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A cut-free cyclic proof system
for Kleene algebra?

Anupam Das and Damien Pous

Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France

Abstract. We introduce a sound non-wellfounded proof system whose
regular (or ‘cyclic’) proofs are complete for (in)equations between regular
expressions. We achieve regularity by using hypersequents rather than
usual sequents, with more structure in the succedent, and relying on the
discreteness of rational languages to drive proof search. By inspection of
the proof search space we extract a PSpace bound for the system, which
is optimal for deciding such (in)equations.

1 Introduction

Kleene algebra is a finite quasi-equational theory over regular expressions [9],
which admits formal languages and binary relations as free models. Indeed,
Krob and Kozen independently proved its completeness: every equation which is
universally valid in one of those models, or equivalently, whose members denote
the same rational language, is provable from the axioms of Kleene algebra [19]
[26]. This theorem is important in practice since it shows that the equational
theory of Kleene algebra is decidable, and actually PSpace-complete: it reduces
to the problem of comparing rational languages. Thanks to the model of binary
relations, Kleene algebra and its extensions have been used to reason abstractly
about program correctness [22,23,2,15,1]. The aforementioned decidability result
actually made it possible to automate reasoning steps in proof assistants [5,24,29].

Following work in substructural logics about residuated lattices [27], Jipsen
proposed a sequent system for Kleene algebra and asked whether the cut-rule is
admissible in this system [17]—Buszkowski proved it is not [8]. Wurm recently
proposed a different sequent system [32], but his cut-admissibility theorem does
not hold (see App. A). Proofs in these two systems are finite and well-founded.

Palka proposed a sequent system for star-continuous action lattices [28], and
thus in particular for Kleene algebra. She proved completeness and cut-elimination.
Her system is wellfounded but relies on an ‘ω-rule’ for Kleene star with infinitely
many premisses, in the traditional school of infinitary proof theory [31]. Doing so
has the advantage of being simple, but it does not admit any reasonable notion
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KA ` e ≤ f L(e) ⊆ L(f)

HKA `ω e→ f

HKA `∞ e→ f

Cor. 22

Thm. 9

[25],[19]

Fig. 1. Algebraic and proof-theoretic views on rational language equivalence.

of ‘finiteness’: every proof is necessarily infinite. As a consequence, such a system
cannot be used for proof search.

In similar lines of work, the ω-rule can often be restricted to only finitely
many cases by some finite model property of the logic [?,?]. This indeed could
be done for Palka’s system, requiring an exponential number of cases, leading to
rather large proofs and inefficient proof search. Such systems do not obey the
subformula property and are only weakly sound, preserving validity rather than
truth, making metalogical properties, such as interpolation, difficult to prove.

We introduce in this paper a calculus HKA for Kleene algebra whose non-
wellfounded proofs we prove sound and complete (Sects. 5 and 6). This calculus
is cut-free and admits the subformula property. We actually prove that its regular
fragment—those proofs with potentially cyclic but finite dependency graphs—is
complete. Our approach is related to other works on cyclic systems for logics,
e.g. [11,13], but is more fine-grained proof theoretically. We give a diagrammatic
summary of our contributions in Fig. 1, where we use the symbols `ω and `∞ to
distinguish between regular proofs and arbitrary, potentially infinite proofs resp.

Starting from Palka’s system, a natural idea when looking for a regular system
consists in replacing her infinitary rules for Kleene star by finitary ones, and
allowing non-wellfounded proofs. Doing so, we obtain the calculus LKA described
in Sect. 3: proofs that are well-founded but of infinite width in Palka’s system
become finitely branching but infinitely deep in LKA. These non-wellfounded
proofs of LKA admit an elegant proof theory, but we show that its regular
fragment is not complete: there are valid inequalities which require arbitrarily
large sequents to appear in their proofs. We solve this problem by allowing
slightly more structure in the succedents of sequents, moving to hypersequents
to design the calculus HKA (Sect. 4). After showing completeness, inspection
of the regular proofs of HKA yields an alternative proof that the equational
theory of rational languages is in PSpace, without relying on automata-theoretic
arguments (Sect. 7). We conclude this paper with some further comments and
directions for future work (Sect. 8).

2 Kleene algebra

We consider regular expressions over a finite alphabet A:

e, f ::= e · e | e+ e | e∗ | 1 | 0 | a ∈ A



id
e→ e

0-l
Γ, 0,∆→ e

Γ,∆→ e
1-l
Γ, 1,∆→ e

1-r
→ 1

Γ, e, f,∆→ g
·-l
Γ, e · f,∆→ g

Γ, e,∆→ g Γ, f,∆→ g
+-l

Γ, e+ f,∆→ g

Γ,∆→ f Γ, e, e∗,∆→ f
∗-l

Γ, e∗,∆→ f

Γ → e ∆→ f
·-r

Γ,∆→ e · f
Γ → ei

+-ri i ∈ {1, 2}
Γ → e1 + e2

∗-r1
→ e∗

Γ → e ∆→ e∗
∗-r2

Γ,∆→ e∗

Fig. 2. The rules of LKA.

