
HAL Id: hal-01558042
https://hal.science/hal-01558042v1

Submitted on 7 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for zero-dimensional ideals using linear
recurrent sequences

Vincent Neiger, Hamid Rahkooy, Éric Schost

To cite this version:
Vincent Neiger, Hamid Rahkooy, Éric Schost. Algorithms for zero-dimensional ideals using lin-
ear recurrent sequences. Computer Algebra in Scientific Computing, Sep 2017, Beijing, China.
�10.1007/978-3-319-66320-3_23�. �hal-01558042�

https://hal.science/hal-01558042v1
https://hal.archives-ouvertes.fr

Algorithms for zero-dimensional ideals using
linear recurrent sequences

Vincent Neiger1, Hamid Rahkooy2, and Éric Schost2

1 Department of Applied Mathematics and Computer Science, Technical University
of Denmark.

2 Cheriton School of Computer Science, University of Waterloo, Canada.

Abstract. Inspired by Faugère and Mou’s sparse FGLM algorithm, we
show how using linear recurrent multi-dimensional sequences can allow
one to perform operations such as the primary decomposition of an ideal,
by computing the annihilator of one or several such sequences.

1 Introduction

In what follows, K is a perfect field. We consider the set S = KNn of n-
dimensional sequences u = (um)m∈Nn , and the polynomial ring K[X1, . . . , Xn],
and we are interested in the following question. Let I ⊂ K[X1, . . . , Xn] be a
zero-dimensional ideal. Given a monomial basis of Q = K[X1, . . . , Xn]/I, to-
gether with the corresponding multiplication matrices M1, . . . ,Mn, we want to
compute the Gröbner bases, for a target order >, of pairwise coprime ideals
J1, . . . , JK such that I = ∩1≤k≤KJk.

Faugère et al.’s paper [11] shows how to solve this question with K = 1 (so
J1 is simply I) in time O(nD3), where D = deg(I); here, the degree deg(I) is the
K-vector space dimension of Q. More recently, algorithms have been given with
the cost bound O (̃nDω) [9, 10, 20], where the notation O˜ hides polylogarithmic
factors, still with K = 1. The algorithms in this paper allow splittings (so K > 1
in general) and assume that > is a lexicographic order.

To motivate our approach, assume that the algebraic set V (I) is in shape
position, that is, the coordinate Xn separates the points of V (I). Then, the Shape
Lemma [14] implies that the Gröbner basis of the radical

√
I for the lexicographic

order X1 > · · · > Xn has the form 〈X1−G1(Xn), . . . , Xn−1−Gn−1(Xn), P (Xn)〉,
for some squarefree polynomial P , and some G1, . . . , Gn−1 of degrees less than
deg(P). The polynomials P and G1, . . . , Gn−1 can be deduced from the values
(`(Xi

n))0≤i≤2D and (`(XjX
i
n))1≤j<n,0≤i<D, for a randomly chosen linear form

` : Q → K, in time O (̃D) [4]. The algorithms in the latter reference use baby
steps / giant steps techniques for the calculation of the values of `.

Similar ideas were developed in [12]; the algorithms in this reference make no
assumption on I but may fail in some cases, then falling back on the FGLM algo-
rithm. For instance, if I itself (rather than

√
I) is known to have a lexicographic

Gröbner basis of the form 〈X1 − H1(Xn), . . . , Xn−1 − Hn−1(Xn), Q(Xn)〉, the
algorithms in [12] recover this basis, also by considering values of linear forms

`i : Q→ K. A key remark made in that reference is that the values of the linear
forms `i that we need can be computed efficiently by exploiting the sparsity of
the multiplication matrices M1, . . . ,Mn; this sparsity is then analyzed, assum-
ing the validity of a conjecture due to Moreno-Soćıas [18]. These techniques are
related as well to Rouillier’s Rational Univariate Representation algorithm [21],
which uses values of a specific linear form Q→ K called the trace. However, com-
puting the trace (that is, its values on the monomial basis of Q) is non-trivial,
and using random choices instead makes it possible to avoid this issue.

