Directional Control of Weight Forces in Rotating Bodies

Fran de Aquino

- To cite this version:

Fran de Aquino. Directional Control of Weight Forces in Rotating Bodies. 2017. hal-01558047v2

HAL Id: hal-01558047 https://hal.science/hal-01558047v2

Preprint submitted on 24 Jul 2017 (v2), last revised 31 Jul 2017 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Directional Control of Weight Forces in Rotating Bodies

Fran De Aquino

Professor Emeritus of Physics, Maranhao State University, UEMA. Titular Researcher (R) of National Institute for Space Research, INPE

Copyright © 2017 by Fran De Aquino. All Rights Reserved.
The frame-dragging effect tells us that when a body rotates around itself the metric of spacetime around its surface is dragged. This occurs, for example, in the metric of the spacetime around the Earth surface, and produces the well-known phenomenon of shifting of the orbits of the satellites near the Earth. Such as the orbits of the satellites, the force lines of the gravitational field produced by rotating bodies are also affected by the framedragging effect. This means that the direction of a gravitational central force in a rotating body should be radially displaced, in respect to their initial position. In this work, we show that the radial displacement angle depends on the angular velocity of the rotating body, and that this fact point to the possibility of controlling the direction of these gravitational central forces, simply by controlling the angular velocity of the rotating body.

Keywords: Gravitation, Experimental studies of gravity, Lense-Thirring effect.

General relativity predicts that rotating objects should drag spacetime around themselves as they rotate. This effect on spacetime is known as frame-dragging. The first frame-dragging effect was discovered by the physicists J. Lense and H. Thirring, and is known as the Lense-Thirring effect [$\underline{1}, \underline{2}, \underline{3}]$. This phenomenon tells us for example, that the Earth drags spacetime around itself as it rotates, and consequently shifting of the orbits of the satellites near the Earth. This fact led to the verification of the mentioned effect by means of satellites, and it was experimentally observed in 2004 by using the LAGEOS satellites [4].

The frame-dragging effect tells us that when a body rotates the metric of spacetime around its surface is dragged at the same direction of the rotation [5]. Due to this phenomenon the force lines of the gravitational field produced by a rotating body are also curved following the curvature of the metric of the local spacetime, similarly to the orbits of the satellites near the Earth.

The bend of the force lines allows us to infer that the direction of a gravitational central force, \vec{F}, in a rotating body, should be displaced due to the curvature of the force lines. Thus, it is to be expected that the direction of the force \vec{F} describe an angular displacement α_{i}, in respect to its initial position (See Fig. 1(b)). Since the magnitude of this angle depends only of the magnitude of the angular velocity, i.e., $\alpha_{i} \propto \omega$, and $\vec{\alpha}_{i}$ has the same direction of $\vec{\omega}$ (See Fig. 1(b)), then we can write that

$$
\begin{equation*}
\vec{\alpha}_{i}=k \vec{\omega} \tag{1}
\end{equation*}
$$

where k is a constant to be determined. If α is expressed in $r a d . y r^{-1}$, then k must be expressed in $s . y r^{-1}$ because
ω is expressed in rad. s^{-1}. Note that, α, can be expressed in rad , in this case, k must be expressed in seconds.

Besides the internal angle α_{i}, there is also the external angle α_{e} (produced by the bending of the internal metric of spacetime (See Fig. 1 (b)). Since the arches, defined by $s_{i}=\alpha_{i} R, s_{e}=\alpha_{e} r$, have the same order of magnitude, then, we can write that $\alpha_{i} R \approx \alpha_{e} r$ or

$$
\begin{equation*}
\alpha_{i} \approx \alpha_{e}(r / R) \tag{2}
\end{equation*}
$$

Substitution of Eq. (1) into Eq. (2) gives

$$
\begin{equation*}
\alpha_{e} \approx k \omega(R / r) \tag{3}
\end{equation*}
$$

The Gravity Probe B experiment measured the angle α_{e}, in the case of the Earth. The result is $\alpha_{e(\oplus)}=0.041$ arc \sec ond $=1.97 \times 10^{-7} \mathrm{rad}$ [$\left.\underline{,}, 7\right]$. Since Earth's angular velocity is $\omega_{\oplus}=7.29 \times 10^{-5} \mathrm{rad} . \mathrm{s}^{-1}$, then Eq. (3), gives

$$
\begin{equation*}
k \approx\left(\alpha_{e(\oplus)} / \omega_{\oplus}\right)\left(r_{\oplus} / R_{\oplus}\right)=2.7 \times 10^{-3}\left(r_{\oplus} / R_{\oplus}\right) \tag{4}
\end{equation*}
$$