Sometimes we simply write ef for e · f . Each expression e denotes a rational
language L(e) ⊆ A∗, defined in the usual way [18]. A Kleene algebra is a tuple
(K, 0, 1,+, ·, ∗) where (K, 0, 1,+, ·) is an idempotent semiring and:1

(a) 1 + xx∗ ≤ x∗;
(b) if xy ≤ y then x∗y ≤ y;
(c) if yx ≤ y then yx∗ ≤ y.

There are several equivalent variants of this definition [9]. Intuitively we have
that x∗y (resp. yx∗) is the least fixpoint of z 7→ y + xz (resp. z 7→ y + zx).

We write KA ` e ≤ f if e ≤ f is provable from the axioms of Kleene Algebra,
i.e. is true in all Kleene algebras (by completeness of first-order logic). We have
the following completeness result, independently due to Kozen and Krob:

Theorem 1 ([19,26]). KA ` e ≤ f if and only if L(e) ⊆ L(f).

Formal languages, i.e. subsets of A∗, form a Kleene algebra, so the left-right
implication is straightforward. The converse, completeness, is much harder.

3 An intrinsically non-regular system: LKA

A sequent is an expression Γ → e, where Γ is a (possibly empty) list of regular
expressions and e is a regular expression. For such a sequent we refer to Γ as
the antecedent and e as the succedent. We say a sequent e1, . . . , en → e is valid
if L(e1 · · · · · en) ⊆ L(e), i.e. the comma is interpreted as sequential composition,
and the sequent arrow as inclusion. We refer to expressions as ‘formulae’ when it
is more natural proof theoretically, e.g. ‘subformula’ or ‘principal formula’.

The rules of LKA are given in Fig. 2. Aside from the ∗-rules, these form a
fragment of non-commutative intuitionistic linear logic [14],2 or alternatively
the Lambek calculus [27], restricted to the following connectives: multiplicative
conjunction (·), multiplicative truth (1), additive disjunction (+) and additive

1 Here we write x ≤ y as a shorthand for x+ y = y.
2 This logic is non-commutative because there is no exchange rule, and intuitionistic

since there is exactly one formula on the right-hand side.



falsity (0) (for which there is no right rule). The rules for Kleene star arise from
the characterisation of e∗ as a fixed point: e∗ = µx.(1+ex). In contrast, Palka [28]
interprets Kleene star as an infinite sum e∗ = Σie

i, corresponding to ∗-continuity
in a Kleene algebra, whence her left rule for Kleene star with infinitely many
premisses and the infinitely many corresponding right rules.

The rules of LKA are sound : if each premiss of a rule is true in a Kleene
algebra then so is its conclusion. LKA also has the subformula property : any
expression in the premiss of a rule instance is a subformula of an expression in
its conclusion. On the other hand, the usual finite well-founded proof system
arising from these rules is not complete: there are valid sequents which conclude
no finite proof tree of LKA rules, cf. Ex. 4 below. To obtain completeness, we
consider non-wellfounded proofs. Intuitively, these are infinite trees built from
the rules of LKA. More formally:

Definition 2. A (binary, possibly infinite) tree is a prefix-closed subset of {0, 1}∗.
An LKA-preproof is a labelling π of a tree by sequents such that, for every node v

with children v1, . . . vn (n = 0, 1, 2), the expression
π(v1) · · · π(vn)

π(v)
is an instance

of an LKA rule. A preproof is regular if it has only finitely many distinct subtrees,
i.e. it can be expressed as the infinite unfolding of a finite graph.

Preproofs are not always sound (hence the terminology).
Consider, for instance, the preproof on the right deriving a
non-valid sequent, where we use the symbol • to indicate
a circularity (i.e. to identify steps whose conclusions root
the same subtree). Fortunately, we may rule out such
behaviours by a simple fairness criterion:

1-r

→ 1

...
∗-r2 •

a→ 1∗
∗-r2 •

a→ 1∗

Definition 3. A proof is a preproof that is fair for ∗-l, i.e. where every infinite
branch contains infinitely many occurrences of ∗-l. We write LKA `∞ Γ → e if
there is an LKA proof of Γ → e.

This criterion is somewhat simpler than the ones from other works, e.g. [13] and
[11], which require a finer analysis of formula occurrences in infinite branches.
However, for our purposes, the condition above suffices and, indeed, leads to a
simpler correctness checking procedure for a preproof, cf. Sect. 7.

Example 4. Here is an (infinite but regular) proof of a∗(b+ c)∗ ≤ a∗(c+ b)∗ in
LKA. The fairness criterion is satisfied since the only circularity goes through a
∗-l rule.

id

a∗ → a∗

∗-r1
→ (c+ b)∗

id

b→ b
+-r2

b→ c+ b

id

c→ c
+-r1

c→ c+ b
+-l

b+ c→ c+ b

...
∗-l •

(b+ c)∗ → (c+ b)∗
∗-r2

b+ c, (b+ c)∗ → (c+ b)∗
∗-l •

(b+ c)∗ → (c+ b)∗
·-r

a∗, (b+ c)∗ → a∗(c+ b)∗
·-l
a∗(b+ c)∗ → a∗(c+ b)∗



Note that this sequent has no finite wellfounded proof in LKA.

