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The frame-dragging effect tells us that when a body rotates around itself the metric of spacetime around its surface is dragged. This occurs, for 

example, in the metric of the spacetime around the Earth surface, and produces the well-known phenomenon of shifting of the orbits of the satellites 

near the Earth. Such as the orbits of the satellites, the force lines of the gravitational field produced by rotating bodies are also affected by the frame-

dragging effect. This means that the direction of a gravitational central force in a rotating body should be radially displaced, in respect to their initial 

position. In this work, we show that the radial displacement angle depends on the angular velocity of the rotating body, and that this fact point to the 

possibility of controlling the direction of these gravitational central forces, simply by controlling the angular velocity of the rotating body.   
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          General relativity predicts that rotating objects 

should drag spacetime around themselves as they rotate. 

This effect on spacetime is known as frame-dragging. The 

first frame-dragging effect was discovered by the 

physicists J. Lense and H. Thirring, and is known as the 

Lense–Thirring effect [1, 2, 3]. This phenomenon tells us 

for example, that the Earth drags spacetime around itself 

as it rotates, and consequently shifting of the orbits of the 

satellites near the Earth.   This fact led to the verification 

of the mentioned effect by means of satellites, and it was 

experimentally observed in 2004 by using the LAGEOS 

satellites [4].  

          The frame-dragging effect tells us that when a body 

rotates the metric of spacetime around its surface is 

dragged at the same direction of the rotation [5]. Due to 

this phenomenon the force lines of the gravitational field 

produced by a rotating body are also curved following the 

curvature of the metric of the local spacetime, similarly to 

the orbits of the satellites near the Earth.  

          The bend of the force lines allows us to infer that 

the direction of a gravitational central force, F


, in a 

rotating body, should be displaced due to the curvature of 

the force lines. Thus, it is to be expected that the direction 

of the force F


 describe an angular displacement i , in 

respect to its initial position (See Fig. 1(b)). Since the 

magnitude of this angle depends only of the magnitude of 

the angular velocity, i.e.,  i , and i


 has the same 

direction of 


(See Fig. 1(b)), then we can write that  

 1


ki 

where k  is a constant to be determined. If   is expressed  

in 
1. yrrad , then k  must be expressed in 

1. yrs because  

  is expressed in 
1. srad . Note that,  , can be 

expressed in rad , in this case, k  must be expressed in 

seconds.  

          Besides the internal angle i , there is also the 

external angle e (produced by the bending of the 

internal metric of spacetime (See Fig. 1 (b)). Since the 

arches, defined by Rs ii  , rs ee  , have the same 

order of magnitude, then, we can write that rR ei    or 

   2Rrei  

Substitution of Eq. (1) into Eq. (2) gives 

   3rRke  

            The Gravity Probe B experiment measured the 

angle e , in the case of the Earth. The result 

is   radondarce

71097.1sec041.0 

   [6, 7]. Since 

Earth’s angular velocity is 15 .1029.7 

  srad ,  then 

Eq. (3), gives  

       4107.2 3





  RrRrk e 

          Since the Earth’s rotation affects the orbits of the 

satellites near the Earth, and as most these orbits are at 

altitudes close to km600  (Gravity Probe satellite was 

in a typical polar orbit of 642 km altitude [6]), then  

as  r  must have a value greater than these values (but 

close of them), we can infer that kmr 000,1   (See 

Fig.1 (b)), Substitution of this value and 

kmR 3103.6  , into Eq. (4), gives   
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  Fig. 1 – Schematic diagram of the angular displacement of a gravitational central force, F


, in a spherical rotating 

body, due to the bending of the force lines of the gravitational field of the body, consequence of  the  bending of the 

metric of the local spacetime produced by the rotation of the body. 
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 5104 4 sk 

 Then, according to Eq. (1), we get  4104 i , 

whence we conclude that  

     6873,23.500,2 1

ii rpmsrad   
 

This equation shows that, in order to obtain a 

significative value of i , in this case, the value of   

must be very greater than rpm000,5 .  

          If the gravitational force F


 is the weight force, 

RP


, of the rotating body (Rotor), then it can be moved of 

an angle i  in order to produce horizontal displacement 

to move, for example, cars, ships, trains, etc., or it can be 

moved to produce an ascending displacement of the body 

(take-off) as shown   in Fig.2 (a), or in order to produce a 

descending displacement of the body (landing) as shown 

in Fig.2 (b). 
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(a) Take-off 
 

 

 

 

 

 

 

 

 

   

(b) Landing 

Fig 2 – Take-off and landing by means of the control of RP


,   RSR PP  .  
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          It is important to note that, if there is a 

symmetric and homogeneous mass distribution around 

the rotor, with mass center coincident with the mass 

center of the rotor (for example in the case of a solid 

spherical rotor, spinning inside a hollow sphere),  then, 

when RP


 be displaced of an angle i  ( i is the angle 

given by Eq. (1) at the first page of this article), also the 

weight force, mP


, of the mentioned mass around the rotor, 

will be displaced of the same angle i , together with RP


. 