Since the Earth's rotation affects the orbits of the satellites near the Earth, and as most these orbits are at altitudes close to 600 km (Gravity Probe satellite was in a typical polar orbit of 642 km altitude [6]), then as r_{\oplus} must have a value greater than these values (but close of them), we can infer that $r_{\oplus} \cong 1,000 \mathrm{~km}$ (See Fig. 1 (b)), Substitution of this value and $R_{\oplus} \cong 6.3 \times 10^{3} \mathrm{~km}$, into Eq. (4), gives

(a)

(b)

Fig. 1 - Schematic diagram of the angular displacement of a gravitational central force, \vec{F}, in a spherical rotating body, due to the bending of the force lines of the gravitational field of the body, consequence of the bending of the metric of the local spacetime produced by the rotation of the body.

$$
\begin{equation*}
k \approx 4 \times 10^{-4} s \tag{5}
\end{equation*}
$$

Then, according to Eq. (1), we get $\alpha_{i} \approx 4 \times 10^{-4} \omega$, whence we conclude that

$$
\begin{equation*}
\omega \approx\left(2,500 \mathrm{rad} \cdot \mathrm{~s}^{-1}\right) \alpha_{i} \approx(23,873 \mathrm{rpm}) \alpha_{i} \tag{6}
\end{equation*}
$$

This equation shows that, in order to obtain a significative value of α_{i}, in this case, the value of ω must be very greater than $5,000 \mathrm{rpm}$.

If the gravitational force \vec{F} is the weight force, \vec{P}_{R}, of the rotating body (Rotor), then it can be moved of an angle α_{i} in order to produce horizontal displacement to move, for example, cars, ships, trains, etc., or it can be moved to produce an ascending displacement of the body (take-off) as shown in Fig. 2 (a), or in order to produce a descending displacement of the body (landing) as shown in Fig. 2 (b).
(a) Take-off
(b) Landing
with the removal of said spherical shells. Thus, by increasing the magnitude of \vec{P}_{m} it is possible to increasing the magnitude of \vec{R}.

(b) Landing

Fig 2 - Take-off and landing by means of the control of $\vec{P}_{R},\left(P_{R} \gg P_{(S-R)}\right)$.
It is important to note that, if there is a symmetric and homogeneous mass distribution around the rotor, with mass center coincident with the mass center of the rotor (for example in the case of a solid spherical rotor, spinning inside a hollow sphere), then, when \vec{P}_{R} be displaced of an angle α_{i} (α_{i} is the angle given by Eq. (1) at the first page of this article), also the weight force, \vec{P}_{m}, of the mentioned mass around the rotor, will be displaced of the same angle α_{i}, together with \vec{P}_{R}. Thus, at the direction of \vec{P}_{R}, during its displacement $\left(\alpha_{i}\right)$, the resultant will be: $\vec{R}=\vec{P}_{R}+\vec{P}_{m}$ (See Fig. 3 (a)). Note that this increasing does not have influence on the torque of the motor connected to the rotor.

On the other hand, note that, the amount of mass around the rotor can be controlled by means of addition (or removal) of superposed spherical shells around the rotor (See Fig. 3 (b)). In this case, the weight force \vec{P}_{m} increases progressively with the amount of spherical shells that are added around the rotor, and it will decrease

Fig. 3 - The rotor inside spherical shells. The weight force, P_{m}, increases with the increase of superposed spherical shells added around to the rotor (without touching the rotor).

The phenomenon here described can be easily checked by means of the experimental set-up shown in Fig. 4. By measuring the components \vec{P}_{x} and \vec{P}_{y} of the force \vec{P}_{R} of the rotor, it is possible to calculate the angle α_{i}.

Fig. 4 - The strength sensors will detect the forces produced by the rotor in the case of an angular displacement of its weight force.

The possibility of controlling the direction of weight forces, simply by controlling the angular velocity of the rotating body, can provides a new and powerful technology in order to move cars, ships, trains, etc., or to produce thrust to the flight of an
aircraft, without use of any type of fuel. Also, it can be used in a motor (Gravitational Motor), which can transform gravitational energy directly into rotational energy (See Fig.5). Initially, the angular velocities of the mini-rotors are programmed to displace their weight forces, \vec{P}_{R}, of an angle $\alpha_{i}=180^{\circ}$. Thus, the weight $\vec{P}_{m}=m_{i 0} \vec{g}$ (See Fig.5) will be displaced of the same angle α_{i}, together with the $\vec{P}_{R s},\left(n P_{R} \ll m_{i 0} g\right)$.

