2017, Grenoble (Autrans), France. �hal-01558155�

https://hal.science/hal-01558155
https://hal.archives-ouvertes.fr


ARMHEx: embedded security through
hardware-enhanced information flow tracking

Muhammad A. Wahab∗, Pascal Cotret∗, Mounir N. Allah†, Guillaume Hiet†, Vianney Lapôtre‡ and Guy Gogniat‡
∗IETR, SCEE – †INRIA, CIDRE – CentraleSupélec, Rennes, FRANCE firstname.lastname@centralesupelec.fr
‡Lab-STICC laboratory – University of South Brittany, Lorient, FRANCE firstname.lastname@univ-ubs.fr

Abstract—Security in embedded systems is a major concern for
several years. Untrustworthy authorities use a wide range of both
hardware and software attacks. This paper introduces ARMHEx,
a practical solution targeting DIFT (Dynamic Information Flow
Tracking) implementations on ARM-based SoCs. DIFT is a solution
that consists in tracking the dissemination of data inside the system
and permit to ensure some security properties. Existing DIFT
solutions are either hardly portable to SoCs or bring unsuitable
time overheads. ARMHEx overcomes both issues using modern
debugging CPU features, along with a coprocessor implemented
in FPGA logic. This work demonstrates how ARMHEx performs
DIFT with negligible communication costs opening interesting
perspectives in the context of reconfigurability and hardware-en-
hanced security for multiprocessor architectures.

I. INTRODUCTION

During the last decade, several security vulnerabilities have
been discovered. Even if patches were delivered, there is always a
game of cat and mouse between security developers and hackers.
Embedded systems are a target of choice for attackers. Indeed
many vulnerabilities have been discovered on such systems.
In the meantime, those systems often contain confidential data
and services which require a high level of integrity. A first
solution to tackle this problem consists in reducing the number
of vulnerabilities by using different techniques such as patch
management, careful code reviews, static analyses or by choosing
managed languages (e.g. Java) that are considered more robust.
However, none of these techniques are sufficient, in practice, to
ensure the absence of vulnerabilities on a complex system made
of multiple applications.

Access control or cryptography can be used to restrict accesses
to confidential data or to enforce integrity. However, they do
not provide any guarantees once access is granted or data
decrypted. Monitoring applications at runtime to check their
behavior is a complementary solution. Among the different
existing approaches, IFT (Information Flow Tracking) is an
appealing solution that consists in tracking the dissemination of
data inside the system. Two approaches can be defined:

• SIFT (Static Information Flow Tracking). This is an offline
analysis of the application aiming to check that all branches
of the control flow graph are trustworthy.

• DIFT (Dynamic Information Flow Tracking). DIFT is per-
formed at runtime: it monitors the application binary in
order to check if the execution is safe.

This work is based on an hybrid approach combining SIFT
and DIFT [1]: both dynamic and hybrid IFTs will be cited as
DIFT or IFT in the following. DIFT consists of performing three
operations:

1) Tag initialization: Each information container (e.g. file,
variable, memory word, etc) is given a tag. Those tags
corresponds to the security level or the type of data they
contained.

2) Tag propagation: Each time an instruction is executed
on the CPU, tags are propagated from source operands to
destination operands to track information flows.

3) Tag Check: To ensure that critical information is not
handled by untrusted functions or entities, tags are checked
with a security policy at runtime and on a regular basis.

This paper is organized as follows. Section II introduces main
contributions regarding DIFT solutions. Our proposed solution
ARMHEx is described in Section III. Then, implementation
results are given in Section IV and compared to state of the
art work. Finally, Section V gives some conclusions and future
perspectives for ARMHEx.

II. RELATED WORK

Software solutions for IFT are generally unusable in practice.
For single-core architectures, the CPU must execute the main
application and IFT-related operations. Therefore, extensive time
overheads (at least 300%) can be expected as the same hardware
unit has to perform both operations [2], [3], [4]. To overcome
those overheads, hardware mechanisms were implemented in
DIFT solutions. We can distinguish four main approaches:

1) Filtering hardware accelerator [5], [6]. Instead of com-
puting tags for each CPU instruction (as done in other
approaches), this approach proposes to filter monitored
events (e.g. instructions or system calls) before computing
tags to lower DIFT time overhead.