Theorem 5 (Soundness). If LKA `∞ e1, . . . , en → e then L(e1 · · · · ·en) ⊆ L(e).

Proof (idea). Similar to the proof we give in Sect. 5 for the system HKA. ut

While LKA satisfies the subformula property, the size and number of sequents
occurring in a proof are not a priori bounded, due to the ∗-l rule. In fact, this
system does not admit regular proofs for all valid sequents. An example is the
inequality aa∗ ≤ a∗a, whose only proof in LKA is the following:

∗-r1
→ a∗

id

a→ a
·-r

a→ a∗a

id

a→ a
∗-r1
→ a∗

∗-r2
a→ a∗

id

a→ a
·-r

a, a→ a∗a

...
∗-l
a, a, a, a∗ → a∗a

∗-l
a, a, a∗ → a∗a

∗-l
a, a∗ → a∗a

·-l
aa∗ → a∗a

(1)

This proof necessarily contains all sequents of the form a, . . . , a, a∗ → a∗a. Even
though it could arguably be ‘described’ in a finite way, this would require an
external specification, contrary to the notion of regularity which simply allows
cycles in the dependency graph of a proof. Indeed, only finitely many sequents
occur in a regular proof, and so they are somewhat easier to reason about.

Many cases of non-regularity can be avoided by adding symmetric versions of
the ∗ rules in LKA:

Γ,∆→ f Γ, e∗, e,∆→ f
∗-l′

Γ, e∗,∆→ f

Γ → e∗ ∆→ e
∗-r′2

Γ,∆→ e∗
(2)

For instance, using these rules, it is not hard to see that the situation (1) above
can be handled by a well-founded finite proof (see App. B).

However, adding the rules from (2) above does not always suffice for regularity.
Consider the valid sequent a∗ → (aa)∗ + a(aa)∗. It is not hard to see that any
proof must contain a path of just ∗-l steps, since we are never able to apply a
+-r step while there remains an a∗ on the left. Thus it admits no regular proof
in LKA, even with the rules from (2).

Similarly, consider the valid sequent (a+ b)∗ → a∗(ba∗)∗. Any proof of this
sequent, even with symmetric rules, must contain some path of sequents whose
antecedents denote languages containing am(a+ b)∗an, for sufficiently large m,n.
Along such a path a ·-r step is never valid and so one is forced to apply ∗-l and
+-l rules forever, again yielding a non-regular proof.

The next section presents a system where we can avoid these issues by
reasoning underneath · and + in the succedent, and thus arrive at a general
completeness theorem for regular proofs. We come back to the problem cases
discussed above at the end of the next section, in Ex. 23.



4 A calculus whose regular proofs are complete: HKA

We denote lists of formulae by Γ,∆ etc. as before. We will use X,Y, Z to vary
over multisets of lists. A hypersequent is an expression Γ → X, where Γ is a
list and X is a multiset of lists. Henceforth we may simply say ‘sequent’ instead
of ‘hypersequent’ when it is not ambiguous. We use the comma, ‘,’, for both
delimiting lists and denoting union of multisets, using angled brackets 〈·〉 to
distinguish lists in a multiset. Here is the general form of a hypersequent:

e1, . . . , el → 〈f11, . . . , f1n1〉, · · · , 〈fm1, . . . , fmnm〉

We extend the notion of language of a regular expression to lists of expressions by
setting L(〈e1, . . . , en〉) = L(e1 · · · · · en), and to multisets of such lists by setting
L(〈Γ1〉, . . . , 〈Γn〉) =

⋃
i L(Γi). The hypersequent Γ → X is valid if L(Γ ) ⊆ L(X).

If X = 〈∆1〉, . . . , 〈∆n〉, we write 〈Σ〉X for the set 〈Σ,∆1〉, . . . , 〈Σ,∆n〉. When
Σ is a singleton 〈e〉 we simply write eX instead of 〈e〉X, as an abuse of notation.

The rules of HKA are given in Fig. 3. Notice that these rules satisfy the
subformula property. The left logical rules are exactly those of LKA, lifted to
hypersequents. The right logical rules slightly differ, to take advantage of the
richer structure of the sequents. Weakening and contractions are allowed on the
right of the sequents; the identity axiom from LKA is decomposed into an axiom
for the empty lists, and a ‘modal’ rule (k).

Definition 6. Preproofs and proofs of HKA are defined analogously to LKA; in
particular proofs require fairness of ∗-l. We write HKA `ω Γ → X if Γ → X has
a regular proof in HKA, i.e. one with only finitely many distinct subtrees.

Remark 7 (Invertibility and cancellation). All rules of HKA except w and k are
strongly invertible: truth of the conclusion implies truth of all premisses in any
Kleene algebra. k is not strongly invertible, even in its atomic form, due to the
possible existence of 0-divisors. It is however weakly invertible when e is atomic:
the validity of the conclusion implies the validity of the premiss.3 On the other
hand, the non-invertibility of w turns out to be crucial for completeness, from a
complexity theoretic point of view, cf. Sect. 7.

