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Statistics of the maximal distance and momentum in a trapped Fermi gas at low
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We consider N non-interacting fermions in an isotropic d-dimensional harmonic trap. We compute
analytically the cumulative distribution of the maximal radial distance of the fermions from the trap
center at zero temperature. While in d = 1 the limiting distribution (in the large N limit), properly
centered and scaled, converges to the squared Tracy-Widom distribution of the Gaussian Unitary
Ensemble in Random Matrix Theory, we show that for all d > 1, the limiting distribution converges
to the Gumbel law. These limiting forms turn out to be universal, i.e., independent of the details of
the trapping potential for a large class of isotropic trapping potentials. We also study the position of
the right-most fermion in a given direction in d dimensions and, in the case of a harmonic trap, the
maximum momentum, and show that they obey similar Gumbel statistics. Finally, we generalize
these results to low but finite temperature.
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I. INTRODUCTION

Recent experimental advances in cold atom systems, in one or higher dimensions, have raised interesting new
questions about these basic and fundamental systems [1, 2]. One such simple system corresponds to N non-interacting
spin-less fermions in a d-dimensional harmonic trap. Near the center of the trap the system is just a free Fermi gas,
which is a very well studied system in condensed matter physics and it can be analyzed using standard methods such
as the Local Density Approximation (LDA) [3, 4]. However, the trap confines the Fermi gas in a limited region of
space and thus introduces a sharp edge in the Fermi gas, in the limit of large N . Near this edge, the density is small
and consequently quantum and thermal fluctuations are strong, leading to new emergent edge physics. The nature of
this physics at the edges has been the subject of a number of recent studies [5–11].

The system of interest here consists of N non-interacting spin-less fermions in an isotropic d-dimensional harmonic

potential V (x1, · · · ,xN ) = 1
2mω

2
∑N
i=1 x

2
i , where xi denotes the position of the i-th fermion in d dimensions. In the

following, for convenience, we will set m = ω = ~ = 1. The main focus of this paper will be on quantum fluctuations,
i.e., setting the temperature T = 0, however some preliminary results on the role of finite temperature will also be
given. At T = 0, the system will be in its many-body quantum ground state with the ground-state wave function
denoted by Ψ0(x1,x2, · · · ,xN ). The quantum fluctuations are then characterized by the joint probability distribution
function (JPDF), P (x1,x2, · · · ,xN ) = |Ψ0(x1,x2, · · · ,xN )|2, normalized to unity.

In d = 1, this many-body ground state wave function can be computed explicitly [6, 7, 12]

P (x1, x2, · · · , xN ) = |Ψ0(x1, x2, · · · , xN )|2 =
1

ZN

∏
1≤i<j≤N

(xi − xj)2 e−
∑N
i=1 x

2
i , (1)

where ZN is a normalization constant. Thus in 1d the positions xi’s behave exactly as the eigenvalues of a random
matrix belonging to the Gaussian Unitary Ensemble (GUE). In this case, the average density of fermions (normalized

to unity) defined as ρN (x) = (1/N)
∑N
i=1〈δ(x − xi)〉0 (where 〈. . .〉0 refers to a ground state average with respect to

the JPDF in Eq. (1)) converges in the large N limit to the celebrated Wigner semicircular form [12–14]

ρN (x) =
1√
N
fW

(
x√
N

)
, fW (x) =

1

π

√
2− x2 . (2)

Thus, on an average, the fermions are confined in a finite interval of the real line, [−xedge,+xedge] where xedge =
√

2N .
Another striking prediction of this mapping [8] is that the quantum fluctuations of the position of the rightmost
fermion at T = 0, i.e., the probability distribution of xmax = max{x1, x2, · · · , xN}, converges in the large N limit
to the Tracy-Widom (TW) distribution characterizing the distribution of the largest eigenvalue of a GUE random
matrix [15].

In d > 1, while the direct connection to Random Matrix Theory (RMT) no longer holds, it has been shown recently
that several methods from RMT can still be exploited to study the correlations of the Fermi gas in d > 1 [9, 11].
Notably, in the large N limit, there is a determinantal structure in the problem which allows one to express any
ground-state correlation function as a determinant involving a kernel, for all d ≥ 1. This kernel has been analyzed in
detail in the limit of large N [11]. For instance, the average density of the fermions, which is spherically symmetric,
converges in the large N limit to

ρN (x) = ρN (r) ' 1

N(2
√
π)dΓ(d2 + 1)

(
r2
edge − r2

)d/2
θ(redge − r) , (3)

with

redge = 21/2 [Γ(d+ 1)]
1
2d N

1
2d =

√
2µ , (4)

where µ denotes the Fermi energy. The average density in Eq. (3) is a generalization of the Wigner semicircular law
in d ≥ 1. Thus, like in d = 1, the Fermi gas is confined in a finite sphere of radius redge around the trap center.
As mentioned earlier, in d = 1, the observable xmax (the position of the rightmost fermion) obeys the Tracy-Widom
distribution in the large N limit. It is then natural to ask what is the analogue of this observable in higher dimensions
and what is its limiting distribution in the large N limit?

A natural observable in higher dimensions, that generalizes the position of the rightmost fermion for d = 1, is the
radial distance of the farthest fermion

rmax = max(r1, r2, . . . , rN ) where r2
i = xi · xi . (5)

In the ground state, with JPDF P (x1,x2, · · · ,xN ), rmax is clearly a random variable and in this paper our main focus
will be to study the cumulative probability

P (w,N) = Prob.(rmax ≤ w,N) , (6)
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FIG. 1. Sketch of one configuration of N non-interacting fermions in a two-dimensional isotropic harmonic trap, centered at
the origin, at zero temperature. The shaded area indicates the average density profile ρN (r) (3), which vanishes beyond redge in
the large N limit. The fermion positions are labeled by xi, with i = 1, · · · , N and their JPDF is given by P (x1,x2, · · · ,xN ) =
|Ψ0(x1,x2, · · · ,xN )|2, with Ψ0(x1,x2, · · · ,xN ) the many-body ground state wave function. Here we focus on the fluctuations
of the radial distance rmax of the farthest fermion (5). In the large N limit, we show here that the PDF of rmax, properly
centered and scaled converges to a Gumbel distribution [see Eq. (7)].

in all dimensions. Although we will obtain a formal solution for arbitrary N , the most interesting question concerns
the large N limit. The answer to this question is straightforward in d = 1 where, using the exact mapping to RMT
mentioned above, it is easy to show that for large N the limiting form of P (w,N) converges to the squared TW
distribution (see the discussion later). What is the analogous limiting form in d > 1? The main purpose of this paper
is to address this question and present an exact result for this limiting distribution for all d > 1.

Let us summarize our main results. In the limit of large N and d > 1, we show that this cumulative distribution
converges to the limiting scaling form

P (w,N) −→
N→∞

G

(
w −AN
BN

)
, where G(z) = e−e

−z
, (7)

where the scale factors AN and BN can be computed explicitly for large N . To leading order for large N , we show
that

AN ' redge +
1√

2µ1/6
aµ and BN '

1

2
√

2 aµ µ1/6
, (8)

where redge =
√

2µ denotes the edge of the Fermi gas, µ ' (Γ(1 + d)N)
1/d

is the Fermi energy and aµ is given by

aµ '
(
d− 1

2
lnµ

)2/3

. (9)

The limiting distribution G(z) in Eq. (7) is a Gumbel distribution. In addition, we also study the distribution of xmax,
the position of the rightmost fermion in d dimensions, and again find a limiting Gumbel law. We also investigate the
effect of finite temperature and show again the emergence of a Gumbel distribution for these observables (rmax and
xmax) although with different parameters.

It is well known that the Gumbel distribution emerges as a limiting distribution in the classical theory of extreme
value statistics of independent and identically distributed (i.i.d.) random variables [16, 17]. In contrast, in the present
case of fermions in a d-dimensional confining potential, the positions of the fermions are strongly correlated due to
the Pauli exclusion principle. Thus it appears as a puzzle as to why the same Gumbel distribution for i.i.d. variables
appears in this case. By decomposing the wave function into radial and angular coordinates, we will indeed unveil a
“decorrelation” mechanism which explains the emergence of the Gumbel distribution, even in this strongly correlated
system. It is interesting to note that a similar Gumbel limiting form also appears in the context of Ginibre matrices
[12, 13, 18, 19], which are matrices with i.i.d. Gaussian entries (real, complex or quaternionic), but without any
special symmetry of the matrix. In this case, the eigenvalues are generally distributed over the complex plane and
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the distribution of the farthest eigenvalue from the origin, properly centered and scaled, converges for large N to
a Gumbel distribution [20, 21] (see also [22] for a study of the large deviations beyond the Gumbel). For complex
Ginibre matrices, the universality of the Gumbel law (with respect to different confining potentials), was established
in Ref. [23]. The “decorrelating” mechanism for the Ginibre matrices thus appears to be similar to that for the
fermion problem studied here.

One interesting property of the harmonic oscillator is that the position x and momentum p play completely
symmetric roles. Hence, although we will not develop it here, all of our results for rmax also carry out to pmax, the
momentum of the fermion with the maximal momentum

pmax = max(p1, p2, . . . , pN ) where p2
i = pi · pi . (10)

Hence we predict that this quantity will be governed by a Gumbel distribution in d > 1 for large N (while it involves
the Tracy-Widom distribution for d = 1).

The paper is organized as follows. In section II, we recapitulate the general determinantal properties of non-
interacting fermions in a harmonic potential and present the first derivation of the limiting distribution of the radial
distance of the farthest fermion in d > 1, using the asymptotic properties of an underlying Fredholm determinant. In
section III, we decompose the ground state wave function into radial and angular coordinates and present a second
derivation of the same limiting distribution, that demonstrates the emergence of a “decorrelation” mechanism. In
section IV, we discuss some preliminary extensions of our results and, in section V, we give our conclusions about this
study.

II. N FREE FERMIONS IN A d-DIMENSIONAL HARMONIC POTENTIAL: GROUND STATE

A. Determinantal process

We consider N spin-less free fermions in a d-dimensional harmonic potential. The many-body Hamiltonian is
given by

Ĥ =

N∑
i=1

ĥi , where ĥi = −1

2
∇2

xi +
1

2
r2
i , (11)

where xi is a d-dimensional vector denoting the position of the i-th fermion and r2
i = xi · xi. For convenience, we

have set m = ~ = 1. The many-body eigenfunction ΨE(x1, . . . ,xN ) of energy E satisfies the Schrödinger equation

Ĥ ΨE(x1, . . . ,xN ) = EΨE(x1, . . . ,xN ) . (12)

Since the many-body Hamiltonian does not contain any interaction term, the many-body wavefunction can be ex-
pressed as a product of single particle eigenfunctions. The fermionic constraint however does not allow more than one
particle in each single particle state. Consequently, the ground state wavefunction is given by the Slater determinant
constructed from the N lowest single particle eigenfunctions

Ψ0(x1, · · · ,xN ) =
1√
N !

det
1≤i,j≤N

[ψki(xj)] , (13)

where ki labels the single particle eigenfunction. In the ground-state, we fill up the single particle levels up to the
Fermi energy which will be denoted by µ. For the harmonic potential in d dimensions, the Fermi energy µ can be
computed for large N and is given by [4, 9, 11]

µ ' [Γ(1 + d)N ]
1/d

. (14)

Knowing exactly the many-body ground-state wavefunction Ψ0(x1,x2, · · · ,xN ) given in Eq. (13), the quantum
joint probability density of the positions of the fermions in the ground state is given by

P (x1,x2, · · · ,xN ) = |Ψ0(x1,x2, · · · ,xN )|2 =
1

N !
det

1≤i,j≤N

[
ψ∗ki(xj)

]
det

1≤i,j≤N
[ψki(xj)] . (15)

Using det(AT ) det(B) = det(AB), the joint PDF can be re-expressed as a single determinant

P (x1,x2, · · · ,xN ) =
1

N !
det

1≤i,j≤N
Kµ(xi,xj) , (16)
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where we have defined the kernel Kµ(x,y) as

Kµ(x,y) =
∑
k

θ(µ− εk)ψ∗k(x)ψk(y) . (17)

This kernel plays a central role for the calculation of the correlations. For instance, the n-point correlation function
Rn(x1, · · · ,xn) defined as

Rn(x1, · · · ,xn) =
N !