2) In-core [7], [8]. This solution relies on a deeply revised
processor pipeline. Each stage of the pipeline is duplicated
with a hardware module in order to propagate tags all along
the program execution.

3) Offloading [9], [10]. In this case, DIFT operations are
computed by a second general purpose processor.

4) Off-core [11], [12], [13], [14], [15], [16]. This solution
seems similar to the offloading one. However, DIFT is
performed on a dedicated unit instead of a general purpose
processor. ARMHEx is based on this approach but differs
in its implementation: the application runs on a hardcore
(rather than softcore as in previous works) and the in-
formation required for DIFT is recovered through debug
components and modified compiler.

Table I compares features in existing works that are based
on the same off-core approach as ARMHEx. [11], [12], [13]
implemented DIFT using a softcore processor. In these works,
there are modifications of the CPU itself in order to export
information needed for DIFT. The required information is re-
covered from existing CPU signals which makes this approach
not portable on hardcore. The other related works mentioned
in Table I are hardcore portable but present time overhead due
to the communication interface used between the CPU and the
DIFT coprocessor.



TABLE I: Features comparison with related work (Off-core approaches)

Related work Experimental Target Communication interface Hardcore portability
Kannan et al. [11] Softcore Signals and FIFO NoDeng et al. [12],[13]
Heo et al. [14] Softcore Binary instrumentation YesDavi et al. [15]
Lee et al. [16] Softcore CDI(Core Debug Interface), Caches Yes

ARMHEx Zynq SoC
(ARM + FPGA)

CoreSight components,
Compiler customized Yes

Lee et al. [16] work appears closest to ARMHEx. However,
there are lot of implementation details that differ. The striking
difference is that the debug interface considered in [16] is ARM
ETM CoreSight component which can provide information for
each CPU instruction. In ARMHEx, more recent ARM PTM
CoreSight component is considered which can provide informa-
tion only on some instructions that modify the PC register value.
Furthermore, their proposed implementation prototype is based
on Leon3 softcore. This simplifies the implementation as the
real targeted device is not used for experiments and the problems
related to implementation (e.g. missing features in driver) are not
tackled. Besides, all the implementations done in related works
target a softcore CPU which explains their lack of deployment
in industry. ARMHEx framework proposes and implements an
approach that is portable to hardcore CPUs and that takes profit
of modern CPU features.

III. ARMHEX APPROACH

ELF File

.text ...

Operating System

ARM
ARMHEx

Coprocessor

LLVM IR

Static Analysis

traces

Syscalls

interrupt

Source code (C, Ocaml…)

.annot

tags for initialization, 
tags related to syscalls

Load
.annot

Load
.text

...

Fig. 1: Overall architecture
A. General Overview

Figure 1 sums up the overall architecture of both software
and hardware parts. The source code file is compiled to obtain
the executable ELF file. During compilation, static analysis is
done to get an additional section .annot. This section contains
tag propagation instructions that are executed by ARMHEx
coprocessor. It is loaded by the OS to a memory accessible
by ARMHEx coprocessor when binary (ELF file) is launched
on ARM CPU. The operating system sends information on tag
initialization operation and system calls to ARMHEx coproces-
sor. Traces are recovered by ARMHEx coprocessor thanks to
CoreSight components.

In order to decouple application execution from tag com-
putation, ARMHEx coprocessor requires at least three pieces
of information to compute DIFT operations: (i) PC register

TABLE II: Example code and corresponding trace
Assembly code Trace packets Analysis
- A-Sync
- I-Sync
860c: sub sp, sp, #28 - static
8610: bl 8480 BAP dynamic
8614: mov r3, r0 - static
8618: cmp r3, #0 - static
861c: beq 864c BAP/Atom dynamic

value, (ii) instruction encoding and (iii) load/store memory
addresses. By using CoreSight components, PC register value
and some memory addresses are partially retrieved. Missing
information about predictible memory addresses and instruction
encoding is obtained through static analysis.