Thus, at the direction of RP


, during its displacement ( i ), 

the resultant will be: mR PPR


 (See Fig. 3 (a)). Note 

that this increasing does not have influence on the torque 

of the motor connected to the rotor.  

          On the other hand, note that, the amount of mass 

around the rotor can be controlled by means of addition 

(or removal) of superposed spherical shells around the 

rotor (See Fig. 3 (b)). In this case, the weight force mP


 

increases progressively with the amount of spherical 

shells that are added around the rotor, and it will decrease 

with the removal of said spherical shells. Thus, by 

increasing the magnitude of 
mP


 it is possible to 

increasing the magnitude of R


. 
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Fig. 3 – The rotor inside spherical shells. The weight 

force, mP , increases with the increase of superposed 

spherical shells added around  to the rotor (without 

touching the rotor). 
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                 The phenomenon here described can be 

easily checked by means of the experimental set-up 

shown in Fig. 4. By measuring the components xP


 

and yP


 of the force RP


 of the rotor, it is possible to 

calculate the angle i . 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4 – The strength sensors will detect the forces 
produced by the rotor in the case of an angular 
displacement of its weight force. 
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          The possibility of controlling the direction of 

weight forces, simply by controlling the angular 

velocity of the rotating body, can provides a new and 

powerful technology in order to move cars, ships, 

trains, etc., or to produce thrust  to the flight of an 



 3 
aircraft, without use of any type of fuel. Also, it can be 

used in a motor (Gravitational Motor), which can 

transform gravitational energy directly into rotational 

energy (See Fig.5). Initially, the angular velocities of the 

mini-rotors are programmed to displace their weight 

forces, RP


, of an angle 
0180i . Thus, the weight 

gmP im


0 (See Fig.5) will be displaced of the same 

angle i , together with the
RsP


,  gmnP iR 0 . 

          Under these conditions, the gravity acceleration 

upon the liquid around the mini-rotors (See Fig.5) is g


 , 

then it acquires a velocity 
1v  (in the opposite direction of 

g


), given by hghgvv


2201  , where 0v  is the 

initial velocity. Then the velocity v  is given by  

hghgvv


2221   (See Fig.5). Therefore, the 

liquid acquires a kinetic energy 
2

02
1 vmK i  , where 

0im  is the inertial mass of the liquid. Thus, the power P  

transported by the liquid is 

 72

2
120

2
1 Qvv

t

m

t

K
P i 













  

where    3/ mkg  is the density of the liquid 

and Q  sm /3  is the volumetric flow rate, which 

is expressed by AvQ  , where A  is the area of 

the cross-section, given by xLA   (See Fig 5). 

Thus, Eq. (7) can be rewritten as follows 

   83.11 2
3

2
3

3

2
12

2
1 hgxLAvQvP  

The power of the Gravitational Motor, motorP , depends 

on its performance i.e., PPmotor  , where  is the 

performance ratio. Thus, we can write that 

   93.11 2
3

2
3

hgxLPmotor 

For example, if 9.0 ; 
3/000,1 mkg ; 

mx 15.0 ; mL 1 ; mh 5.0 , then the power is: 

HPWPmotor 21106.1 4  . Note that, if an 

electrical generator is coupled to this motor, then it 

can produce sufficient electrical energy to supply, for 

example, the electrical consumption of a high-standard 

residence.  
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Fig.5 – Schematic Diagram of a Gravitational Motor using Mini-rotors.                                       
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  Appendix:  Experimental Set-Up to Check the Theoretical Predictions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

        (a)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         (b) 

 

Fig. 1A – It is shown in (a) an experimental arrangement to measure the magnitudes of the components RxP


and 

RyP


 produced by the displacement of RP


(weight of the rotating sphere). In (b) it is added a spherical shell around 

the rotating sphere (rotor), in order to measure the magnitudes of the components xR and yR  produced by the 

displacement of  mR PPR


 ; mP


is the weight of the spherical shell.  
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Fig. 2A – The resultant R


 can be increased by the action of a Quantum Controller of Gravity (QCG 1), as shown 

above. The objective of the QCG 2 it is to revert the local gravity to its initial value g . (See De Aquino, F. (2016) 

Quantum Controller of Gravity. Available at http://vixra.org/abs/1605.0244 and https://hal.archives-ouvertes.fr/hal-

01320459).   
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Fig. 3A  - Schematic Diagram of the Gravitational Thruster for Aerocrafts. 
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