Example 8 (Atomic modal steps). We can reduce k steps to atomic form by
regular derivations of HKA. This is proved by structural induction on the modal
expression; the key case is for a ∗-formula, where non-wellfoundedness appears:

Γ → X
∗-r,w

Γ → e∗X

...
∗-l •
e∗, Γ → e∗X

IH
e, e∗, Γ → 〈e, e∗〉X

∗-r,w
e, e∗, Γ → e∗X

∗-l •
e∗, Γ → e∗X

The derivation marked IH is obtained from the inductive hypothesis on e.
3 Note that atomicity of e really is required for this, even in the usual rational language

model. For instance, we have L(a∗ab) ⊆ L(a∗b), but L(ab) * L(b).



Left logical rules:

0-l
Γ, 0,∆→

Γ,∆→ X
1-l
Γ, 1,∆→ X

Γ, e, f,∆→ X
·-l
Γ, e · f,∆→ X

Γ, e,∆→ X Γ, f,∆→ X
+-l

Γ, e+ f,∆→ X

Γ,∆→ X Γ, e, e∗,∆→ X
∗-l

Γ, e∗,∆→ X

Right logical rules:

Γ → X, 〈∆,Σ〉
1-r
Γ → X, 〈∆, 1, Σ〉

Γ → X, 〈∆, e, f,Σ〉
·-r
Γ → X, 〈∆, e · f,Σ〉

Γ → X, 〈∆, e,Σ〉, 〈∆, f,Σ〉
+-r

Γ → X, 〈∆, e+ f,Σ〉
Γ → X, 〈∆,Σ〉, 〈∆, e, e∗, Σ〉

∗-r
Γ → X, 〈∆, e∗, Σ〉

Identity, modal and structural rules:

id
→ 〈 〉

Γ → X
k
e, Γ → eX

Γ → X
w
Γ → X, 〈∆〉

Γ → X, 〈∆〉, 〈∆〉
c

Γ → X, 〈∆〉

Fig. 3. The rules of HKA.

5 Soundness

We now show that HKA proofs derive only valid sequents. Throughout this section
and later, we use standard proof theoretic terminology about ancestry in proofs,
e.g. from [7].

Theorem 9 (Soundness). If HKA `∞ Γ → X, then L(Γ ) ⊆ L(X).

Before giving the proof, we need the following intermediate result.

Lemma 10. If HKA `∞ Γ, e∗, ∆→ X then, for n ∈ N, HKA `∞ Γ, en, ∆→ X.4

Proof. We define appropriate preproofs by induction on n. Replace every direct
ancestor of e∗ by en, adjusting origins as follows,

Γ,∆→ X Γ, e, e∗,∆→ X
∗-l

Γ, e∗,∆→ X
7→

Γ,∆→ X
1-l

Γ, 1,∆→ X
or

Γ, e, en−1,∆→ X
·-l

Γ, en,∆→ X

when n = 0 or n > 0, respectively. In the latter case we appeal to the inductive
hypothesis. Notice that, on branches where e∗ is never principal, this is simply
a global substitution of en for e∗ everywhere along the branch. The preproof
resulting from this entire construction is fair since every infinite branch will share
a tail with a branch in the proof we began with. ut

Now we define a measure with which Thm. 9 will be proved by induction.

4 Strictly speaking, we should bracket en as e(e(· · · (ee))) and set e0 to 1.



Definition 11 (Measure of a sequent). The ∗-height of a regular expression
e, denoted h∗(e), is the maximum nesting of ∗ in its term tree. Formally:

– h∗(0) = h∗(1) = h∗(a) = 0.
– h∗(e · f) = h∗(e+ f) = max(h∗(e), h∗(f)).
– h∗(e

∗) = h∗(e) + 1.

The weighted ∗-height of a list Γ of expressions, denoted wh∗(Γ ) is the multiset
{h(e) : e ∈ Γ}. We totally order such multisets under a well-known ordering [12]:
for two multisets5 N,M : N→ N, we set N < M if for any n with N(n) > M(n)
there is a n′ > n s.t. N(n′) < M(n′).

Fact 12 For every rule of HKA except ∗-l, the antecedent of each premiss has
weighted ∗-height bounded by that of the antecedent of the conclusion.

For the ∗-l rule also notice that, bottom-up, the maximum ∗-height of an expres-
sion in the antecedent does not increase. We now prove our soundness result:

Proof (of Thm. 9). Let π be an HKA proof of Σ → X and let us proceed by
induction on the weighted ∗-height of the antecedent Σ. For each infinite branch
of π take the least ∗-l step that occurs; their conclusions form a bar B through
the infinite tree of π. Since π labels a binary tree, the prefix closure of B must
be finite by König’s Lemma and thus, if each of the sequents of B is valid then
so is the conclusion of π by the soundness of well-founded HKA derivations.

Now, consider a subproof π′ that derives a sequent in B. This sequent must
have the form Γ, f∗, ∆→ Y where f∗ is principal for the concluding ∗-l-step of
π′. By construction and Fact 12 notice that wh∗(Γ, f

∗, ∆) ≤ wh∗(Σ). Now, by
Lemma 10, π′ can be transformed into proofs π′n of Γ, fn, ∆→ Y for each n ∈ N.
Since wh∗(Γ, f

n, ∆) < wh∗(Σ), each π′n is sound by the inductive hypothesis.
Finally, this means that Γ, f∗, ∆→ Y is valid, by definition of Kleene star for
languages, and hence Σ → X is valid after all. ut

6 Completeness

Infinite non-wellfounded proofs are easily seen to be complete: bottom-up, simply
apply left rules forever (they are invertible); the only normal forms of this
procedure will have a finite word as the antecedent, whence we may perform the
correct finite sequence of right steps to finish proof search.