(N − n)!

∫
dxn+1 · · · dxN |Ψ0(x1, · · · ,xN )|2 (18)

can be expressed as an n× n determinant

Rn(x1, · · · ,xn) = det
1≤i,j≤n

Kµ(xi,xj) . (19)

This fact demonstrates that the free fermions in the ground state constitute a determinantal process [24, 25] in any
dimension.

A simple consequence of this determinantal structure is that the average local density of fermions can also be
expressed very simply in terms of the kernel Kµ(x,x) at identical points. Indeed, the average local density is defined
as

ρN (x) =
1

N

〈 N∑
i=1

δ(x− xi)
〉

0
(20)

where 〈· · · 〉0 denotes the average w.r.t. the ground state quantum probability in Eq. (13). It is easy to show that

ρN (x) =
1

N
R1(x) =

1

N
Kµ(x,x) . (21)

For isotropic quantum potentials, such as the harmonic potential considered here, the density ρN (x) = Kµ(x,x)/N ,
or equivalently Kµ(x,x) only depends on the radial coordinate r = |x|. Hence

ρN (x) = ρN (r) =
1

N
Kµ(r, r) . (22)

In the limit of large N , the average density is isotropic and has a simple form given by [9, 11]

ρN (r) ' 1

N(2
√
π)dΓ(d2 + 1)

(
r2
edge − r2

)d/2
θ(redge − r) , (23)

where redge is given by [9, 11]

redge = 21/2 [Γ(d+ 1)]
1
2d N

1
2d =

√
2µ . (24)

This bulk average density is well known and can also be derived by the standard semi-classical approximation (Thomas-
Fermi or Local Density Approximation). However, this bulk form is only valid sufficiently far inside the edge at
r = redge. It was pointed out recently that if one zooms in at the edge regime, the density profile does not vanish
sharply as in Eq. (23), but instead gets smeared out over a scale wN , due to finite N corrections [9, 11]. The width
of these edge fluctuations was computed explicitly in [9, 11]

wN =
1√
2

[Γ(d+ 1)N ]
− 1

6d =
1√
2
µ−

1
6 . (25)

On this scale, i.e., when r − redge ∼ wN , the smeared density profile is given by ρN (r) = Kµ(r, r)/N where [9, 11]

Kµ(r, r) =
1

wdN
Fd

(
r − redge

wN

)
. (26)

The scaling function Fd(s) was computed explicitly for all d in Ref. [9, 11]. In this paper, we will need only the large
s asymptotics of Fd(s) given by

Fd(s) ' (8π)
− d+1

2 s−
d+3
4 exp

(
−4

3
s3/2

)
, as s→∞ . (27)
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In this paper, we are interested in the statistics of the position of the farthest fermion from the trap center, in the
ground state. More precisely, we define

rmax = max(r1, r2, . . . , rN ) where r2
i = xi · xi , (28)

as the radial distance of the farthest fermion. This observable rmax is a random variable in the ground-state, due to
the quantum fluctuations encoded in the joint PDF (15). Our goal is to compute the probability distribution function
(PDF) of rmax. It is however convenient first to consider the associated cumulative distribution function (CDF)

P (w,N) = Prob.(rmax ≤ w,N) = Prob.[r1 ≤ w, r2 ≤ w, . . . , rN ≤ w] . (29)

The PDF of rmax is thus given by p(w,N) = ∂wP (w,N). To compute P (w,N), it is useful to introduce the indicator
function Iw(xi) = 1 if ri ≥ w and 0 otherwise, for each fermion. We can then express P (w,N) as

P (w,N) =
〈 N∏
i=1

(1− Iw(xi))
〉

0
, (30)

where 〈· · · 〉0 refers to a ground state average with respect to the joint PDF in Eq. (15). One can evaluate this average
on the right hand side (rhs) of Eq. (30) using the following identity valid for any determinantal process〈 N∏

i=1

(1− f(xi))
〉

0
= Det(I − f Kµ) , (31)

where f(x) is an arbitrary function and Det denotes a Fredholm determinant, which is interpreted as

Det(I − f Kµ) = exp [ln Det(I − f Kµ)] = exp

[
−
∞∑
n=1

1

n
Tr [(f Kµ)n]

]
. (32)

In this trace expansion, the term Tr [(f K)n] is the n-dimensional integral

Tr [(f K)n] =

∫
dx1 · · ·

∫
dxn f(x1)Kµ(x1,x2) f(x2)Kµ(x2,x3) · · · f(xn)Kµ(xn,x1) (33)

where Kµ(x,y) is the kernel defined in (17). Thus, choosing f(x) = Iw(x) in Eq. (31) gives the identity

P (w,N) = Det(I − IwKµ) = exp

[
−
∞∑
n=1

1

n
Tr [(IwKµ)n]

]
(34)

with

Tr [(IwKµ)n] =

∫
D
dx1 · · · dxnKµ(x1,x2)Kµ(x2,x3) · · ·Kµ(xn,x1) (35)

where the integration domain D corresponds to ri ≥ w, for each i = 1, 2, · · · , N . The reader should note that, up
to this point, the formulas are valid for arbitrary finite N . In the next section we will use Eq. (34) to analyze the
limiting form of P (w,N) for large N .

B. Limiting distribution of rmax for large N in d ≥ 2

Our goal is to compute the limiting form of P (w,N) for large N in all dimensions. As discussed in the introduction
(see also later in section III), the case d = 1 is special, where the limiting distribution in the large N limit, suitably
centered and scaled, is given by a product of two Tracy-Widom distributions (see section III for details). In this
subsection, we focus on d ≥ 2 and we will see that the results here are very different from the d = 1 case.

Our starting point is the expression for P (w,N) in Eq. (34). For large N , we anticipate that the PDF p(w,N) =
∂wP (w,N) must be peaked around the average value of rmax. This average value, to leading order for large N ,
coincides with the edge of the density redge in Eqs. (23) and (24). Since redge is large for large N , we need to analyze
the expression for P (w,N) in Eq. (34) when N and w are both large. For large w and d ≥ 2, it turns out that P (w,N)
in Eq. (34) is dominated by the n = 1 term of the trace expansion – the proof of this fact is given in Appendix A.
Keeping only this n = 1 term in (34) gives

P (w,N) ' exp [−Tr (IwKµ )] = exp

[
−
∫
D
Kµ(x,x) dx

]
= exp

[
−Sd

∫ ∞
w

Kµ(r, r) rd−1 dr

]
, (36)
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where Sd = 2πd/2/Γ[d/2] is the surface area of a unit sphere in d dimensions. Since w is close to redge, we can use the
scaling form in Eq. (26) for Kµ(r, r). Using Eq. (26) then gives

P (w,N) ' exp

[
−Sd

(
redge

wN

)d−1 ∫ ∞
w̃

Fd(s) ds

]
, (37)

where

w̃ =
w − redge

wN
= (w −

√
2µ)
√

2µ1/6 . (38)

Note that in Eq. (38) we have used the expressions for redge and wN , in terms of µ, given respectively in Eq. (24)

and (25). Using further that redge/wN = 2µ2/3 in Eq. (152) gives

P (w,N) ' exp

[
−Sd 2d−1 µ2(d−1)/3

∫ ∞
w̃

Fd(s) ds

]
. (39)

For large µ and d ≥ 2, the term µ2(d−1)/3 is large and consequently P (w,N) is non zero only when the integral∫∞
w̃
Fd(s) ds is small and of order µ−2(d−1)/3. For this integral to be small, w̃ must be large. Hence we can evaluate

this integral using the asymptotic form of Fd(s) given in Eq. (27). Keeping only the leading term gives

I(w̃) =

∫ ∞
w̃

Fd(s) ds '
1

2 (8π)(d+1)/2

1

w̃(d+5)/4
e−

4
3 w̃

3/2

. (40)

Substituting this result in Eq. (39) and exponentiating the prefactors inside the exponential, we get

P (w,N) ' exp
[
−Bd e−

4
3 w̃

3/2+
2(d−1)

3 lnµ− (d+5)
4 ln(w̃)

]
, (41)

where Bd is given by

Bd = Sd
2d−2

(8π)(d+1)/2
=

2−
d+5
2

Γ(d/2)
√
π
. (42)

To obtain the limiting form of P (w,N) in Eq. (41), we need to further center and suitably scale the variable w̃.
For this purpose, we set

w̃ = aµ + bµ z (43)

where the two unknowns aµ (the centering parameter or location) and bµ (the scale parameter) will be chosen such
that P (w,N) becomes independent of µ (for large µ) and is only a function of the variable z. We further anticipate
(to be checked a posteriori ) that, for large µ, aµ is large and bµ is small, while z is fixed (∼ O(1)). Substituting this
relation (43) in Eq. (41), expanding for large µ, and keeping leading order terms, one gets

P (w,N) ' exp
[
−Bd e−

4
3 a

3/2
µ +

2(d−1)
3 lnµ− (d+5)

4 ln(aµ)−2
√
aµ bµ z

]
. (44)

Hence we choose

bµ =
1

2
√
aµ

(45)

and aµ to be such that

Bd e
− 4

3 a
3/2
µ +

2(d−1)
3 lnµ− (d+5)

4 ln(aµ) = 1 . (46)

This then gives the limiting N -independent distribution

P (w,N) ' exp [−e−z] . (47)

Using (38), the result in Eq. (47) translates to

w̃ = (w −
√

2µ)
√

2µ1/6 = aµ +
1

2
√
aµ

z , (48)
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where the random variable z has the Gumbel CDF as in (47). Hence, in the large N limit, one can express the original
random variable rmax as an identity in law

rmax =
√

2µ+
1

µ1/6

[
1√
2
aµ +

1

2
√

2 aµ
ZG

]
, (49)

where Prob.[ZG ≤ z] = exp[−e−z]. The parameter aµ is determined from Eq. (46) in the limit of large µ. Solving
Eq. (46) to leading orders for large µ, we get

aµ '
(
d− 1

2
lnµ

) 2
3

+
1

22/3 [(d− 1) lnµ]
1/3

ln

[
Bd

(d−1
2 lnµ)

d+5
6

]
, (50)

where Bd is given in Eq. (42). Equation (49), together with (50), is the main new result of this paper. Clearly, this
Gumbel form for the limiting distribution holds strictly for d > 1.