B. ARMHEx software requirements

ARMHEx uses static analysis to recover partial information
required for DIFT analysis. For instance, if the code presented in
Table II is considered, the information about sub, mov and cmp
instructions will be obtained through static analysis. As a result,
a corresponding tag propagation instruction will be obtained for
each of these instructions. Some examples of tag propagation
instructions are shown in Table III. R is used to denote the tag
of register R. For instance, for the first instruction in Table III,
the corresponding propagation instruction is to associate tags of
operand R1 and R2 towards the tag of destination register R0.
A section .annot is added to the binary during compilation
which contains all the tag propagation instructions that need to be
executed by ARMHEx coprocessor. This extra section is ignored
by the Linux kernel at runtime.

TABLE III: Example tag propagation instructions
Example Instruction Corresponding tag propagation instruction
ADD R0,R1,R2 R0 = R1 OR R2
LDR R3, [SP+OFFSET] R3 = @Mem(SP+OFFSET)
STR R0, [R5,R1] @Mem(R5+R1) = R0

In order to make the analysis easier, the application code
is divided into basic blocks. ARMHEx considers that a basic
block is a list of sequential instructions which ends with a
branch instruction. For each basic block, all information flows
between containers are listed using static analysis done using
LLVM. This compiler is now quite popular and used by many
vendors including Apple. It is very modular, which facilitates the
implementation of static analysis. LLVM is composed of three
main parts as shown in Figure 2.

1) The front-end in charge of reading the source code on a
specific high-level language and converting it to LLVM-IR
(Intermediate Representation).



2) The most common optimizer operations where all LLVM-
IR optimizations are processed.

3) The back-end responsible of adapting the LLVM-IR into
ARM instructions.

Common 
Optimizer

C 
Front-end

Fortran 
Front-end

Ada 
Front-end

X86 
Back-end

PowerPC 
Back-end

ARM 
Back-end

C

Fortran

Ada

X86

PowerPC

ARM

IR IR

Fig. 2: LLVM architecture
For static analysis, ARMHEx needs the CFG (control flow

graph), variable types and size regardless of the application
programming language. Such information can be obtained from
LLVM-IR and ARM back-end (colored blocks in Figure 2).

C. CoreSight components

Instrumentation Trace Macrocell (ITM)

Fabric Trace 
Monitor (FTM)

Program Trace
Macrocell (PTM)

Program Trace
Macrocell (PTM)C

P
U

 0 Detector

Packetizer

CPUs

Embedded Cross 
Trigger (ECT)

Trigger register
Write Packet 

Registers

Trace/Packet 
Interface Unit 

(TPIU)

Embedded Trace 
Buffer (ETB)

Read Packet 
Registers

C
P

U
 1

Detector

Packetizer

PL Fabric

MIO/EMIO

Fig. 3: CoreSight components in Xilinx Zynq

CoreSight components (Figure 3) are a set of IP blocks
providing hardware-assisted software tracing. These components
are used for debug and profiling purposes. For instance, they
can be used to find software bugs and errors or even for CPU
profiling (number of cache misses/hits). They are present in
Cortex-A, Cortex-M and Cortex-R families of ARM processors.
ARMHEx uses these components to retrieve information on
instructions committed by the CPU: as a consequence, it can
be done only at runtime. Table II shows that the trace always
starts with synchronization packets A-Sync and I-Sync. Then
bl and beq instructions generate trace packets. If a BAP packet
is generated, the branch was taken. Otherwise, an atom packet is
generated. The Linux driver for CoreSight components was not
fully featured. We developed a patch that is under integration in
the next Linux kernel release.

IV. IMPLEMENTATION RESULTS

Implementations were done on a Xilinx Zedboard including
a Z-7020 SoC (dual-core Cortex-A9 running at 667MHz and an
Artix-7 FPGA). Vivado 2014.4 tools were used for synthesis.
The FPGA logic has around 85,000 logic cells and 560 KB of
Block RAMs. Microblaze is used as DIFT coprocessor for a
proof of concept.