In this section we give a more sophisticated argument showing that the regular
fragment of HKA is complete: each valid inclusion has a finite circular proof.

6.1 A regular class of proofs

We first define a class of proofs which can be made regular in a systematic way.

5 Here we construe multisets as mappings from elements to their multiplicity.



Definition 13. A preproof is leftmost if the principal formula of every logical
step is at the beginning of a list, either in the antecedent or the succedent.

For regularity, the most useful property of a leftmost proof is the following:

Theorem 14. A leftmost preproof contains only lists of length linear in the size
of the end-sequent. Hence only finitely many lists occur in a leftmost preproof.6

Before we can prove this, let us recall some basic notions regarding terms. An
occurrence in e is a subformula of e together with its position in e. We often omit
this positional information when it is unambiguous.

Definition 15 (Total order on occurrences). Given a fixed term, we define
a relation 4 on the occurrences in it as follows: e 4 f if f contains e, or if e and
f are disjoint and e occurs to the left of f .

Due to the tree structure of a term, any two occurrences in a term are either
disjoint or one is contained in the other, so we have the following:

Proposition 16. 4 is a total order on the occurrences in a term.

In a preproof, let us identify every expression occurring as an occurrence of a
term in the end-sequent in the natural way, due to the subformula property and
via the usual notions of proof ancestry. In this way, we can meaningfully compare
any two expressions in a preproof under 4. We have the following:

Lemma 17. In any leftmost preproof every list is strictly increasing under 4.

Now we can prove the bound on the size of lists in leftmost preproofs:

Proof (of Thm. 14). Every term in a preproof is an ancestor of an occurrence in
a term of the end sequent, by the subformula property and usual notions of proof
ancestry. Moreover, no occurrence can appear twice in the same list, otherwise
we would contradict Lemma 17. ut

We still do not quite have regularity, since in the succedent we may have multisets
with arbitrarily many occurrences of the same list. Naturally, we appeal to the
right structural rules to ‘merge’ occurrences in such a situation:

Corollary 18. A leftmost preproof in HKA can be transformed into one of the
same end-sequent that contains only finitely many distinct sequents.

Proof. By Thm. 14 only finitely many distinct lists occur in a leftmost preproof.
Thanks to contraction and weakening, we can always write succedents with at
most two copies of each distinct list, of which there are only finitely many. ut

It remains to show that we may place backpointers while preserving correctness:

Corollary 19. A leftmost proof in HKA can be transformed into a regular proof
with the same end-sequent.

6 A priori, this could still be exponentially many in the size of the end-sequent.



Proof. Assuming only finitely many distinct sequents occur, by Cor. 18 above,
in each infinite branch some sequent occurs infinitely often, by the pigeonhole
principle. This means that, due to fairness, for each infinite branch we may
identify two instances of the same sequent with a ∗-l-step in between, whence we
may correctly place a backpointer and preserve fairness. ut

6.2 Completeness of leftmost proofs

Thanks to Cor. 19, for completeness of the regular fragment of HKA it now
suffices to show that any valid hypersequent admits a leftmost (possibly infinite)
proof. We do so by providing a leftmost proof search strategy for which we need
the following important result:

Lemma 20 (Productivity on the right). Suppose there is a finite HKA
derivation of right logical rules of the following format,7

Γ → X, 〈e∗,∆〉
π

Γ → Y, 〈∆〉, 〈e, e∗,∆〉
∗-r

Γ → Y, 〈e∗,∆〉

such that the list 〈e∗, ∆〉 in the initial sequent is an ancestor of that from the end
sequent. If the end sequent is valid, then so is Γ → X.

Proof. Since all right logical rules of HKA are invertible, it suffices to show that
〈e∗, ∆〉 in the initial sequent is redundant, i.e. that already L(X) ⊇ L(〈e∗, ∆〉).
For this, we appeal to soundness of fair preproofs, Thm. 9, and show that HKA
proves the corresponding sequent: e∗, ∆ → X.8 We construct an appropriate
proof π′ bottom-up by induction on the length of π where, for each right logical
rule in π, we apply the analogous left logical rule in π′ along the appropriate
branch. Each leaf of π′ will be of the form Σ → X, where Σ is a list occurring in
the succedent of the premiss of π, by construction. Now, if Σ ∈ X then we can
conclude by weakening, k and identity; otherwise Σ is 〈e∗, ∆〉, whence we can
conclude by circularity. Notice that π′ is fair due to the fact that the bottommost
step is a ∗-l due to the analogous ∗-r beneath π. ut

We can now prove our main completeness result:

Theorem 21. Every valid hypersequent has a leftmost proof in HKA.