In this paper, we work in the continuation of [4]. Assuming V (I) is in shape
position, the results in that reference allow us to compute the Gröbner basis of√
I, and our goal here is to recover Gröbner bases corresponding to a decom-

position of I as stated above. Following [12, 1], we discuss the relation of this
question to instances of the following problem: given sequences u1, . . . ,us in S ,
find the Gröbner basis of their annihilator ann(u1, . . . ,us) ⊂ K[X1, . . . , Xn], for
a target order >. The annihilator, discussed in the next section, is a polynomial
ideal corresponding to the linear relations which annihilate all sequences.

A direct approach to solve the FGLM problem using such techniques would
be to pick initial conditions at random; knowing multiplication matrices modulo
I allows us to compute the values of a sequence u, for which I is contained in
ann(u). If I = ann(u) holds, computing sufficiently many values of u and feeding
them into an algorithm such as Sakata’s [22] would solve our problem. This is
often, but not always, possible: there exists a sequence u for which I = ann(u) if
and only if Q = K[X1, . . . , Xn]/I is a Gorenstein ring, a notion going back to [16,
15] (see e.g. [5, Prop. 5.3] for a proof of the above assertion). This is for instance
the case if I is a complete intersection, or if I is radical over a perfect field [8];
however, an ideal such as I = 〈X2

1 , X1X2, X
2
2 〉 ⊂ K[X1, X2] is not Gorenstein.

To remedy this, we may have to use more than one sequence, so as to be able
to recover I as I = ann(u1, . . . ,us). However, proceeding directly in this manner,
we do not expect the algorithm to be significantly better than applying directly
the FGLM algorithm (the techniques we will use for computing annihilators
follow essentially the same lines as the FGLM algorithm itself). We will see that
starting from the Gröbner basis of

√
I, we will be able to decompose I into e.g.

primary components (assuming we allow the use of factorization algorithms over
K), and that our approach is expected to be competitive in those cases where
the multiple components of I have low degrees.

Acknowledgements. We thank the reviewers for their remarks and sugges-
tions. The third author is supported by an NSERC Discovery Grant.

2 Generalities on sequences and their annihilators

Define the shift operators s1, . . . , sn on S in the obvious manner, by setting
si(u) = (um+ei)m∈Nn , where e1, . . . , en are the unit vectors. This makes S a
K[X1, . . . , Xn]-module, by setting f ·u = f(s1, . . . , sn)(u). For f =

∑
m fmXm,

the entries of f ·u are thus (〈u |Xmf〉)m∈Nn , where we write Xm = Xm1
1 · · ·Xmn

n

and 〈u | f〉 =
∑
m′ fm′um′ . To a sequence u = (um)m∈Nn in S , we can then

associate its annihilator ann(u), defined as the ideal of all polynomials f in
K[X1, . . . , Xn] such that f · u = 0. If we consider several sequences u1, . . . ,us
in S , we then define ann(u1, . . . ,us) = ann(u1) ∩ · · · ∩ ann(us).

We will also occasionally discuss kernels of sequences. For u ∈ S , the kernel
ker(u) is the K-vector space formed by all polynomials f in K[X1, . . . , Xn] such
that 〈u | f〉 = 0; this is not an ideal in general. If we consider several sequences
u1, . . . ,us, we will write ker(u1, . . . ,us) = ker(u1) ∩ · · · ∩ ker(us).

Let I be a zero-dimensional ideal in K[X1, . . . , Xn]. Define the residue class
ring Q = K[X1, . . . , Xn]/I and let D = deg(I) = dimK(Q). Consider also the
dual Q∗ = homK(Q,K). To a linear form ` in Q∗, we associate the sequence u`
defined by u` = (`(Xm mod I))m∈Nn .