III. INTERPRETATION OF THE GUMBEL LAW

In the previous section we have investigated the statistics of rmax = max{r1, r2, · · · , rN} of N non-interacting
fermions in the ground state of a d-dimensional harmonic oscillator with d > 1. As discussed before, even though the
fermions are non-interacting, the Pauli exclusion principle induces strong effective (repulsive) correlations between
them. This makes the positions ri’s of the fermions in the ground state strongly correlated. Therefore studying the
statistics of rmax corresponds to studying the extreme value statistics of a strongly correlated set of random variables.
For large N , we found that the limiting distribution of rmax, suitably centered and scaled as in Eq. (49), is given by
the Gumbel distribution. It is well known that the Gumbel law also appears in the context of classical extreme value
statistics of independent and identically distributed (i.i.d.) random variables. So the fact that the Gumbel law also
appears in a strongly correlated system of fermions in the ground state of a d-dimensional oscillator, with d > 1, is
rather surprising. Is there any mechanism by which the effective random variables become “decorrelated” such that
the Gumbel distribution emerges naturally? In the derivation presented in the previous section, this mechanism is
not manifest.

In the present section, we present an alternative derivation of the same results as in Eqs. (49) and (50) using
a completely different method that demonstrates explicitly how such a “decorrelating” mechanism emerges. The
main idea is to decompose the ground state wave function in radial and angular sectors. For each angular quantum
number, one effectively obtains a one-dimensional problem for a certain number of non-interacting fermions, in an
effective quantum potential characterized by the angular quantum number, much like the hydrogen atom. In each
of these angular sectors, the distribution of the farthest fermion position is non trivial. However, different angular
sectors decouple and effectively one has to look at the maximum of a collection of independent, but non-identically
distributed random variables. We will see below that indeed this mechanism eventually leads to the same Gumbel
law, as in Eqs. (49) and (50).

To present this mechanism in a clear fashion, we first remind the reader how the single particle wavefunction can
be decomposed in radial and angular sectors for a d-dimensional harmonic oscillator. Next we consider the N -particle
problem and show that the CDF P (w,N) of rmax factorizes into a product of determinants, each corresponding to a
different angular quantum number. Each of these determinants can be mapped onto the distribution of the largest
eigenvalue of a Laguerre-Wishart matrix. Finally, using the known results for the latter problem, we arrive at the
result in Eqs. (49) and (50).

A. Single particle in a d-dimensional harmonic potential

We first recall the well known results for the quantum mechanics of a single particle in a d−dimensional harmonic
potential. The Hamiltonian of the particle is given by:

ĥ = −1

2
∇2

x +
1

2
r2 , (51)

where x is a d-dimensional vector denoting the position of the particle and r2 = x · x. The single particle eigenstates
ψk(x) satisfy the Schrödinger equation

ĥ ψk(x) = εk ψk(x) , (52)
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where εk’s denote the single particle discrete energy levels. Note that we just use k to label the single particle eigen-
states (which are not plane waves). While it is easy to write down explicitly the eigenfunctions and eigenvalues in
Cartesian coordinates, it is more convenient, for our purpose, to present the solution in spherical coordinates. The
Hamiltonian operator can be split into a radial and an angular part. We denote the wave function in spherical coordi-
nates by ψk(r,θ) where θ is a (d− 1)-dimensional angular vector. In these coordinates the Schrödinger equation (52)
becomes

1

2

[
− 1

rd−1

∂

∂r

(
rd−1 ∂

∂r

)
− ∆̂θ

r2
+ r2

]
ψk(r,θ) = εk ψk(r,θ) , (53)

where ∆̂θ is the Laplacian on the surface of a d-dimensional unit sphere [26]. Since the potential depends only on
the radial coordinate r = |x|, we can write the solution using separation of variables as ψk(r,θ) = φ(r)YL(θ), where
L stands collectively for all the angular quantum numbers. For simplicity, we suppress, for the moment, the explicit
quantum number dependence (i.e., k dependence) of the eigenfunction φ(r). The angular part YL(θ) satisfies the
eigenvalue equation

∆̂θYL(θ) = λYL(θ) . (54)

It turns out that, while the eigenfunctions YL(θ) depend explicitly on all the angular quantum numbers denoted as
L, the eigenvalues, in contrast, are labelled just by one single scalar quantum number [26], λ = −l(l + d − 2) where
l = 0, 1, 2 . . .. Each l-sector (l > 0) is degenerate and the degeneracy is given by [26]

gd(l) =
(2l + d− 2)(l + d− 3)!

l!(d− 2)!
=

(2l + d− 2)Γ(l + d− 2)

Γ(l + 1)Γ(d− 1)
. (55)

Note that gd(0) = 1 in all dimensions d ≥ 1. In d = 1, it follows from Eq. (55) that

g1(0) = 1 , g1(1) = 1 , g1(l) = 0 for all l ≥ 2 . (56)

This is consistent with the fact that in d = 1, the quantum number l has only two allowed values l = 0 and l = 1,
corresponding to the angles θ = 0 and θ = π respectively.

These angular eigenfunctions in Eq. (54) satisfy the orthogonality condition∫
dθ YL(θ)YL′(θ) = δL,L′ . (57)

For a fixed l the radial part satisfies the eigenvalue equation[
−1

2

d2

dr2
− d− 1

2 r

d

dr
+
l(l + d− 2)

2 r2
+
r2

2

]
φ(r) = εkφ(r) . (58)

This equation for φ(r) (58) can be reduced to a standard one-dimensional Schrödinger equation by setting φ(r) =
χ(r)/r(d−1)/2 that eliminates the first order d/dr term in Eq. (58) and we get

− 1

2

d2χ(r)

dr2
+

1

2

[
r2 +

(l + d−3
2 )(l + d−1

2 )

r2

]
χ(r) = εk χ(r) , r ≥ 0 . (59)

This 1d Schrödinger equation is solvable with discrete energy levels labelled by n and l [26] (see Fig. 2)

εk ≡ εn,l = 2n+ l +
d

2
, (60)

where n = 0, 1, 2, . . .. The associated radial eigenfunctions χn,l(r) are given explicitly by

χn,l(r) = An,l r
l+ d−1

2 L
l+ d−2

2
n

(
r2
)
e−

r2

2 , (61)

where Lαn are generalized Laguerre polynomials (which are of degree n) and An,l are normalization constants, such
that the χn,l satisfy the orthogonality relation∫ ∞

0

dr χn,l(r)χn′,l(r) = δn,n′ . (62)
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l

n

n =
µ � 1

2

l = µ � 10

FIG. 2. Occupation of the energy levels in the plane (l, n) [see Eq. (63)] for N = 98 spin-less fermions in the ground state of
the two-dimensional (d = 2) isotropic harmonic oscillator. The filled circles indicate occupied states while the open circles are
unoccupied. In this case the energy levels are εn,l = 2n+ l + 1 and the degeneracy is gn,l = 2 [see Eq. (55)], corresponding to
YL(θ) = e±ilθ/

√
2π, with l = 0, 1, · · · . Thus each dot actually corresponds to 2 distinct quantum states which implies that the

Fermi energy (corresponding to the levels connected by the solid blue line) is µ = 13. Note that the last energy level at the
Fermi energy µ is fully occupied, the situation to which we restrict ourselves here (see text).

Thus, finally, the eigenfunctions ψk(x) of the d-dimensional harmonic oscillator, labelled by the quantum numbers
(n,L), are given by

ψn,l(r,θ) =
1

r
d−1
2

χn,l(r)YL(θ) , (63)

with an associated eigenvalue εn,l = (2n+ l + d/2).
Note that in d = 1, since only l = 0 and l = 1 are allowed, the additional potential term l(l − 1)/r2 in Eq. (59)

vanishes and χn,l(r) satisfies the 1d Schrödinger equation in a harmonic potential, but restricted only to positive
half-space (r ≥ 0). The energy levels in Eq. (60) get divided into two sectors labeled by l = 0 and l = 1

εn,0 = 2n+
1

2
, εn,1 = (2n+ 1) +

1

2
. (64)

One sees that the l = 0 sector corresponds to the even eigenfunctions of the 1d harmonic oscillator in the full space,
while the l = 1 sector corresponds to the odd eigenfunctions.

B. Many-body ground-state for N free fermions in a d-dimensional harmonic potential

Ground-state wave function. We now consider N spin-less free fermions in a d-dimensional harmonic potential. The
many-body Hamiltonian is given by

Ĥ =

N∑
i=1

ĥi , where ĥi = −1

2
∇2

xi +
1

2
r2
i , (65)

where xi is a d-dimensional vector denoting the position of the i-th fermion and r2
i = xi · xi. The many-body

eigenfunction ΨE(x1, . . . ,xN ) of energy E satisfies the Schrödinger equation

Ĥ ΨE(x1, . . . ,xN ) = EΨE(x1, . . . ,xN ) . (66)

Each single particle Hamiltonian ĥi has a discrete set of eigenvalues εni,li = (2ni+ li+d/2) as given above (60). Since
the many-body Hamiltonian does not contain any interaction term, the many-body wavefunction can be expressed as
a product of single particle eigenfunctions. The fermionic constraint however does not allow more than one particle in
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each single particle state. Consequently, the ground state wavefunction is given by the Slater determinant constructed
from the N lowest single particle eigenfunctions

Ψ0(x1, · · · ,xN) =
1√
N !

det
1≤i,j≤N

[ψki(xj)] , (67)

where ki = (ni,Li) labels the single particle eigenfunction. In the ground-state, we fill up the single particle levels
up to the Fermi energy which will be denoted by µ. The ground-state energy E0 is just the sum of the single particle
energies of all filled levels.

Note that in d > 1 there is a large degeneracy of the single particle energy levels, i.e., many different couples (n, l)
have the same value of εn,l, and in addition, for each such couple there is an angular degeneracy gd(l). In this work
we will restrict ourselves to the case where the set of degenerate single particle energy levels with highest energy is
fully occupied. In this case the N - body ground state is unique, and it is the case studied here (we refer the reader
to Ref. [11] for further discussions of the degenerate ground states).

Fermi energy. Knowing explicitly the single particle energy levels εn,l = (2n+l+d/2), together with their degeneracies
gd(l) given in Eq. (55), one can readily relate the number of fermions N to the Fermi energy µ as follows (see Fig. 2)

N =
∑
l,n≥0

gd(l)θ(µ− εn,l) . (68)

Carrying out the sum over n, one obtains

N =
∑
l≥0

gd(l)

(
1 + int

(
µ− l − d/2

2

))
θ (µ− l − d/2 ≥ 0) , (69)

where int(x) denotes the integer part of x. We can easily estimate µ for large N . For this, one needs to distinguish
the d = 1 case and d ≥ 2.

