Muhammad A Wahab 
  
Pascal Cotret 
  
Mounir N Allah 
  
Guillaume Hiet 
  
Vianney Lapôtre 
  
Guy Gogniat 
  
ARMHEx: embedded security through hardware-enhanced information flow tracking

Security in embedded systems is a major concern for several years. Untrustworthy authorities use a wide range of both hardware and software attacks. This paper introduces ARMHEx, a practical solution targeting DIFT (Dynamic Information Flow Tracking) implementations on ARM-based SoCs. DIFT is a solution that consists in tracking the dissemination of data inside the system and permit to ensure some security properties. Existing DIFT solutions are either hardly portable to SoCs or bring unsuitable time overheads. ARMHEx overcomes both issues using modern debugging CPU features, along with a coprocessor implemented in FPGA logic. This work demonstrates how ARMHEx performs DIFT with negligible communication costs opening interesting perspectives in the context of reconfigurability and hardware-enhanced security for multiprocessor architectures.

I. INTRODUCTION

During the last decade, several security vulnerabilities have been discovered. Even if patches were delivered, there is always a game of cat and mouse between security developers and hackers. Embedded systems are a target of choice for attackers. Indeed many vulnerabilities have been discovered on such systems. In the meantime, those systems often contain confidential data and services which require a high level of integrity. A first solution to tackle this problem consists in reducing the number of vulnerabilities by using different techniques such as patch management, careful code reviews, static analyses or by choosing managed languages (e.g. Java) that are considered more robust. However, none of these techniques are sufficient, in practice, to ensure the absence of vulnerabilities on a complex system made of multiple applications.

Access control or cryptography can be used to restrict accesses to confidential data or to enforce integrity. However, they do not provide any guarantees once access is granted or data decrypted. Monitoring applications at runtime to check their behavior is a complementary solution. Among the different existing approaches, IFT (Information Flow Tracking) is an appealing solution that consists in tracking the dissemination of data inside the system. Two approaches can be defined:

• SIFT (Static Information Flow Tracking). This is an offline analysis of the application aiming to check that all branches of the control flow graph are trustworthy. • DIFT (Dynamic Information Flow Tracking). DIFT is performed at runtime: it monitors the application binary in order to check if the execution is safe.

This work is based on an hybrid approach combining SIFT and DIFT [START_REF] Moore | Static analysis for efficient hybrid information-flow control[END_REF]: both dynamic and hybrid IFTs will be cited as DIFT or IFT in the following. DIFT consists of performing three operations:

1) Tag initialization: Each information container (e.g. file, variable, memory word, etc) is given a tag. Those tags corresponds to the security level or the type of data they contained.

2) Tag propagation: Each time an instruction is executed on the CPU, tags are propagated from source operands to destination operands to track information flows. 3) Tag Check: To ensure that critical information is not handled by untrusted functions or entities, tags are checked with a security policy at runtime and on a regular basis.

This paper is organized as follows. Section II introduces main contributions regarding DIFT solutions. Our proposed solution ARMHEx is described in Section III. Then, implementation results are given in Section IV and compared to state of the art work. Finally, Section V gives some conclusions and future perspectives for ARMHEx.

II. RELATED WORK

Software solutions for IFT are generally unusable in practice. For single-core architectures, the CPU must execute the main application and IFT-related operations. Therefore, extensive time overheads (at least 300%) can be expected as the same hardware unit has to perform both operations [START_REF] Newsome | Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software[END_REF], [START_REF] Lam | A general dynamic information flow tracking framework for security applications[END_REF], [START_REF] Birgisson | Boosting the Permissiveness of Dynamic Information-Flow Tracking by Testing[END_REF]. To overcome those overheads, hardware mechanisms were implemented in DIFT solutions. We can distinguish four main approaches: 1) Filtering hardware accelerator [START_REF] Fytraki | FADE: A programmable filtering accelerator for instruction-grain monitoring[END_REF], [START_REF] Chen | Flexible hardware acceleration for instruction-grain lifeguards[END_REF]. Instead of computing tags for each CPU instruction (as done in other approaches), this approach proposes to filter monitored events (e.g. instructions or system calls) before computing tags to lower DIFT time overhead. 2) In-core [START_REF] Dalton | Raksha: A flexible information flow architecture for software security[END_REF], [START_REF] Venkataramani | Flexitaint: A programmable accelerator for dynamic taint propagation[END_REF]. This solution relies on a deeply revised processor pipeline. Each stage of the pipeline is duplicated with a hardware module in order to propagate tags all along the program execution. 3) Offloading [START_REF] Nagarajan | Dynamic information flow tracking on multicores[END_REF], [START_REF] Jee | Shadowreplica: Efficient parallelization of dynamic data flow tracking[END_REF]. In this case, DIFT operations are computed by a second general purpose processor. 4) Off-core [START_REF] Kannan | Decoupling dynamic information flow tracking with a dedicated coprocessor[END_REF], [START_REF] Daniel | Flexible and efficient instruction-grained run-time monitoring using on-chip reconfigurable fabric[END_REF], [START_REF] Daniel | High-performance parallel accelerator for flexible and efficient run-time monitoring[END_REF], [START_REF] Heo | Implementing an application-specific instruction-set processor for system-level dynamic program analysis engines[END_REF], [START_REF] Davi | Hafix: Hardware-assisted flow integrity extension[END_REF], [START_REF] Lee | Efficient dynamic information flow tracking on a processor with core debug interface[END_REF]. This solution seems similar to the offloading one. However, DIFT is performed on a dedicated unit instead of a general purpose processor. ARMHEx is based on this approach but differs in its implementation: the application runs on a hardcore (rather than softcore as in previous works) and the information required for DIFT is recovered through debug components and modified compiler.