For any linear form ` on Q, and any g in Q, define the linear form g ·` ∈ Q∗ by
(g ·`)(h) = `(gh). This induces a Q-module structure on Q∗, and we remark that
we have the equality g·u` = u(g mod I)·` for any g in K[X1, . . . , Xn]. Following [23]
(where it is described with n = 1), we call this operation transposed product.

For ` in Q∗, we can then define annQ(`) as the set of all g in Q such that
g · ` = 0; this is an ideal of Q. The following lemma clarifies the relation between
ann(u`) ⊂ K[X1, . . . , Xn] and annQ(`) ⊂ Q; it implies that ann(u`) is generated
by I and any element of annQ(`) lifted to K[X1, . . . , Xn].

Lemma 1 With notation as above, for f in K[X1, . . . , Xn], f is in ann(u`) if
and only if f mod I is in annQ(`).

Proof. Take f in K[X1, . . . , Xn]. Then f is in ann(u`) if and only if f · u` = 0,
that is, if and only if u(f mod I)·` = 0, if and only if (f mod I) ·` itself is zero. ut

When Q∗ is a free Q-module of rank one, we say that Q is a Gorenstein ring,
and that I is Gorenstein. In this case, there exists a linear form λ such that
Q∗ = Q · λ; by the previous lemma, ann(uλ) = I. Conversely, if ann(uλ) = I,
annQ(λ) = {0}, so that Q∗ = Q · λ (and Q∗ is free of rank one). For instance, it
is known that if I is radical, or I a complete intersection, then I is Gorenstein.
On the other hand, if I = 〈X2

1 , X1X2, X
2
2 〉, the inclusion I ⊂ ann(u`) is strict

for any linear form `. Using several sequences, we can however always recover I.

Lemma 2 Let `1, . . . , `D be linearly independent in Q∗, and let u1, . . . ,uD be
the corresponding sequences. Then ann(u1, . . . ,uD) = ker(u1, . . . ,uD) = I.

Proof. Note first that the inclusion I ⊂ ann(u1, . . . ,uD) = ann(u1) ∩ · · · ∩
ann(uD) is a direct consequence of Lemma 1, and that ann(u1, . . . ,uD) is con-
tained in ker(u1, . . . ,uD). For the converse, let ω1, . . . , ωD be the basis of Q dual
to `1, . . . , `D. Suppose that f is in ker(u1, . . . ,uD), and assume without loss of
generality that f has been reduced by I, so that f is a linear combination of the
form f1ω1 + · · · + fDωD. Fix i in 1, . . . , D and apply `i to f ; we obtain fi. On
the other hand, because f is in ker(ui), `i(f) must vanish. So we are done. ut

We may however need less than D linear forms, as explained in the following
discussion, which generalizes the comments we made in the Gorenstein case.

Let B = (b1, . . . , bD) be a monomial basis of Q. Given a linear form ` in
Q∗, we define K` as the D×D matrix whose (i, j)th entry is `(bibj); this is the
matrix of the mapping f ∈ Q 7→ f · ` ∈ Q∗, so that its nullspace is annQ(`).
More generally, given a positive integer s and linear forms `1, . . . , `s, we define
K`1,...,`s as the D × sD matrix obtained as the concatenation of K`1 , . . . ,K`s ;
this is the matrix of the mapping (f1, . . . , fs) ∈ Qs 7→ f1 · `1 + · · ·+ fs · `s ∈ Q∗.

Lemma 3 For any linear forms `1, . . . , `s all in Q∗, ann(u`1 , . . . ,u`s) = I if
and only if (`1, . . . , `s) are Q-module generators of Q∗.