Case d = 1. In d = 1, the sum over l in Eq. (69) runs over two terms, l = 0 and l = 1, with g1(0) = g1(1) = 1. It
follows immediately from Eq. (69) that, for large N ,

µ ' N . (70)

Case d ≥ 2. In the large N limit, µ is expected to be large. In this case, the sum on the right hand side of Eq. (69)
is dominated by large l. For large l and d ≥ 2, using Stirling’s formula in Eq. (55), the degeneracy gd(l) behaves
asymptotically as,

gd(l) '
2 ld−2

Γ(d− 1)
. (71)

Substituting this behavior in the sum and rescaling l = µ`, one can replace, for large µ, the discrete sum by an integral
over ` ∈ [0, 1]. In this large µ limit, one can also replace int((µ− l − d/2)/2) by µ(1− `)/2. This gives

N ' µd

Γ(d− 1)

∫ 1

0

(1− `)`d−2 dz =
µd

Γ(d+ 1)
. (72)

One obtains

µ ' (Γ(d+ 1)N)
1/d

, (73)

thus recovering the result mentioned in (14). Interestingly, although the derivation holds only for d > 1, the result in
Eq. (73) remains valid even for d = 1, where it gives the correct result µ ' N in (70).

Finally, we introduce another quantity that will be useful later. For a given µ, it is clear from Eq. (68), that for
fixed l the sum over n is cut off at the top due to the theta function (see also Fig. 2). Let Nl(µ) be this maximal
allowed value. It is given by

Nl(µ) = int

(
µ− l − d/2

2

)
. (74)

For d = 1, there are only two allowed values l = 0 and l = 1 and hence for large µ, it follows from Eq. (74) that these
two sectors have the same number of states

Nl=0(µ) ' µ

2
' N

2
, Nl=1(µ) ' µ

2
' N

2
. (75)
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C. The distribution of the position of the farthest fermion

We now turn to the CDF P (w,N) of rmax defined in Eq. (29). Using the representation in Eq. (30) and the joint
PDF in Eq. (15), we get

P (w,N) =
〈 N∏
i=1

(1− Iw(xi))
〉

0
(76)

=
1

N !

∫
dx1 . . .

∫
dxN det

1≤i,j≤N

[
ψ∗ki(xj)

]
det

1≤i,j≤N
[ψki(xj)]

N∏
i=1

(1− Iw(xi)) . (77)

In section II, we had seen that P (w,N) can be expressed as a Fredholm determinant [see Eq. (34)]. Here, we show
that it can be expressed as a determinant of a finite matrix (as opposed to the functional or Fredholm determinant),
using the powerful Andreief-Cauchy-Binet identity. According to this identity, one has∫

dx1 . . .

∫
dxN

N∏
i=1

h(xi) det
1≤i,j≤N

[fi(xj)] det
1≤i,j≤N

[gi(xj)] = N ! det
1≤i,j≤N

[∫
dxh(x)fi(x)gj(x)

]
, (78)

where fi(x), gj(x) and h(x) are arbitrary integrable functions. Choosing h(x) = 1− Iw(x) and setting fi = ψki and
gj = ψ∗kj , we immediately get

P (w,N) = det
1≤i,j≤N

[∫
dx [1− Iw(x)] ψ∗ki(x)ψkj (x)

]
= det

1≤i,j≤N

[
δij −

∫
dx Iw(x)ψ∗ki(x)ψkj (x)

]
, (79)

where we have used the orthogonality of ψk’s in the second equality. Using the parametrization of the quantum
numbers k = (n,L), the expression above can be rewritten as

P (w,N) = det
1≤i,j≤N

[
δij −

∫
r≥w

dxψ∗ni,Li(x)ψnj ,Lj (x)

]
, where r2 = x · x , (80)

where ψn,L(x) is given in Eq. (63). Using dx = rd−1 dr dθ in the integral on the rhs of Eq. (80) and the explicit
form of ψn,L(x) in Eq. (63), we see that the factor rd−1 cancels. Carrying out the angular integral and using the
orthogonality condition in Eq. (57), one obtains∫

r≥w
dxψ∗ni,Li(x)ψnj ,Lj (x) = δLi,Lj

∫ ∞
w

dr χni,li(r)χnj ,li(r) . (81)

Using this result in Eq. (81), we see that the determinant on the right hand side of Eq. (80) decouples into a
product of determinants, each corresponding to a particular angular sector. Taking into account the degeneracy gd(l)
in Eq. (55) associated to each value of the quantum number l, we get

P (w,N) =

int(µ− d2 )∏
l≥0

[
Pl(w,ml)

]gd(l)

, (82)

where, for d > 1,

ml = Nl(µ) + 1 with Nl(µ) = int

(
µ− l − d/2

2

)
, (83)

denotes the number of fermions in the states of angular momentum l. The product over l in Eq. (82) runs up to µ−d/2.
By contrast, for d = 1, the product in Eq. (82) runs only over two values l = 0 and l = 1, with g1(0) = g1(1) = 1 and
the corresponding values of ml are N/2 for each sector [see Eq. (75)].

In Eq. (82), Pl(w,ml) is an ml ×ml determinant given by

Pl(w,ml) = det
1≤i,j≤ml

[
δi,j −

∫ ∞
w

χni,l(r)χnj ,l(r) dr

]
, (84)
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where ni = 0, 1, . . . ,ml − 1. In Eq. (84), the radial wavefunction χn,l(r) is given explicitly in Eq. (61). We will see
below that this determinant in Eq. (84) can actually be interpreted as the cumulative distribution of the position of
the rightmost fermion among a set of ml spin-less fermions in a one-dimensional quantum problem.

The effective 1d problem. In order to interpret Pl(w,ml) in (84), we consider an effective quantum 1d model on the
positive real axis with a single particle Hamiltonian given by

ĥeff = −1

2

d2

dr2
+

1

2

[
r2 +

α(α− 1)

r2

]
, (85)

with α = l + (d − 1)/2. The single particle eigenfunctions are given by χn,l(r) given in Eq. (61) with eigenvalues
εn,l = (2n + l + d/2) as in Eq. (60). We now consider ml = Nl(µ) + 1 non-interacting fermions with many-body
Hamiltonian which is just the sum of the single particle Hamiltonians in Eq. (85). Indeed, this non-interacting fermion
problem has already been studied in the context of non-intersecting fluctuating interfaces in 1 + 1 dimensions [27] and
a relation to Laguerre-Wishart random matrices was found, as we recall below.

The many-body ground state wavefunction of this effective 1d fermion model can be written again as a Slater
determinant of the first ml single particle eigenstates

Ψα(r1, r2, · · · , rml) =
1√
Zml,α

[
ml∏
i=1

rαi e
− 1

2 r
2
i

] [
det

1≤j,k≤ml
L
α−1/2
k (r2

j )

]
, (86)

where Zml,α is the normalization constant. The determinant of Laguerre polynomials can be expressed in terms of a
Vandermonde determinant giving [

det
1≤j,k≤ml

L
α−1/2
k (r2

j )

]
∝

∏
1≤j<k≤ml

(r2
k − r2

j ) . (87)

The joint PDF of the positions of the ml Fermions in the ground state is given by

pα(r1, r2, · · · , rml) = |Ψα(r1, r2, · · · , rml)|2 = Aml,α

[
ml∏
i=1

r2α
i e−r

2
i

] ∏
1≤j,k≤ml

(r2
k − r2

j )
2 , (88)

where Aml,α is a normalization constant, such that
∫
dr1 · · ·

∫
drml pα(r1, r2, · · · rml) = 1.

In this model, the CDF of the position of the rightmost fermion can be written as

Pα,ml(w) = Prob.[max{r1, r2, · · · , rml} ≤ w] =
〈 ml∏
i=1

(1− Iw(ri))
〉

(89)

where Iw(ri) = 1 if ri ≥ w and 0 otherwise. The average 〈· · · 〉 is carried out with respect to the joint distribution
pα(r1, · · · , rml) in Eq. (88). Following similar steps as used from Eqs. (76) to (80), but specializing now to the 1d
case, we get

Pα,ml(w) = det
1≤i,j≤ml

[
δi,j −

∫ ∞
w

χni,l(r)χnj ,l(r) dr

]
≡ Pl(w,ml) , (90)

with α = l+ (d− 1)/2 and ml = Nl(µ) + 1. Thus the quantity Pl(w,ml) that appears in Eq. (82) can be interpreted
as the CDF of the position of the rightmost fermion in the ground state of this effective 1d quantum model.

Making a change of variable λi = r2
i , the joint PDF of the λi’s variables can be written from pα(r1, r2, · · · , rml) in

Eq. (88) as

ρα(λ1, λ2, · · · , λml) =
1

Z ′ml,l

[
ml∏
i=1

λ
α−1/2
i e−λi

] ∏
1≤j<k≤ml

(λk − λj)2 (91)

where Z ′ml,l is another normalization constant and we recall that α = l + (d − 1)/2 and ml = Nl(µ) + 1. This is

exactly the joint PDF of the eigenvalues of the Laguerre-Wishart random matrices with Dyson index β = 2 [12, 13].
Let us quickly recall the Laguerre-Wishart ensemble of random matrices. A Wishart matrix is an m×m product

matrix of the form W = X†X where X is an M ×m rectangular random matrix and X† is its Hermitian conjugate,
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which is of size m ×M [28]. If one takes the distribution of the entries of X to be Gaussian, drawn from the joint
PDF

P (X) ∝ exp

[
−β

2
Tr(X†X)

]
, (92)

where the Dyson index β = 1 for real matrices and β = 2 for complex matrices. Without any loss of generality, we
consider here M ≥ m (the case M ≤ m can be analyzed by exchanging M and m [29]). The product matrix W of
size m×m has m non-negative real eigenvalues λ1, · · · , λm whose joint PDF is given by

PLW(λ1, · · · , λm) ∝ exp

(
−β

2

m∑
i=1

λi

)[
m∏
i=1

λ
β
2 (M−m+1)−1
i

] ∏
1≤j,k≤m

|λk − λj |β , (93)

where the subscript LW refers to the Laguerre-Wishart ensemble. Even though in the original Wishart matrices
M and m are integers, the more general Laguerre-Wishart ensemble corresponds to Eq. (93) where the parameter
M − m > −1 can be any real number. We thus see that the distribution in Eq. (91) is the same as that of the
eigenvalues of the β = 2 Laguerre-Wishart ensemble upon the identifications:

m = ml = Nl(µ) + 1 and M = Ml = ml + l +
d

2
− 1 , (94)

where Nl(µ) is given in Eq. (74). Going back to Eq. (90) and recalling that λi = r2
i , we see that Pl(w,m) can then

be interpreted as the CDF of the maximal eigenvalue in the Laguerre-Wishart ensemble

Pl(w,ml) = Prob.
[
max {λ1, λ2, · · · , λml} ≤ w2

]
. (95)

For later convenience, we define a random variable in each l-sector

rmax,l =
√

max {λ1, λ2, · · · , λml} . (96)

Clearly, it follows from Eqs. (95) and (96) that

Pl(w,ml) = Prob.(rmax,l ≤ w) . (97)

Therefore from Eq. (82), we see that the CDF of rmax, P (w,N), is the product of CDFs of (µ−d/2) (interpreted as the
integer part) independent random variables rmax,l, one for each l. Each of these random variables is the square root of

the maximum eigenvalue of a Laguerre-Wishart matrix with size parameters ml = Nl(µ) + 1 and Ml = ml + l+ d
2 −1.

The Laguerre-Wishart ensembles labelled by l are independent of each other. Thus rmax corresponds to the extreme
of a set of independent but non-identically distributed random variables.

It is important to note that the above statements and formula are correct for arbitrary finite N provided the last
energy level is fully occupied, so that the ground state is unique. In the next subsection we study the asymptotics of
P (w,N) for large N , by analyzing the product structure in Eq. (82) and we will show that the same Gumbel law as
in Eqs. (49) and (50) will emerge out of this analysis.