Table I compares features in existing works that are based on the same off-core approach as ARMHEx. [START_REF] Kannan | Decoupling dynamic information flow tracking with a dedicated coprocessor[END_REF], [START_REF] Daniel | Flexible and efficient instruction-grained run-time monitoring using on-chip reconfigurable fabric[END_REF], [START_REF] Daniel | High-performance parallel accelerator for flexible and efficient run-time monitoring[END_REF] implemented DIFT using a softcore processor. In these works, there are modifications of the CPU itself in order to export information needed for DIFT. The required information is recovered from existing CPU signals which makes this approach not portable on hardcore. The other related works mentioned in Table I are hardcore portable but present time overhead due to the communication interface used between the CPU and the DIFT coprocessor. Lee et al. [START_REF] Lee | Efficient dynamic information flow tracking on a processor with core debug interface[END_REF] work appears closest to ARMHEx. However, there are lot of implementation details that differ. The striking difference is that the debug interface considered in [START_REF] Lee | Efficient dynamic information flow tracking on a processor with core debug interface[END_REF] is ARM ETM CoreSight component which can provide information for each CPU instruction. In ARMHEx, more recent ARM PTM CoreSight component is considered which can provide information only on some instructions that modify the PC register value. Furthermore, their proposed implementation prototype is based on Leon3 softcore. This simplifies the implementation as the real targeted device is not used for experiments and the problems related to implementation (e.g. missing features in driver) are not tackled. Besides, all the implementations done in related works target a softcore CPU which explains their lack of deployment in industry. ARMHEx framework proposes and implements an approach that is portable to hardcore CPUs and that takes profit of modern CPU features. In order to decouple application execution from tag computation, ARMHEx coprocessor requires at least three pieces of information to compute DIFT operations: (i) PC register 

B. ARMHEx software requirements

ARMHEx uses static analysis to recover partial information required for DIFT analysis. For instance, if the code presented in Table II is considered, the information about sub, mov and cmp instructions will be obtained through static analysis. As a result, a corresponding tag propagation instruction will be obtained for each of these instructions. Some examples of tag propagation instructions are shown in Table III. R is used to denote the tag of register R. For instance, for the first instruction in Table III, the corresponding propagation instruction is to associate tags of operand R1 and R2 towards the tag of destination register R0. A section .annot is added to the binary during compilation which contains all the tag propagation instructions that need to be executed by ARMHEx coprocessor. This extra section is ignored by the Linux kernel at runtime.

TABLE III: Example tag propagation instructions

Example Instruction

Corresponding tag propagation instruction

ADD R0,R1,R2 R0 = R1 OR R2 LDR R3, [SP+OFFSET] R3 = @Mem(SP+OFFSET) STR R0, [R5,R1] @Mem(R5+R1) = R0
In order to make the analysis easier, the application code is divided into basic blocks. ARMHEx considers that a basic block is a list of sequential instructions which ends with a branch instruction. For each basic block, all information flows between containers are listed using static analysis done using LLVM. This compiler is now quite popular and used by many vendors including Apple. It is very modular, which facilitates the implementation of static analysis. LLVM is composed of three main parts as shown in Figure 2.

1) The front-end in charge of reading the source code on a specific high-level language and converting it to LLVM-IR (Intermediate Representation).

2) The most common optimizer operations where all LLVM-IR optimizations are processed.