Under these conditions, the gravity acceleration upon the liquid around the mini-rotors (See Fig.5) is $-\vec{g}$, then it acquires a velocity v_{1} (in the opposite direction of \vec{g}), given by $\vec{v}_{1}=\vec{v}_{0}+\sqrt{2 \stackrel{g}{g}} \cong \sqrt{2 \stackrel{\Sigma}{g} h}$, where v_{0} is the initial velocity. Then the velocity v is given by $\vec{v}=\vec{v}_{1}+\sqrt{2 \bar{g} h} \cong 2 \sqrt{2 \bar{g} h}$ (See Fig.5). Therefore, the liquid acquires a kinetic energy $K=\frac{1}{2} m_{i 0} v^{2}$, where $m_{i 0}$ is the inertial mass of the liquid. Thus, the power P transported by the liquid is

$$
P=\frac{K}{\Delta t}=\frac{1}{2}\left(\frac{m_{i 0}}{\Delta t}\right) v^{2}=\frac{1}{2} \rho Q v^{2}
$$

where $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ is the density of the liquid and $Q\left(m^{3} / s\right)$ is the volumetric flow rate, which is expressed by $Q=A v$, where A is the area of the cross-section, given by $A=x L$ (See Fig 5). Thus, Eq. (7) can be rewritten as follows

$$
\begin{equation*}
P=\frac{1}{2} \rho Q v^{2}=\frac{1}{2} \rho A v^{3}=11.3 \rho(x L) g^{\frac{3}{2}} h^{\frac{3}{2}} \tag{8}
\end{equation*}
$$

The power of the Gravitational Motor, $P_{\text {motor }}$, depends on its performance i.e., $P_{\text {motor }}=\eta P$, where η is the performance ratio. Thus, we can write that

$$
\begin{equation*}
P_{m o t o r}=11.3 \eta \rho(x L) g^{\frac{3}{2}} h^{\frac{3}{2}} \tag{9}
\end{equation*}
$$

For example, if $\quad \eta=0.9 ; \quad \rho=1,000 \mathrm{~kg} / \mathrm{m}^{3}$; $x=0.15 m ; L=1 m ; h=0.5 m$, then the power is: $P_{\text {motor }}=1.6 \times 10^{4} \mathrm{~W} \cong 21 \mathrm{HP}$. Note that, if an electrical generator is coupled to this motor, then it can produce sufficient electrical energy to supply, for example, the electrical consumption of a high-standard residence.

AA' Cross Section

Fig. 5 - Schematic Diagram of a Gravitational Motor using Mini-rotors.

Appendix: Experimental Set-Up to Check the Theoretical Predictions

(a)

(b)

Fig. 1A - It is shown in (a) an experimental arrangement to measure the magnitudes of the components $\vec{P}_{R x}$ and $\vec{P}_{R y}$ produced by the displacement of \vec{P}_{R} (weight of the rotating sphere). In (b) it is added a spherical shell around the rotating sphere (rotor), in order to measure the magnitudes of the components R_{x} and R_{y} produced by the displacement of $\left(\vec{R}=\vec{P}_{R}+\vec{P}_{m}\right) ; \vec{P}_{m}$ is the weight of the spherical shell.

Fig. 2 - The resultant \vec{R} can be increased by the action of a Quantum Controller of Gravity (QCG 1), as shown above. The objective of the QCG 2 it is to revert the local gravity to its initial value g.

The Quantum Controller of Gravity (QCG)

Fig. 3 - The shell with thickness Δx works as a Quantum Controller of Gravity. (See De Aquino, F. (2016) Quantum Controller of Gravity. Available at http://vixra.org/abs/1605.0244 and https://hal.archives-ouvertes.fr/hal-01320459)

References

[1] Thirring, H. (1918) Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19, 33.
[2] Thirring, H. (1921) Über die Wirkung rotierender Massen in der Einsteinschen Gravitationstheorie Physikalische Zeitschrift 22, 29.
[3] Lense, J. and Thirring, H. (1918) Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19 156-63.
[4] Ciufolini I, Pavlis EC, Chieppa F, Fernandes-Vieira E, Pérez-Mercader J (1998) Test of General Relativity and Measurement of the Lense-Thirring Effect with Two Earth Satellites. Science 279: 2100-2103; Ciufolini I, Pavlis EC (2004) A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431: 958-960.
[5] Saa, A. (2004) Arrasto de referenciais e o princípio de Mach, Revista USP, São Paulo, n. 62 (junho/agosto), p. 100
[6] Everitt, C. W. F. et al. (2011) Gravity Probe B: Final Results of a Space Experiment to Test General Relativity, Phys. Rev. Lett. 106, 221101
[7] Eckstein, D. (2003) Epstein Explains Einstein, epubli GmbH Berlin, p. 149