Remark for d = 1: We note that in d = 1, using the one to one correspondence between the fermion positions
and the eigenvalues of the N ×N GUE matrices, it follows that

P (w,N) = Prob.[max{|x1|, . . . , |xN |} ≤ w] , (98)

where xi’s denote the fermion positions (or equivalently the GUE eigenvalues). Going back to Eq. (82) and noting
that, in d = 1, there are only two allowed values of l, namely l = 0 and l = 1 with degeneracies g1(0) = g1(1) = 1, it
follows that the product in Eq. (82) has only two terms

P (w,N) = P0(w,m0)P1(w,m1) (99)

with µ = N −1/2, m0 = 1 + int((N −1)/2), m1 = 1 + int((N −2)/2). Thus for any N there is a factorization into two
sectors, which corresponds to two independent squared Laguerre ensembles [clarifying Eq. (96)]. This is reminiscent
of the factorization of the joint PDF of the absolute values of the eigenvalues of GUE into two squared Laguerre
ensembles (sometimes called chiral Laguerre ensembles) [32–34]. Again, these statements are valid for any finite N .
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D. Large N analysis of P (w,N) in Eq. (82)

Our starting point is the expression for P (w,N) in terms of a product, given in Eq. (82), where Pl(w,ml) is given
in Eq. (95), which corresponds to the CDF of a Laguerre-Wishart matrices with size parameters ml = Nl(µ) + 1 and
Ml = ml + l + d

2 − 1. In the following, in order to lighten the notations, we will drop the subscript l from both ml

and Ml, and denote them simply by m and M .
Since the Fermi energy µ ∝ N1/d [see Eq. (73)], the limit of large N corresponds to large µ. Consequently, from

Eq. (83), ml ≡ m is large for large N and hence we need to analyze Pl(w,m) for large m. The distribution of the
largest eigenvalue λmax of Laguerre-Wishart matrices in the large m limit has been well studied in the literature
[30, 31]. Let us recall the main results that we will need here for our analysis of Pl(w,m).

Consider a complex (β = 2) Laguerre-Wishart ensemble with size parameters m,M such that both m and M are
large with their ratio held fixed. In this limit, the largest eigenvalue λmax approaches to an identity in law

λmax = Am,M + σm,M χ2 , (100)

where

Am,M =
(√

m+
√
M
)2

and σm,M =
(√

m+
√
M
)( 1√

m
+

1√
M

)1/3

(101)

and χ2 is a random variable, independent of m and M , whose CDF is given by the Tracy-Widom distribution

Prob. (χ2 ≤ s) = F2(s) . (102)

This function F2(s) can be expressed in terms of a special solution of a Painlevé II equation and has the large s→∞
asymptotic tail

F2(s) ∼ 1− 1

16πs
3
2

exp

(
−4

3
s

3
2

)
as s→∞ . (103)

To adapt these results to our problem, we proceed as follows. Let us first express Am,M and σm,M in terms of µ
and l for large µ. From Eq. (83) for large µ, we can ignore the integer part and write

m ' 1

2

(
µ− l − d

2
+ 2

)
' 1

2
(µ− l) , (104)

anticipating that µ− l will be large (to be verified a posteriori). Similarly, M in Eq. (94) is given, for large µ, by

M ' 1

2
(µ+ l +

d

2
) ' 1

2
(µ+ l) . (105)

The subsequent analysis is different for d = 1 and d ≥ 2 and we will analyse the two cases separately.

Case d = 1. In this case, there are only two allowed values of l, l = 0 and l = 1. Hence from Eqs. (104) and (105),
it follows that, for large µ, m 'M ' µ/2 for both l = 0 and l = 1. Consequently from Eq. (101), one gets

Am,M ' 2µ and σm,M ' 2µ1/3 . (106)

Using rmax,l =
√
λmax from Eq. (96), it follows from Eq. (100) that, both for l = 0 and l = 1

rmax,l = (Am,M + σm,M χ2)
1/2 '

√
2µ+

1√
2
µ−1/6 χ2 , (107)

where we have expanded the square root for large µ and kept the two leading order terms. For l = 0 and l = 1, the
CDF of rmax,l thus has the scaling form

Pl(w,m) = Prob.(rmax,l ≤ w) = F2

(√
2µ1/6(w −

√
2µ)

)
. (108)

Using this result in Eq. (99), it follows that in d = 1, the cumulative distribution of rmax is the square of the
Tracy-Widom distribution

P (w,N) '
[
F2

(√
2µ1/6(w −

√
2µ)

)]2
, (109)
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in the large N limit. This result has a natural interpretation which follows from Eq. (98). Indeed, Eq. (98) can be
re-expressed in terms of the joint distribution of xmin = min{x1, · · · , xN} and xmax = max{x1, · · · , xN} as

P (w,N) = Prob.(xmax ≤ w, xmin ≥ −w) . (110)

While, for finite N , xmax and xmin are strongly correlated, they become independent for large N , leading to a
decoupling of Eq. (110) into a product

P (w,N) ' Prob.(xmax ≤ w) Prob.(xmin ≥ −w) . (111)

Since each of these probabilities is given, for large N , by the Tracy-Widom limiting distribution, one gets the square
of the Tracy-Widom CDF in Eq. (109). Note that, even in the large N limit, this factorization does not hold for all
w. It holds only when both the maximum and the minimum are close to their respective typical values, i.e. when
|w −√2µ| ∼ O(µ−1/6). In contrast when |w −√2µ| ∼ O(

√
µ), i.e., when both the maximum and the minimum are

close to the center of the trap, this factorization no longer holds anymore. Instead P (w,N) is described by a large
deviation form that was computed exactly in [35].

Case d ≥ 2. In this case, the possible values of l run from 0 to µ, for large µ. Substituting the large µ expansions
given in Eqs. (104) and (105) in Eq. (101), expanding for large µ and for the moment keeping l/µ = ` fixed, we
obtain

Am,M = µ(1 +
√

1− `2) and σm,M = (2µ)1/3 (1 +
√

1− `2)2/3

(1− `2)1/6
where ` =

l

µ
. (112)

Using rmax,l =
√
λmax from Eq. (96), it follows from Eq. (100) that

rmax,l = (Am,M + σm,M χ2)
1/2 '

√
Am,M +

1

2

σm,M√
Am,M

χ2 , (113)

where we have expanded the square root for large µ and kept the two leading order terms. This then gives

rmax,l ' C(`)
√
µ+D(`)µ−1/6 χ2 , (114)

where

C(`) =
(

1 +
√

1− `2
)1/2

and D(`) = 2−2/3

[
1 +
√

1− `2
1− `2

]1/6

(115)

where we recall that ` = l/µ. The CDF of rmax,l has thus the scaling form

Pl(w,m) = Prob.(rmax,l ≤ w) = F2 (s`) , s` =
w − C(`)

√
µ

D(`)µ−1/6
, (116)

in the region of the typical fluctuations, where s` = O(1) and we recall that F2(s) is the CDF of the GUE TW
distribution. We substitute this result (116) into the product in Eq. (82) and obtain

P (w,N) = exp [S(w)] where S(w) =
∑
l≥0

gd(l) lnF2

(
w − C(`)

√
µ

D(`)µ−1/6

)
. (117)

For this formula to hold we need that the minimum value smin = min`∈[0,1] s`, of the argument s` of the TW
distribution is in the range smin = O(1) (see discussion below).

For d ≥ 2, the sum over l in Eq. (117) runs up to µ where µ is large. Hence the asymptotic large N analysis of
P (w,N) in this case is rather different from the d = 1 case discussed above. It turns out that the leading contribution
to the sum comes from the large l regime (where l = O(µ2/3) for large µ, a fact to be verified a posteriori), where we
can use the asymptotic form of gd(l) for large l in Eq. (71). Furthermore, recalling that l = ` µ, it is clear that in the
large µ limit, one can replace the sum over l by an integral over `. This gives

S(w) ' 2µd−1

Γ(d− 1)

∫ 1

0

d` `d−2 lnF2

(
w − C(`)

√
µ

D(`)µ−1/6

)
(118)

where C(`) and D(`) are given in Eq. (115).
We must now analyze the argument s` = µ2/3(ŵ − C(`))/D(`) of the Tracy-Widom CDF, where we have defined

ŵ = w/
√
µ. Since − lnF2(s`) is a positive decreasing function, the integral will be a priori dominated by the
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minimum value of s`, i.e. smin, as ` varies. The analysis depends on the value of ŵ, which we suppose fixed as µ
becomes large. There are only two possible local minima for s` on the interval ` ∈ [0, 1], one at ` = 0, where locally

s ' (2µ)2/3(2−1/6(ŵ −
√

2) − 1
21/68

(ŵ − 2
√

2)`2) and one at ` = 1 where s ' (2µ)2/3(ŵ − 1)(1 − `2)1/6. For ŵ < 1

there is only the minimum at ` = 0. For 1 ≤ ŵ ≤ 2
√

2 both minima exist, and the absolute minimum is at ` = 0 for
ŵ <

√
2, while it is at ` = 1 for

√
2 < ŵ < 2

√
2.

We now focus on the regime near the edge of the Fermi gas, ŵ = w/
√
µ =
√

2, which turns out to contain the typical
fluctuation regime (this can be anticipated from the results of section II B). We will see that the leading contribution
comes from the small ` regime (of order O(µ−1/3)). Let us examine the contribution of the minimum of s` at ` = 0
(from the discussion of the previous paragraph). One can write the argument of F2 in Eq. (118) as

s` =
w − C(`)

√
µ

D(`)µ−1/6
' w̃ +

1

4
`2 µ2/3 +O(`4) where w̃ = (w −

√
2µ)
√

2µ1/6 . (119)

Clearly one must rescale ` = 2vµ−1/3 in the integral over ` and one obtains in the large µ limit

S(w) ' 2d µ
2(d−1)

3

Γ(d− 1)

∫ +∞

0

dv vd−2 lnF2(w̃ + v2) (120)

This result is correct as long as ŵ −
√

2 vanishes at large µ, i.e. |w̃| � µ2/3. For other values of ŵ one needs to use,
instead of the typical fluctuation formula given in Eq. (116), a large deviation formula, which goes beyond the scope
of this paper.

Let us now study the regime of typical fluctuations. Denoting, as in Eqs. (43)–(45), w̃ = aµ + z/(2
√
aµ) and

anticipating that aµ is large and z = O(1), we can now use the asymptotic tail of F2(s) for large s in Eq. (103),
inserting s = aµ + z/(2

√
aµ) + v2 in (120), one finds for large µ

S(w) ' − 2d µ
2(d−1)

3

16πΓ(d− 1)a
3/2
µ

∫ +∞

0

dv vd−2 e−
4
3a

3/2
µ −2

√
aµv

2−z . (121)

We can now substitute, as in (43)-(45), w̃ = aµ + z/(2
√
aµ) where aµ is large and z = O(1). Expanding, the leading

behavior at large µ of the expression (121) leads to evaluate the integral∫ +∞

0

dv vd−2 e−2
√
aµv

2

= 2−
d+1
2 a

1−d
4

µ Γ

(
d− 1

2

)
, (122)

leading exactly to

S(w) ' −Bd e−
4
3 a

3/2
µ +

2(d−1)
3 lnµ− (d+5)

4 ln(aµ)−2
√
aµ bµ z , (123)

where Bd was given in (42). Hence, we arrive exactly at the result in Eq. (44), and (49) in section II B, i.e. a Gumbel
distribution for rmax, although by a quite different method. The present calculation further shows that the angular
momentum which contributes to the value of rmax are of order l = `µ ∼ µ2/3 (see the interpretation below).