3) The back-end responsible of adapting the LLVM-IR into ARM instructions. Fig. 2: LLVM architecture For static analysis, ARMHEx needs the CFG (control flow graph), variable types and size regardless of the application programming language. Such information can be obtained from LLVM-IR and ARM back-end (colored blocks in Figure 2). CoreSight components (Figure 3) are a set of IP blocks providing hardware-assisted software tracing. These components are used for debug and profiling purposes. For instance, they can be used to find software bugs and errors or even for CPU profiling (number of cache misses/hits). They are present in Cortex-A, Cortex-M and Cortex-R families of ARM processors. ARMHEx uses these components to retrieve information on instructions committed by the CPU: as a consequence, it can be done only at runtime. Table II shows that the trace always starts with synchronization packets A-Sync and I-Sync. Then bl and beq instructions generate trace packets. If a BAP packet is generated, the branch was taken. Otherwise, an atom packet is generated. The Linux driver for CoreSight components was not fully featured. We developed a patch that is under integration in the next Linux kernel release.

C. CoreSight components

IV. IMPLEMENTATION RESULTS

Implementations were done on a Xilinx Zedboard including a Z-7020 SoC (dual-core Cortex-A9 running at 667MHz and an Artix-7 FPGA). Vivado 2014.4 tools were used for synthesis. The FPGA logic has around 85,000 logic cells and 560 KB of Block RAMs. Microblaze is used as DIFT coprocessor for a proof of concept. Table IV shows a performance comparison of ARMHEx with previous off-core approaches. Unlike previous works, ARMHEx has the benefit of being based on an ARM hardcore processor: it opens interesting perspectives as this work is easily portable to existing embedded systems. Approaches proposed by Heo [START_REF] Heo | Implementing an application-specific instruction-set processor for system-level dynamic program analysis engines[END_REF] and Lee [START_REF] Lee | Efficient dynamic information flow tracking on a processor with core debug interface[END_REF] requires architectural modifications to be implemented on other SoCs. In addition, the time cost for communication between CPU and ARMHEx coprocessor is negligible thanks to CoreSight components. MiBench programs showed negligible runtime overhead. All other related works present non-negligible communication overhead. Furthermore, ARMHEx is able to operate at a frequency up to 250 MHz (bridled at 100 MHz for the first implementation because of a Microblaze used for DIFT computations). In terms of area, ARMHEx is not the most competitive solution: even if the area regarding the FPGA capacity is encouraging, this work is based on a MicroBlaze softcore for DIFT computations which is oversized for such an application.

V. CONCLUSION AND PERSPECTIVES This work combines an offline static analysis and the use of CoreSight components to partially recover required information for DIFT with negligible time overhead. Further experimentations need to be done in order to evaluate proposed architecture and different security policies. As ARMHEx takes less than 22% of FPGA area, the second Cortex-A9 core can be protected as well by adding another DIFT coprocessor.

Fig. 1 :

 1 Fig. 1: Overall architecture A. General Overview Figure 1 sums up the overall architecture of both software and hardware parts.The source code file is compiled to obtain the executable ELF file. During compilation, static analysis is done to get an additional section .annot. This section contains tag propagation instructions that are executed by ARMHEx coprocessor. It is loaded by the OS to a memory accessible by ARMHEx coprocessor when binary (ELF file) is launched on ARM CPU. The operating system sends information on tag initialization operation and system calls to ARMHEx coprocessor. Traces are recovered by ARMHEx coprocessor thanks to CoreSight components.In order to decouple application execution from tag computation, ARMHEx coprocessor requires at least three pieces of information to compute DIFT operations: (i) PC register

Fig. 3 :

 3 Fig. 3: CoreSight components in Xilinx Zynq

TABLE I :

 I Features comparison with related work (Off-core approaches)

	Related work	Experimental Target	Communication interface	Hardcore portability
	Kannan et al. [11] Deng et al. [12],[13]	Softcore	Signals and FIFO	No
	Heo et al. [14] Davi et al. [15]	Softcore	Binary instrumentation	Yes
	Lee et al. [16]	Softcore	CDI(Core Debug Interface), Caches	Yes
	ARMHEx	Zynq SoC (ARM + FPGA)	CoreSight components, Compiler customized	Yes

TABLE II :

 II Example code and corresponding trace

	Assembly code	Trace packets	Analysis
	-	A-Sync	
	-	I-Sync	
	860c: sub sp, sp, #28	-	static
	8610: bl 8480	BAP	dynamic
	8614: mov r3, r0	-	static
	8618: cmp r3, #0	-	static
	861c: beq 864c	BAP/Atom	dynamic

value, (ii) instruction encoding and (iii) load/store memory addresses. By using CoreSight components, PC register value and some memory addresses are partially retrieved. Missing information about predictible memory addresses and instruction encoding is obtained through static analysis.

TABLE IV :

 IV Performance comparison with off-core approaches

	Approaches	Kannan [11] Deng [12]	Heo [14], Lee [16] ARMHEx
	Hardcore portability	No	No	Yes	Yes
	Communication overhead	high	high	high	negligible
	Surface overhead	small	high	high	high
	Main CPU	Softcore	Softcore	Softcore	Hardcore
	Max frequency	N/A	256 MHz	N/A	250 MHz