Proof. Construct a leftmost HKA preproof bottom-up as follows:

(i) Apply leftmost left logical rules as long as possible. After this any leaves
will be valid, by invertibility of logical rules, and of the form:

→ X or a, Γ → X
7 Notice that right logical rules do not branch.
8 This argument is akin to applying a cut, which is sound since we are only applying it

once, and at the meta-level.



(ii) Apply leftmost right logical rules until the succedent contains only lists
beginning with a ∗-term that have already been decomposed9 or lists for
which no leftmost right logical rule applies. This terminates after finitely
many steps due to Thm. 14 and since only ∗-r can increase the length of a
list in the succedent. All resulting leaves must be valid, again by invertibility.

(iii) Now we apply w to weaken any appropriate lists in the succedent that have
already been decomposed. Leaves remain valid due to Lemma 20 and must
be of the form:

→ (〈 〉, ) 〈a1, X1〉, . . . , 〈an, Xn〉 or a, Γ → (〈 〉, ) 〈a1, X1〉, . . . , 〈an, Xn〉

In the former case, since we have preserved validity going upwards, we must
have that the empty list occurs in the succedent, whence we can close the
branch by several w steps and id .
In the latter case, again since we have preserved validity going upwards, we
must be able to weaken any list that begins with an ai that is not a and
preserve validity. Now any remaining leaves are of the form,

a, Γ → aX

whence we can apply k and preserve validity by Rmk. 7. Now go back to (i)
and repeat the entire procedure.

This procedure will produce a leftmost preproof that is fair since (ii) produces only
finite well-founded derivations, and so any infinite branch must either eventually
remain in the (i) or (iii) case. For the former, a ∗-l must occur infinitely often
since the other left rules shorten the antecedent, and for the latter a k step occurs
infinitely often, again meaning that a ∗-l step must occur infinitely often since k
also shortens the antecedent. ut

Corollary 22. If L(e) ⊆ L(f) then HKA `ω e→ f .

Proof. By Cor. 19 and Thm. 21. ut

Example 23. Let us see how the example issues for regularity for LKA we alluded
to in Sect. 3 are resolved in HKA. In both cases we use variations of the strategy
given in the proof above of Thm. 21.

id

→ 〈 〉
∗-r,w

→ 〈(aa)∗〉, 〈a, (aa)∗〉

...
∗-l •
a∗ → 〈a, (aa)∗〉, 〈(aa)∗〉

k

a, a∗ → 〈a, a, (aa)∗〉, 〈a, (aa)∗〉
2·-r

a, a∗ → 〈(aa)(aa)∗〉, 〈a, (aa)∗〉
∗-r,w

a, a∗ → 〈(aa)∗〉, 〈a, (aa)∗〉
∗-l •

a∗ → 〈(aa)∗〉, 〈a, (aa)∗〉
·-r
a∗ → 〈(aa)(aa)∗〉, 〈a(aa)∗〉

+-r

a∗ → 〈(aa)∗ + a(aa)∗〉
9 Here we mean in the sense that it is identical to a descendant, as in Lemma 20.



id

→ 〈 〉
∗-r,w

→ 〈(ba∗)∗〉
∗-r,w

→ 〈a∗, (ba∗)∗〉

...
∗-l •

(a+ b)∗ → 〈a∗, (ba∗)∗〉
k

a, (a+ b)∗ → 〈a, a∗, (ba∗)∗〉
∗-r,w

a, (a+ b)∗ → 〈a∗, (ba∗)∗〉

...
∗-l •

(a+ b)∗ → 〈a∗, (ba∗)∗〉
k

b, (a+ b)∗ → 〈b, a∗, (ba∗)∗〉
·-r

b, (a+ b)∗ → 〈ba∗, (ba∗)∗〉
∗-r,w

b, (a+ b)∗ → 〈(ba∗)∗〉
∗-r,wk

b, (a+ b)∗ → 〈a∗, (ba∗)∗〉
+-l

a+ b, (a+ b)∗ → 〈a∗, (ba∗)∗〉
∗-l •

(a+ b)∗ → 〈a∗, (ba∗)∗〉
·-r

(a+ b)∗ → 〈a∗(ba∗)∗〉

Remark 24. Antimirov’ partial derivatives [3] make it possible to build a non-
deterministic automaton whose states are the regular expressions, and such that
only finitely many states are reachable from a regular expression. The (finitely
many) lists appearing in a leftmost proof, seen as regular expressions, are in
sharp correspondence with the partial derivatives of the lists in its conclusion.
As a consequence, the proof search procedure of Thm. 21 expresses at a very fine
grained level the behaviour of certain coinductive algorithms for language inclusion
(equivalence), that explore the reachable states of an Antimirov’ automaton and
try to build a (bi)simulation [16,4].

7 Complexity matters and algorithms for proof search

We present in this section a brief overview of the complexity theoretic aspects of
proofs in our calculus HKA.