Let us comment on the contribution of the second minimum of s` at ` = 1, which corresponds to high angular
momentum states, and turns out to be negligible for ŵ =

√
2. A naive analysis of the continuum integral (118) would

suggest an additional contribution to S(w) corresponding to values of ` = 1 −O(µ−4). However in the original sum
(117), l is an integer which runs up to lmax = int(µ− d/2). Hence the continuum integral must be cutoff at values of
` = 1−O(µ−1), which corresponds to smin ∼ √µ, hence leading to an exponentially small contribution to S(w), i.e.

∼ O(µd−2e−µ
3/4

) � µ
2(d−1)

3 . In fact one can directly analyze the contribution coming from l = lmax, corresponding
to states with n = 0 and having a degeneracy ∼ µd−2 (see Fig. 2). The associated radial wavefunction χ0,lmax(r)
given by (61) can be shown to be peaked around r∗ ' √µ � which is far from the trap center but is also far from
the edge of the Fermi gas (recall redge =

√
2µ). One can calculate explicitly for this state, using formula (84) (which

is a simple one-dimensional determinant as ml = 1) the probability

Plmax(w,mlmax = 1) = 1−
∫ +∞
w

dr r2lmax+d−1e−r
2∫ +∞

0
dr r2lmax+d−1e−r2

' 1−O(e−2µ) , (124)

leading to an exponentially small contribution to S(w), i.e. ∼ O(µd−2e−2µ) � µ
2(d−1)

3 . Hence there is no additional
contribution due to these maximal angular momentum states, in agreement with the analysis above.
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IV. EXTENSIONS TO OTHER OBSERVABLES AND FINITE TEMPERATURE

In this section we give some further probabilistic interpretations as well as new results. We study counting statistics
near the edge, extreme value statistics in non-spherical domains, the distribution of xmax, and present some extensions
to finite temperature.

A. Poisson statistics near the expected maximal radial distance

Let us define the number of fermions Nw outside the sphere centered at the origin and of radius w in the ground
state. From the determinantal structure of the quantum probability of N fermions at zero temperature (19), we know
that the Laplace transform of the distribution of Nw can be written as a Fredholm determinant

〈e−pNw〉0 = Det(I − (1− e−p)IwKµ) . (125)

We will restrict our analysis to values of w near the edge w ≈ redge where, if p = O(1) and in d > 1, we can use the
single trace approximation as in Section II B. In addition we consider the region around the average value of rmax,
hence we set

w =
√

2µ+
1

2µ1/6

(
aµ +

z√
2aµ

)
, (126)

where z is a parameter of order unity. Following the same steps as in that Section we easily arrive at

〈e−pNw〉0 = exp
(
(e−p − 1)e−z

)
. (127)

This means that Nw has a Poissonian statistics with parameter e−z, i.e.

Prob(Nw = k) =
e−kz

k!
exp(−e−z) , (128)

where the random variable is Nw and z a parameter. Since one has 〈Nw〉0 = e−z the Poisson distribution crosses over
to a Gaussian distribution for z < 0 and |z| � 1. This is the case in the region close to redge, where w̃ = O(1)� aµ.

B. Other domains

Studying systems in higher dimensions opens up the possibility to study a wider variety of extreme value problems
than in one dimension. For instance one can ask what is the distribution of the farthest fermion from the origin when
one looks within a certain solid angle, or what is the distribution of the maximal coordinate in a given direction. Here
we address these issues.

Let us come back to the single trace approximation in Eq. (36) for the probability that rmax < w, namely

Prob.(rmax ≤ w) ' exp

[
−
∫
x∈D

Kµ(x,x) dx

]
' exp

[
−Sd

(
redge

wN

)d−1 ∫ ∞
w̃

Fd(s) ds

]
, (129)

where here the domain D is the region |x| > w, and we have chosen a w such that w−redge = O(wN ). One can interpret
the second equality, roughly, as saying that there are a number of order Neff ∼ Sd(redge/wN )d−1 independent regions
contributing to the maximal radius (naturally leading then to a Gumbel distribution). Said differently, it means that
along the surface of the Fermi droplet, i.e. in the angular direction, the positions of the fermions within the domain
D, are correlated over distances of order wN . This is only a rough interpretation, a more detailed and precise one was
presented in the previous section, but it is sufficient for our purpose here.

It is then reasonable to assume that the same approximation should hold for more general domains, as long as
the number of independent regions Neff is large as N → +∞, leading again to a Gumbel distribution (this condition
also ensures that the higher power traces in the expansion of the Fredholm determinant (32) remain subdominant).
Let us for instance consider a domain D defined as the region |x| > w(θ) where θ is an angular direction (i.e. a
(d− 1)-dimensional angular vector, e.g. a simple angle θ ∈ [0, 2π[ for d = 2). Here w(θ) is an arbitrary curve, but to
be able to use the edge scaling form of the kernel we will choose it such as w(θ) ≥ redge +O(wN ) and we define

w̃(θ) =
w(θ)− redge

wN
= (w(θ)−

√
2µ)
√

2µ1/6 . (130)
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x

y

redge
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✓m

FIG. 3. Illustration of the domain D, in d = 2, corresponding to w(θ) = w in the angular sector θ ∈ [0, θm], and elsewhere
w̃(θ) = +∞. The hole probability associated with D is the probability that rmax ≤ w restricted to the fermions in the angular
sector [0, θm].

We then ask what is the probability that there are no fermions in the domain D, i.e. the “hole probability” associated
to the domain D. One example in d = 2 is w̃(θ) = w̃ in the angular sector θ ∈ [0, θm], and else w̃(θ) = +∞, and this
hole probability then becomes the probability that rmax ≤ w restricted to the fermions in the angular sector [0, θm]
(see Fig. 3). In general it can be expressed as a Fredholm determinant as in (30), (31), with Iw(x) the indicator
function of the domain D. Keeping again the leading single trace term we find (defining ND the number of fermions
in the domain D)

Prob.(ND = 0) ' exp

[
−
(
redge

wN

)d−1 ∫
dθ

∫ ∞
w̃(θ)

Fd(s) ds

]
, (131)

and similar manipulations as in Section II B lead to a Gumbel distribution for a suitably scaled w̃ (with different
constants aµ and bµ).

Let us give an example of application in d = 2 (another example being given in the next subsection). First consider
the probability, denoted Pθm(w,N), that rmax ≤ w, restricted to the fermions in the angular sector [0, θm]. The
effective number of independent regions is Neff ∼ θm µ

2/3. Hence if the angular sector is sufficiently large, i.e. if
θm � µ−2/3 ∼ N−1/3 one obtains a Gumbel distribution, Pθm(w,N) ' exp(−e−z) where w̃ = aµ + 1

2
√
amu

z, with a

parameter aµ solution of

2−7/2

√
π
θm e

− 4
3 a

3/2
µ + 2

3 lnµ− 7
4 ln(aµ) = 1 , (132)

leading to aµ '
[

1
2 ln(µ θ

3/2
m )

] 2
3

. If the angular sector becomes too small, i.e., θm of order, or smaller than µ−2/3 ∼
N−1/3 we expect a crossover to a Tracy-Widom regime, which would be quite interesting to study, but is beyond
the scope of the present paper. Note that the scale θm ∼ µ−2/3 is consistent with the angular momentum scale
l ∼ θ−1

m ∼ µ2/3 which was shown in the previous Section to control the value of rmax.
Note finally that the arguments in this section have been mostly qualitative, and to make them rigorous (and study

the crossover to the d = 1 limit) would require a general analysis of the higher traces for a larger class of domains D
which goes beyond the scope of the present paper.

C. Probability distribution of xmax in d = 2

Another interesting question is to calculate the PDF of the first coordinate, i.e. its abscissa denoted by xmax, of the
rightmost fermion in d = 2 dimensions. We start with a first method, using results of the previous subsection. This
corresponds to the choice w(θ) = w/ cos(θ). One can check a-posteriori that one can restrict the analysis to small
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angles θ, hence we write w(θ) = w(1 + θ2

2 ). Thus we obtain

Prob.(xmax ≤ w) ' exp

[
−2µ2/3

∫
dθ

∫ ∞
w̃+µ2/3θ2

Fd(s) ds

]
, (133)

where we have used the definition (130). Expanding as w̃ = aµ + 1
2
√
aµ
z we obtain again a Gumbel distribution for

the variable z, i.e. Prob.(xmax ≤ w) = e−e
−z

, with now the following condition to determine aµ

B̃2(µ) e−
4
3 a

3/2
µ + 2

3 lnµ− 7
4 ln(aµ) = 1 , B̃2(µ) =

1

(8π)3/2

∫ ∞
−∞

dθe−2a1/2µ µ2/3θ2 =
1

32π
a−1/4
µ µ−1/3 , (134)

which leads to − 4
3 a

3/2
µ + 1

3 lnµ− 2 ln aµ − ln(32π) = 0. Hence to leading order one has

aµ '
(

1

4
lnµ

)2/3

. (135)

Note that the angles involved in this maximization are θ ∼ θµ = a
−1/4
µ µ−1/3 which justifies the expansion of the cos(θ)

for small θ (i.e., its approximation by a parabola). The maximum xmax is thus attained for fermions which deviate at

most of order θµ from the axis (up to powers of lnµ). Also the number of independent regions is Neff = µ1/3a
−1/4
µ � 1

as N becomes large, which a posteriori justifies the calculation. To summarize, we find

xmax =
√

2µ+
1

µ1/6

[
1√
2
aµ +

1

2
√

2 aµ
ZG

]
, (136)

where Prob.[ZG ≤ z] = exp[−e−z] and aµ is given by (135). Comparing with the similar formula for rmax, in Eq. (49),
(50) we see that xmax is smaller than rmax but its fluctuations are larger.

We will now show that this result can be obtained from an exact calculation, similar to the one of Section III, which
we present here only in d = 2 for simplicity – the generalization to higher d being straightforward. To study xmax it
is more convenient to use the eigenbasis of the single particle problem

φnx,ny (x, y) = φnx(x)φny (y) , φk(x) =

(
1√
π2kk!

)1/2

Hk(x)e−x
2/2 , (137)

where φk(x) are the eigenstates of the 1d harmonic oscillator, and Hk the Hermite polynomial of degree k. As in
formula (80) we have

Prob.(xmax ≤ w) = det
1≤i,j≤N

[
δij −

∫
x≥w

dx dy φnx,i,ny,i(x, y)φnx,j ,ny,j (x, y)

]
= det

1≤i,j≤N

[
δij − δny,i,ny,j

∫
x≥w

dxφnx,i(x)φnx,j (x)

]
(138)

where the (nx,i, ny,i), i = 1, . . . , N denote the occupied states (note that in Eq. (138) we have used that the
eigenfunctions φk(x) are real). In the N -body ground state all single particle states with energy ε(nx, ny) = nx +
ny + 1 ≤ µ are occupied, leading to the relation between N and the Fermi energy µ: N = 1

2µ(µ+ 1) (we consider µ
to be equal to the energy of the last occupied state, hence it is an integer).