TABLE IV: Performance comparison with off-core approaches
Approaches Kannan [11] Deng [12] Heo [14], Lee [16] ARMHEx
Hardcore portability No No Yes Yes
Communication overhead high high high negligible
Surface overhead small high high high
Main CPU Softcore Softcore Softcore Hardcore
Max frequency N/A 256 MHz N/A 250 MHz

Table IV shows a performance comparison of ARMHEx with
previous off-core approaches. Unlike previous works, ARMHEx
has the benefit of being based on an ARM hardcore processor:
it opens interesting perspectives as this work is easily portable
to existing embedded systems. Approaches proposed by Heo
[14] and Lee [16] requires architectural modifications to be
implemented on other SoCs. In addition, the time cost for
communication between CPU and ARMHEx coprocessor is
negligible thanks to CoreSight components. MiBench programs
showed negligible runtime overhead. All other related works
present non-negligible communication overhead. Furthermore,
ARMHEx is able to operate at a frequency up to 250 MHz
(bridled at 100 MHz for the first implementation because of
a Microblaze used for DIFT computations). In terms of area,
ARMHEx is not the most competitive solution: even if the
area regarding the FPGA capacity is encouraging, this work is
based on a MicroBlaze softcore for DIFT computations which
is oversized for such an application.

V. CONCLUSION AND PERSPECTIVES

This work combines an offline static analysis and the use of
CoreSight components to partially recover required information
for DIFT with negligible time overhead. Further experimenta-
tions need to be done in order to evaluate proposed architecture
and different security policies. As ARMHEx takes less than 22%
of FPGA area, the second Cortex-A9 core can be protected as
well by adding another DIFT coprocessor.

REFERENCES

[1] S. Moore et al. Static analysis for efficient hybrid information-flow control.
In CSF 11, June 2011.

[2] James Newsome et al. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software.
2005.

[3] L. C. Lam et al. A general dynamic information flow tracking framework
for security applications. 2006.

[4] Arnar Birgisson, Daniel Hedin, and Andrei Sabelfeld. Boosting the
Permissiveness of Dynamic Information-Flow Tracking by Testing, pages
55–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[5] Sotiria Fytraki et al. FADE: A programmable filtering accelerator for
instruction-grain monitoring. In HPCA 2014, pages 108–119, 2014.

[6] Shimin Chen et al. Flexible hardware acceleration for instruction-grain
lifeguards. IEEE Micro, 29, 2009.

[7] Michael Dalton et al. Raksha: A flexible information flow architecture for
software security. SIGARCH Comput. Archit. News, June 2007.

[8] G. Venkataramani et al. Flexitaint: A programmable accelerator for
dynamic taint propagation. In HPCA 08, pages 173–184, Feb 2008.

[9] Vijay Nagarajan et al. Dynamic information flow tracking on multicores.
Workshop on Interaction between Compilers and Computer Architectures,
2008.

[10] Kangkook Jee et al. Shadowreplica: Efficient parallelization of dynamic
data flow tracking. CCS ’13, 2013.

[11] H. Kannan et al. Decoupling dynamic information flow tracking with a
dedicated coprocessor. In DSN 09, pages 105–114, June 2009.

[12] Daniel Y. Deng et al. Flexible and efficient instruction-grained run-time
monitoring using on-chip reconfigurable fabric. MICRO ’43, 2010.

[13] Daniel Y. Deng et al. High-performance parallel accelerator for flexible
and efficient run-time monitoring. DSN ’12, pages 1–12, 2012.

[14] Ingoo Heo et al. Implementing an application-specific instruction-set
processor for system-level dynamic program analysis engines. ACM Trans.
Des. Autom. Electron. Syst., 20(4):53:1–53:32, September 2015.

[15] L. Davi et al. Hafix: Hardware-assisted flow integrity extension. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), June 2015.

[16] Jinyong Lee, Ingoo Heo, Yongje Lee, and Yunheung Paek. Efficient dy-
namic information flow tracking on a processor with core debug interface.
DAC ’15. ACM.