7.1 Checking validity of a regular preproof

When a preproof is given as a tree with backpointers, it is not difficult to see
that checking validity is feasible (i.e. in polynomial time), since we may simply
exhaust the paths of the tree, of which there are linearly many, to exclude the
existence of a ∗-l-free loop. When the preproof is given as an arbitrary graph
the problem is a little more subtle, but remains feasible. Construing sequents as
nodes and inference steps as edges, let us delete any edge that corresponds to a
∗-l step. Notice that the original preproof was valid just if there are no infinite
paths in the resulting graph, i.e. it is acyclic. This can be decided by computing
its transitive closure, hence:

Proposition 25. Validity of a regular HKA-preproof, given as an arbitrary di-
rected graph, is polynomial-time decidable.

Notice that this bound is lower than those for circular proofs in other systems,
e.g. [6,13], since logics with more sophisticated fixed points and logical behaviour
require a more general correctness criterion reducing to the inclusion of Büchi
automata, a problem that is PSpace-complete.



7.2 Complexity of proof search

Proof search using HKA yields an optimal bound for deciding equations of Kleene
algebra via the induced loop-checking procedure:

Proposition 26. Proof search in HKA induces a PSpace decision procedure for
inequalities between regular expressions.

Proof (sketch). For a leftmost proof we give a polynomial bound on the depth
until a loop occurs. Notice that succedents only grow polynomially in depth and
∗-height, by inspection of HKA, and so this indeed yields a PSpace bound.

Each time a k step is applied, bottom-up, it is on an atom occurrence that
may not reoccur, unless we have already formed a loop, namely by unfolding the
same ∗-expression, which by construction contains a ∗-l. Every other leftmost
step decreases the size of the leftmost term in a list. Thus, any path in a leftmost
proof will hit a loop within polynomially many steps. ut

Notice that, while almost every step in HKA is invertible, it is the crucial
applications of weakening in the procedure of Thm. 21, justified by Lemma 20,
which requires proof search to operate in PSpace rather than coNP. Indeed,
it is the number of w steps along any proof path that allows search complexity
to climb up the polynomial hierarchy. This cannot be uniformly bounded since
deciding inequalities of regular expressions is known to be PSpace-complete.

8 Conclusions and further work

We proposed a regular and cut-free hypersequent system HKA, which we proved
sound and complete for rational language inclusion, and thus for Kleene algebra.
We conclude with further comments and directions for future work.

8.1 Richer systems for theorem proving

Now that we have a completeness theorem for HKA, we could envisage enriching
the system with more (sound) rules that might be more natural from the point of
view of theorem proving. For instance, we might imagine alternative right logical
rules for + and ∗ as follows,

Γ → X, 〈∆, ei, Σ〉
Γ → X, 〈∆, e1 + e2, Σ〉

Γ → X, 〈∆,Σ〉
Γ → X, 〈∆, e∗, Σ〉

Γ → X, 〈∆, e,Σ〉
Γ → X, 〈∆, e∗, Σ〉

Γ → X, 〈∆, e∗, e∗, Σ〉
Γ → X, 〈∆, e∗, Σ〉

Such systems are more expressive since they can encode not only the rules of
HKA but also symmetric variants, e.g. unfolding ∗ to the right rather than the
left.10 An illustrative example is the inequality a∗a ≤ a∗, which was one source of

10 Notice that the ∗ rules here correspond in fact to an alternative fixed point definition
of e∗: µx.(1 + e+ xx).



irregularity for LKA. Contrast the following two proofs, the left of which follows
a leftmost strategy in HKA, the right of which uses the rules above and is acyclic:

id

→ 〈 〉
w

→ 〈 〉, 〈a, a∗〉
∗-r

→ a∗
k

a→ 〈a, a∗〉
w

a→ 〈 〉, 〈a, a∗〉
∗-r

a→ 〈a∗〉

...
∗-l •
a∗, a→ 〈a∗〉

k

a, a∗, a→ 〈a, a∗〉
w

a, a∗, a→ 〈 〉, 〈a, a∗〉
∗-r

a, a∗, a→ 〈a∗〉
∗-l •

a∗, a→ 〈a∗〉
·-l
a∗a→ 〈a∗〉

id

→ 〈 〉
k

a→ 〈a〉
k

a∗, a→ 〈a∗, a〉
a∗, a→ 〈a∗, a∗〉
a∗, a→ 〈a∗〉

·-l
a∗a→ 〈a∗〉

8.2 Extensions of Kleene algebra

Kleene algebra can be extended with operations such as meet [20], residuals [30],
or tests [21]. One can thus ask whether we can obtain regular sequent systems for
such extensions. Meets (∩) and residuals (() correspond to additive conjunction
and linear implications in (non-commutative) linear logic; they could easily
be added to LKA (Palka actually includes them in her system [28]), but it is
unclear how to add them to our hypersequent system while preserving regular
cut-free completeness. An important difficulty here is that the free model for
such structures is not the obvious language model.11 In contrast, Kleene algebra
with tests, whose free model is that of guarded string languages [21], could be
handled using our approach. It would also be interesting to try adapt our systems
to ω-regular expressions, which denote languages of infinite words and for which
automaton models and notions of derivative are well-defined.