As in the previous calculation (see section III) this determinant (138) has a block structure and hence one can write

Prob.(xmax ≤ w) =

µ−1∏
ny≥0

[
Pny (w, µ− 1− ny)

]
(139)

where here

Pny (w,Nny ) = det
1≤i,j≤Nny

[
δij −

∫
x≥w

dxφnx,i(x)φnx,j (x)

]
(140)

is the cumulative distribution function (CDF) of the position of the right-most fermion among Nny fermions in a
one-dimensional harmonic potential. This CDF has been studied in Ref. [8] – as well as in the RMT literature [13] –
and is known to take the form of a Tracy-Widom distribution at large Ny, i.e. one has

xmax,ny =
√

2(µ− 1− ny) +
1√
2

(µ− 1− ny)−1/6χ2 , (141)
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x
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redge

xmax

rmax

FIG. 4. Illustration of the position xmax of the rightmost fermion for a two-dimensional system confined in a harmonic trap,
as studied in [see Eq. (139)]. In the large N limit, the PDF of xmax properly centered and scaled converges also to a Gumbel
distribution.

where the CDF of χ2 is F2(s) (to be compared with formula (113) for the study of rmax). Setting ny = `µ in the
limit of large µ and following similar steps as in Section III, one finds Prob(xmax ≤ w) ' exp(S(w)) where S(w) can
be written as a sum over the states

S(w) = µ

∫ 1

0

d` lnF2

(
(w −

√
2µ(1− `))

√
2µ1/6(1− `)1/6

)
, (142)

where we have made the approximation
∑µ−1
ny=0 ' µ

∫ 1

0
d`. Inserting the right tail of the Tracy-Widom distribution,

we find again that the region which dominates the integral is for small `. Hence, expanding in ` close to ` = 0, the
argument of F2 can be replaced by w̃ + `µ2/3. A similar calculation to that in Section III then allows us to recover
exactly the result of Eq. (136), with exactly the same condition determining aµ, leading to the estimate in (135).

D. Higher traces and the regime w̃ = O(1)

It is also interesting to ask what is the effect of the higher order traces in (34). As we have hinted at above they
only contribute to subdominant corrections in the determination of the distribution of the typical fluctuations of rmax

[see Eq. (49)], when w̃ ∼ aµ � 1. However these terms become important if one studies the regime w̃ = O(1), as we
now discuss.

In Ref. [8, 11] we have shown that for x,y near a point redgen, where n is a unit vector (on the unit sphere), the
kernel takes the scaling form

Kµ(x,y) ' 1

wdN
Kedge
d,n

(
x− redgen

wN
,
y − redgen

wN

)
(143)

where the d-dimensional edge kernel can be written as

Kedge
d,n (a,b) =

∫
dqt

(2π)d−1
e−iqt·(at−bt)KAi(an + q2

t , bn + q2
t ) , (144)

in terms of the standard Airy kernel, KAi(a, b) =
∫ +∞

0
duAi(a+ u)Ai(b+ u). In Eq. (144) and below we decompose

any vector a = at + ann into a normal (scalar) component an = a · n and a tangential component at (a (d − 1)-
dimensional vector). We have indicated by an additional subscript that the edge kernel explicitly depends on n. Let
us note the following interesting property∫

dbtKedge
d,n (a,b)Kedge

d,n (b, c) =

∫
dqt

(2π)d−1
e−iqt·(at−ct)KAi(an + q2

t , bn + q2
t )KAi(bn + q2

t , cn + q2
t ) (145)
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which allows (by iteration, see below and Appendix A) to calculate any power of the kernel in terms of Airy functions.
Using this scaling form (143) one can reduce the problem of calculating the trace in Eq. (35) to free integrations

over a2, · · · ,an together with an integral over n (over the unit sphere) and over a1,n the radial part of a1. Hence it
is easy to see that (see Appendix A for details)

P (w,N) ' exp

(
−
(
redge

wN

)d−1 ∞∑
p=1

1

p

∫
dnTr

[
δa1,t,0(Ĩw̃,nKedge

d,n )p
])

(146)

= exp

((
redge

wN

)d−1 ∫
dn ln Det(I − δa1,t,0Ĩw̃,nKedge

d,n )

)
, (147)

where
∫
dn denotes the integral over the unit sphere, δa1,t,0 denotes the projector on the subspace a1,t = 0, and the

trace is over all vectors a1, · · · ,an. In the last line the traces have been summed into a Fredholm determinant. If one
studies rmax, then the operator Ĩw̃,n(a) is the projector on an ≥ w̃, but the above expression is valid for more general
domains (such as studied in Section IV B). In the case of the calculation of rmax, using rotational invariance it is easy
to see (see Appendix A) that all the traces in (146) are independent of n hence one can replace

∫
dn by Sd and pick

one particular fixed direction n. The calculation of the traces then uses an iteration of (145)

Tr
[
δa1,t,0(Ĩw̃,nKedge

d,n )p
]

=

∫
dqt

(2π)d−1
Tr[(Pw̃+q2

t
KAi)

p] , (148)

where Ps is the standard notation for the projector on [s,+∞[. Summing up the traces we obtain the formula for the
probability that rmax ≤ w:

P (w,N) ' exp

(
Sd

(
redge

wN

)d−1 ∫
dqt

(2π)d−1
ln Det(I − Pw̃+q2

t
KAi)

)
(149)

= exp

(
Sd

(
redge

wN

)d−1 ∫
dqt

(2π)d−1
lnF2(w̃ + q2

t )

)
, (150)

where F2(s) = Det(I−PsKAi) is the GUE Tracy-Widom CDF. This expression is valid for N large, and for w̃ = O(1),
as well as in the regime w̃ ∼ aµ � 1 studied previously. Hence this expression shows the large deviation form for
the PDF of rmax, when w̃ = O(1), which is an intermediate left deviation regime for the present problem (note that
there exists another left large deviation regime, deeper inside the Fermi cloud, whose study is left for the future). The
exponent in (150) is the associated rate function. Here we have obtained it exactly in terms of the GUE-TW function
F2(s), in the case of a spherically symmetric domain.

Performing the angular integral in (150), and denoting |qt| = v it is immediate to see, using the identities
SdSd−1/(π)d−1 = 2d/Γ(d − 1) and redge/wN = 2µ2/3, that the formula (150) is identical to Eq. (120), obtained
in Section III D by quite different methods. There it was studied only in the typical fluctuation regime w̃ ' aµ � 1,
but the present analysis shows that these formula holds down to the regime w̃ = O(1).

The explicit calculation of the rate function for more general domains in this regime w̃ = O(1), i.e. of the reduced
Fredholm determinant for non-spherically symmetric domains, remains challenging. The analysis of the previous
section shows, that a simplification should also arise in the calculation of xmax. Finally, in the region w̃ ∼ aµ this
Fredholm determinant can be approximated by the leading single trace, and one recovers the typical fluctuations
studied in this paper (see Appendix A for further details).

E. Finite temperature

We now briefly sketch the effect of a finite temperature on the distribution of the maximal radius, denoted by
rmax(T ). As above, we restrict ourselves to the case of the harmonic oscillator. As was shown in [11] the corresponding
hole probability can be calculated at finite temperature. For this purpose, one uses the equivalence of the canonical
(fixed N) and grand-canonical (fixed chemical potential µ̃) ensembles in the large N limit, and the fact that in the
grand-canonical ensemble the JPDF of the positions of the fermions form a determinantal process [11, 36]. As a result
the formula (34) is still valid but Kµ is replaced by the finite temperature kernel, described in [11]. Since here we
study rmax(T ), i.e., the edge of the Fermi gas, we can again use the scaling form of the finite temperature kernel near
the edge, which is valid in the regime where the temperature T ∼ N1/(3d): this is the regime on which we focus from
now on. More precisely one defines the dimensionless parameter [9, 11]

b = (Γ(1 + d)N)1/(3d)/T . (151)
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We now use the same (single trace) approximation as we used at T = 0 (whose validity is discussed below) and we
obtain, following similar steps to those in Section II B

P (w,N) ' exp

[
−Sd

(
redge

wN

)d−1 ∫ ∞
w̃

F edge
d,b (z) dz

]
. (152)

As before, we have written again w̃ =
w−redge

wN
= (w −√2µ)

√
2µ1/6 where here and below µ is the Fermi energy, i.e.

the T = 0 chemical potential, as defined in Section II [see Eq. (14)]. This formula involves the finite temperature
version of the scaling function of the density, obtained in [11] as

F edge
d,b (z) =

22−dπ
1−d
2

Γ(d−1
2 )

∫ +∞

0

dq qd−2 F edge
1,b (z + q2) , (153)

where

F edge
1,b (s) =

∫ +∞

−∞
du

Ai(s+ u)2

1 + e−bu
, (154)

is the d = 1 finite temperature density scaling function. Clearly we again need the large positive w̃ asymptotics of
Eq. (152), which requires the large argument asymptotics of the function Fd,b(z) (right tail), which was not given
in [11]. Let us recall that the right tail of F1,b(z) was obtained in [11, 37] and shown to depend on the parameter
s̃ = s/b2 as follows

F edge
1,b (s) '


1

4b2
√
s̃ sin(2π

√
s̃)

exp
(
− 4

3s
3/2
)

, 1� s < b2

4

1√
4πb

exp
(
−bs+ b3

12

)
, s > b2

4 .

(155)

Hence it exhibits a transition between a stretched exponential tail to a pure exponential decay for s > sc = b2/4.
Thus, for a fixed value of the reduced temperature b (not necessarily large), the decay is always exponential. The
pre-exponential factor further exhibits a crossover from the two limiting cases indicated above, in the vicinity of
s̃ = 1/4 as given in [37]. Note that the first regime in Eq. (155) for s̃ → 0, when inserted in (153), gives back the
T = 0 behavior (40).

Let us start with the “thermal” regime where we can use the second form in (155), i.e. s > b2

4 . Inserting into (153)
we find the right tail

F edge
d,b (s) ' 1

(4πb)d/2
exp

(
−bs+

b3

12

)
, (156)

which gives

P (w,N) ' exp

[
−Sd

(
redge

wN

)d−1
1

(4π)d/2b1+ d
2

e−bw̃+ b3

12

]
, (157)

where we recall that
redge

wN
= 2µ2/3 = 2(Γ(d+ 1)N)2/(3d). Hence we obtain again a Gumbel distribution in terms of a

variable z now defined as

P (w,N) ' e−e−z , w̃ = aµ +
1

b
z (158)

where aµ is here determined by the condition

Ad e
−baµ+ 2

3 (d−1) lnµ+ b3

12−(1+ d
2 ) ln b = 1 , (159)

with Ad =
Sd2

d−1

(4π)d/2
= 1/Γ(d/2). This condition (159) yields the leading order behavior

aµ = aµ,b '
2

3b
(d− 1) lnµ+

b2

12
− d+ 2

2b
ln b+

1

b
lnAd , (160)
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which is our final result for the distribution of rmax(T ) in the thermal regime, i.e., of fixed b and large N (i.e. large µ)

rmax(T ) =
√

2µ+
1√

2µ1/6

(
aµ,b +

1

b
ZG

)
(161)

where Prob.[ZG ≤ z] = exp[−e−z]. We note that this result remains valid for d = 1 in the limit b � 1, and exactly
matches with the result obtained in [11] (discarding the term b2/12 which is clearly subdominant in this limit). To
check this we used the fact – see (111) – that in d = 1, the PDF of rmax(T ) is given by the maximum of two
independent Gumbel random variables, each obtained in Eq. (156) of [11].

Clearly, comparing this result in Eqs. (160) and (161) with the result obtained at T = 0 and given in Eqs. (49) and
(50), we see that there is a crossover at very low temperature b = b∗ from the thermal regime to the T = 0 regime,
with

b∗ ∼ 4

3

(
d− 1

2
lnµ

)1/3

. (162)

This crossover occurs between two Gumbel distributions with different parameters. The study of the details of this
crossover is left for the future.

Let us also indicate the result for the distribution of xmax(T ) at finite temperature in d = 2. By a similar calculation,
using similar arguments as in Section IV C, we find

xmax(T ) =
√

2µ+
1√

2µ1/6

(
aµ,b +

1

b
ZG

)
(163)

where Prob.[ZG ≤ z] = exp[−e−z] is a Gumbel variable, with

aµ = aµ,b '
1

3b
lnµ+

b2

12
− 5

2b
ln b− 1

b
ln(2
√
π) . (164)

Note that we find that the amplitude of the fluctuations of xmax(T ) and rmax(T ) are identical but that on average
rmax(T ) > xmax(T ), as expected.

Finally, recalling from [11] (section VII-D) that the formula (144) extends to any value of b, one easily sees that
the expression in (150) extends to finite temperature, at fixed b, as follows

P (w,N) ' exp

(
Sd

(
redge

wN

)d−1 ∫
dqt

(2π)d−1
lnF2,b(w̃ + q2

t )

)
, (165)

where here we denote F2,b(s) = Det(I − PsKedge
b ) the finite temperature generalization of the GUE Tracy-Widom

CDF, where Kedge
b is given in section V-C of [11].

V. DISCUSSION

In this paper, we have investigated analytically the distribution of the maximal radial distance from the trap center
of N non-interacting fermions in a d-dimensional harmonic trap at T = 0. We have shown that, in the large N limit,
the cumulative distribution, appropriately centered and scaled, converges to the Gumbel distribution for d > 1. In
d = 1, we have shown that the limiting cumulative distribution is given by the square of the Tracy-Widom distribution
for GUE. If one thinks of the dimension d as a continuous parameter, clearly the distribution crosses over from the
squared Tracy-Widom to the Gumbel form. It would be interesting to investigate the precise crossover function that
interpolates between these two distinct forms, as d crosses the critical value d = 1.

How universal is the large N scaling form of the cumulative distribution with respect to the shape of the trapping
potential? We have shown that the limiting form of the cumulative distribution can be derived solely from the
asymptotic properties of the edge kernel. However it has been recently shown that the edge kernel, properly centered
and scaled, is universal, i.e., independent of the details of the trapping potential, for a broad class of confining
potentials. Consequently, the limiting distribution of the maximal radial distance is also universal, with respect to
this class of trapping potentials. Note that a different extreme value observable is the smallest distance to the center
of the trap, rmin. Its distribution is related to the probability to have a hole of radius rmin at the center, a question
which has been studied in [38] , but for which more remains to be done in d > 1.

Another natural question is how this limiting distribution depends on temperature T ≥ 0. Previous studies of matrix
models related to finite temperature fermions [39, 40] have not addressed questions about extreme value statistics
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(see however [36] in connection with 1d fermions). In d = 1, the distribution of the position of the rightmost fermion
in a harmonic trap has recently been studied for finite temperatures [8, 11]. The cumulative distribution, properly
centered and scaled, was found to converge to a Gumbel form (i) at very high temperature T � N and (ii) also at
intermediate temperature where N1/3 � T � N . The scale factors associated with these Gumbel forms depend on
T and N , however these dependencies are rather different in the two regimes. In this work we have investigated what
happens in higher dimensions as temperature increases. We have studied only the regime T ∼ N1/(3d) and shown that
the distribution of rmax(T ) is also a Gumbel distribution, although with different parameters to those at T = 0. The
other extreme limit is when T →∞, where we expect that the fermions behave as independent classical particles in a
harmonic potential (the Pauli exclusion principle becomes completely irrelevant). Consequently, the maximal radial
distance will correspond to the maximum among a set of N independent and identically distributed random variables,
each with a Gaussian tail. Hence we would expect that the limiting cumulative distribution of the maximal distance,
properly centered and scaled, will again converge to the standard Gumbel form in all dimensions d > 1. How the
limiting distribution crosses over from the zero temperature Gumbel form to the infinite temperature Gumbel form
as T increases, is an interesting open problem.

Finally, let us stress that some of the predictions of the present theory are in principle testable in cold atom
experiments, due to the recent progress in Fermi gas quantum gas microscopes [41–48]. Even though in general the
atoms are interacting, the current experimental setups also allow one to tune the strength of the interactions to
zero and are able to probe the non-interacting limit [1, 2]. In such microscopes, individual atoms from a correlated
many-body system can be imaged in situ with a resolution comparable to the inter-particle spacing, providing direct
access to the modulus of the system’s wave-function. A quantum gas microscope gives access not only to the real
space distribution but, using a time of flight technique, can also provide the momentum distribution of the dilute gas.
Hence both rmax, pmax and xmax can be studied. In practice one needs to include the thermal effects, which are not
negligible in the experiments. We hope that the present study will stimulate efforts in this direction.

Appendix A: Higher order terms in the trace expansion

In subsection II B we used the first term in the trace expansion to derive the distribution of the farthest fermion.
Here we consider the behavior of the higher order terms and show that they are indeed negligible in the regime of
typical fluctuations. To begin with, we analyze the second term in the trace expansion which is proportional to

Tr([IwKµ]2) =

∫∫
D
dx dyKµ(x,y)2. (A1)

where the integration domain D corresponds to |x|, |y| > w. In general we can write∫
D
dyKµ(x,y)2 =

∫
D
dyKµ(rn,y)2, (A2)

where r = |x| and n = x/r. Clearly isotropy implies that Eq. (A2) must be independent of n. We can thus write

Tr([IwK]2) = Sd

∫ ∞
w

dr rd−1

∫
D
dyKµ(rn,y)2, (A3)

where n is an arbitrary direction. We now write r = redge +a′n and, anticipating that the integral over y is dominated
by points close to x, we also write y = redgen + b′ = (redge + b′n)n + b′t where b′t is the transverse component of the
vector y in the plane whose normal is n. Using the fact that redge is large means that we can write

Tr([IwK]2) ' Sdrd−1
edge

∫ ∞
w−redge

da′n

∫ ∞
w−redge

db′n

∫
db′tK([redge + a′n]n, [redge + b′n]n + b′t)

2. (A4)

In Ref. [8, 11] it was shown that for x,y near a point redgen, where n is a unit vector (on the unit sphere), the
kernel takes the scaling form

Kµ(x,y) ' 1

wdN
Kedge
d,n

(
x− redgen

wN
,
y − redgen

wN

)
, (A5)

where Kedge
d,n (a,b) is given in (144) in terms of the Airy kernel KAi(a, b) =

∫ +∞
0

duAi(a+u)Ai(b+u) and the integral

over the transverse Fourier variable qt is over the (d− 1)-dimensional space. Using the scaling form in Eq. (A5) into
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Eq. (A4) and writing a′n = wNan and b′ = wNb now yields

Tr([IwK]2) ' Sd
rd−1
edge

wd−1
N

∫ ∞
w̃

dan

∫ ∞
w̃

dbn

∫
dbtKedge

d,n (ann, bnn + bt)
2, (A6)

where w̃ is as defined in Eq. (38).

We now use the representation Eq. (144) twice to represent Kedge
d,n

2
, with two transverse Fourier variables q and

q′ for each factor. The integral over bt can be carried out yielding a term (2π)d−1δ(qt + q′t) and leads to (see also
formula (145))

Tr([IwKµ]2) = Sd
rd−1
edge

wd−1
N (2π)d−1

∫ ∞
w̃

dan

∫ ∞
w̃

dbn

∫
dqtK

2
Ai(an + q2

t , bn + q2
t ). (A7)

The remaining integral over qt can now be carried out and the result written as

Tr([IwKµ]2) =
SdSd−1

2(2π)d−1
(
redge

wN
)d−1

∫ ∞
0

duu
d−3
2

∫ ∞
w̃+u

dan

∫ ∞
w̃+u

dbnK
2
Ai(an, bn). (A8)

Using the notation of functional traces we see the the above can be simply written as

Tr([IwKµ]2) =
1

Γ(d− 1)

(
redge

wN

)d−1 ∫ ∞
0

duu
d−3
2 Tr

(
[Pw̃+uKAi]

2
)
, (A9)

where Ps is the projector on [s,+∞[. The computation of higher order traces can be done in an identical manner and
it is easy to see that

Tr([IwKµ]n) =
1

Γ(d− 1)
(
redge

wN
)d−1

∫ ∞
0

duu
d−3
2 Tr ([Pw̃+uKAi]

n) , (A10)

for n ≥ 2.
In order to analyze the large w̃ behavior, we use the “Christoffel-Darboux formula” for the Airy kernel, in terms of

the Airy function Ai and its derivative Ai′,

KAi(x, y) =
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x− y , (A11)

and for large x we use the asymptotic formula

Ai(x) ∼ exp(− 2
3x

3
2 )

2
√
πx

1
4

, (A12)

which means that

Ai′(x) ∼ −√xAi(x) . (A13)

Thus, for both x and y large, we have

KAi(x, y) ∼ Ai(x)Ai(y)√
x+
√
y
. (A14)

Now consider the second order contribution to the trace formula, specifically the last term of the integrand in Eq. (A9)
which can be written as

Tr
(
[Pw̃+uKAi]

2
)

=

∫ ∞
0

da

∫ ∞
0

dbK2
Ai(a+ w̃ + u, b+ w̃ + u) . (A15)

In the above, w̃ is assumed to be large and u is positive so we can use the asymptotic result from Eq. (A14) to obtain

Tr
(
[Pw̃+uKAi]

2
)
'
∫ ∞

0

da

∫ ∞
0

db
Ai2(a+ w̃ + u)Ai2(b+ w̃ + u)

(
√
a+ w̃ + u+

√
b+ w̃ + u)2

. (A16)
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The asymptotic expansion of the integrand above for large w̃ is dominated by the exponential term in the Airy
function and we obtain

Tr
(
[Pw̃+uKAi]

2
)
' exp(− 8

3 w̃
3
2 − 4w̃

1
2u)

64πw̃
5
2

, (A17)

which yields

Tr([IwKµ]2) ∼
(
redge

wN

)d−1 exp(− 8
3 w̃

3
2 )

w̃
9+d
4

. (A18)

In the above if we substitute w̃ ' aµ =
(
d−1

2 lnµ
) 2

3 we find that, up to logarithmic corrections

Tr([IwKµ]2) ∼ µ− 2
3 (d−1). (A19)

It can be shown by a simple extension of the above argument that

Tr([IwKµ]n) ∼ µ− 2(n−1)
3 (d−1) (A20)

in the regime of typical fluctuations. Hence, for d > 1 the higher order traces are irrelevant in that regime.
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