8.3 Cut-elimination

By completeness, any reasonable ‘cut rule’ is admissible in the regular fragment of
HKA. A natural question is whether one can prove a direct cut-elimination result,
using proof theoretic methods. There are several difficulties here: first one has to
define a general enough notion of cut for the hypersequent system; second one
has to come up with an appropriate correctness criterion for preproofs with cuts
(fairness as in Dfn. 6 is not enough to guarantee soundness); finally, the regular
system being complete, one would certainly like to prove that cut-elimination
preserves regularity. Such a cut-elimination result would make it possible to
interpret Kleene algebra proofs directly into HKA, without going through the
free model (languages). This could be helpful to handle extensions of Kleene
algebras whose free model is unknown, for instance with meet or with residuals.

11 Notice also that while it would be natural to enrich the antecedent structure for ∩ as
we did in succedents for +, there is a difficult asymmetry in that x(y + z) = xy + xz
but x(y ∩ z) � xy ∩ xz.



8.4 Towards an alternative completeness result for KA

Conversely to the previous comments, an interesting question is whether our
completeness result for the regular fragment of HKA can be used to obtain an
alternative proof of the completeness of Kleene algebra, Thm. 1. Namely, can we
prove directly that if HKA `ω e→ f then KA ` e ≤ f , in a direct manner? We
believe this is possible, by encoding cycles in a leftmost proof as specific instances
of the ‘induction’ axioms (b) and (c) from Sect. 2.12 For instance a loop in a
regular derivation might be transformed as follows:

f → g

e∗, f → g

π

e, e∗, f → g
∗-l

e∗, f → g

 

f → g

id
g → g

π[g/(e∗,f)]

e, g → g
(b)
e∗, g → g

cut
e∗, f → g

Generalising this idea into a full alternative proof of Kozen’s and Krob’s results
is the subject of ongoing work.
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A Failure of cut-admissibility in the system KL from [32]

The system KL proposed by Wurm [32] consists of finite derivations built from
the cut rule, the rules of LKA except for its left rule for Kleene star, and the
following four rules:

Γ → e(f + g)
D
Γ → ef + eg

e, f → f Γ → f
∗I1

e∗, Γ → f

f, e→ f Γ → f
∗I2

Γ, e∗ → f

Γ → e∗ ∆→ e
I∗2

Γ,∆→ e∗

Rule D is there to “make sure distributivity holds”, although it is derivable from
the other rules (with cut). Rule I∗2 is the symmetrical version of our second
right rule for Kleene star. Rules ∗I1 and ∗I2 correspond to the two implications
used to define Kleene algebra.

The author proves completeness of this system (Theorem 1), mentioning on
page 7 that “for the completeness part of the proof, the cut-rule is not needed,
in fact it is not even mentioned!”. He later proves cut-admissibility using this
observation (Theorem 10). Unfortunately, the following valid sequent cannot be
proved without cut. (This sequent is valid since its right hand-side denotes the
universal language on the alphabet {a, b}.)

a, b∗, a→ a∗(ba∗)∗

Indeed, what would be the last rule? It cannot be one of the rules for Kleene
star for syntactic reasons: the star on the left-hand side is in the middle of
two expressions, and the ones on the right hand side are not at toplevel. For
similar syntactic reasons, the only potential rule is the right rule for product
(·-r). But every application of this rule yield a sequent which is not valid (i.e.,
a, b∗, a→ (ba∗)∗; b∗, a→ (ba∗)∗; a, b∗ → a∗; or a, b∗, a→ a∗.)

This sequent is provable in KL with cut, e.g., by going through (a+ b)∗. A
regular proof in HKA is given below.

id

→ 〈〉
k

a→ 〈a〉
∗-r,w,∗-r,w

a→ 〈a∗〉
∗-r,w

a→ 〈a∗, (ba∗)∗〉

...
∗-l •
b∗, a→ 〈a∗, (ba∗)∗〉

k

b, b∗, a→ 〈b, a∗, (ba∗)∗〉
∗-r,w,·-r

b, b∗, a→ 〈(ba∗)∗〉
∗-r,w

b, b∗, a→ 〈a∗, (ba∗)∗〉
∗-l •

b∗, a→ 〈a∗, (ba∗)∗〉
k

a, b∗, a→ 〈a, a∗, (ba∗)∗〉
w

a, b∗, a→ 〈(ba∗)∗〉, 〈a, a∗, (ba∗)∗〉
∗-r

a, b∗, a→ 〈a∗, (ba∗)∗〉
·-r

a, b∗, a→ 〈a∗(ba∗)∗〉



B Further examples of proofs in LKA

As in many common sequent systems, initial identity steps can be reduced
to atomic form in LKA, although for this we crucially rely on access to non-
wellfounded proofs. The interesting case is for the Kleene star:

∗-r1
→ e∗

id

e→ e

...
∗-l •
e∗ → e∗

∗-r2
e, e∗ → e∗

∗-l •
e∗ → e∗

Here is how we can prove aa∗ ≤ a∗a without resorting to non-wellfoundedness,
with a symmetric system:

∗-r1
→ a∗

id

a→ a
·-r

a→ a∗a

id

a→ a
id

a∗ → a∗
∗-r2

a, a∗ → a∗
id

a→ a
·-r

a, a∗, a→ a∗a
∗-l′

a, a∗ → a∗a
·-l
aa∗ → a∗a

Notice that this proof would be cyclic if we allowed only atomic identity steps.
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