Proof. (`1, . . . , `s) are Q-module generators of Q∗ if and only if K`1,...,`s has rank
D, if and only if K⊥`1,...,`s has a trivial nullspace. The nullspace of this matrix

is the intersection of those of the matrices K⊥`1 , . . . ,K
⊥
`s

. All these matrices are

symmetric, and we saw that for all i, the nullspace of K⊥`i = K`i is annQ(`i); thus,
the condition above is equivalent to annQ(`1) ∩ · · · ∩ annQ(`s) = {0}. Lemma 1
shows that this is the case if and only if ann(u`1) ∩ · · · ∩ ann(u`s) = I. ut

Proposition 1 There exists a unique integer τ ≤ D such that for a generic
choice of linear forms (`1, . . . , `τ), with all `i in Q∗, the sequence of ideals
(ann(u`1 , . . . ,u`t))1≤t≤τ is strictly decreasing, with ann(u`1 , . . . ,u`τ) = I.

Proof. Remark first that if τ exists with the properties above, it is necessar-
ily unique. Let (L1,1, . . . , L1,D), . . . , (LD,1, . . . , LD,D) be new indeterminates, let
L = K(L1,1, . . . , LD,D) and define the matrices KL1

, . . . ,KLD as follows. Let
QL = Q ⊗K L; this allows us to define the linear forms L1, . . . , LD in Q∗L by
Lt(bj) = Lt,j , for 1 ≤ t ≤ D; then KLt is the matrix with entries Lt(bibj). The
entries of KLt are linear forms in Lt,1, . . . , Lt,D.

Define KL1,...,Lt as we did for K`1,...,`t . Then, for any linear forms `1, . . . , `t
in Q∗, the matrix K`1,...,`t is obtained by evaluating KL1,...,Lt at Lt,j = `t(bj),
for all t, j. The rank of K`1,...,`t (over K) is at most that of KL1,...,Lt (over L).

We can then let τ be the smallest integer such that the matrix KL1,...,Lτ has
full rank D. Such an index exists, and is at most D, since by Lemma 2 (and by
the remarks of the above paragraph) KL1,...,LD has rank D.

Let `1, . . . , `τ be such that K`1,...,`τ has rank D (this is our genericity con-
dition); in this case, by the previous lemma, ann(u`1 , . . . ,u`τ) = I. To con-
clude, it suffices to prove that the sequence of ideals (ann(u`1 , · · · ,u`t))1≤t≤τ
is strictly decreasing. Suppose it is not the case, so that ann(u`1 , . . . ,u`t) =
ann(u`1 , . . . ,u`t+1

) for some t < τ . Then, ann(u`1 , . . . ,u`t ,u`t+2
, . . . ,u`τ) = I.

Let us define `′1 = `1, . . . , `
′
t = `t, `

′
t+1 = `t+2, . . . , `

′
τ−1 = `τ . Then, we have

ann(u`′1 , . . . ,u`′τ−1
) = I, so that K`′1,...,`

′
τ−1

has rank D. This in turn implies (by

the discussion above) that KL1,...,Lτ−1
has rank D, a contradiction. ut

If Q is a local algebra with maximal ideal m, we can define the socle of Q as
the K-vector space of all elements f in Q such that mf = 0. For instance, if Q
is local, the integer τ in the previous lemma is the dimension of the socle of Q.
(we omit the proof, since we will not use this result in the rest of the paper).

3 Computing annihilators of sequences

Consider sequences (u1, . . . ,ut) with ui ∈ S for all i, let J be the annihilator
ann(u1, . . . ,ut) ⊂ K[X1, . . . , Xn], and suppose that it has dimension zero; our
goal is to compute a Gröbner basis of it. We first review an algorithm due to
Marinari, Möller and Mora [17], then introduce a modification of it that relaxes
some of its assumptions. As a result, the algorithms in this section work under
slightly different assumptions, and feature slightly different runtimes.

An algorithm with cost (nt deg(J))O(1) would be highly desirable, but we are
not aware of any such result. Most approaches (ours as well) involve reading a
number of values of u1, . . . ,ut and looking for dependencies between the columns
of what is often called a generalized Hankel matrix, built using these values; the
delicate question is how to control the size of the matrix.

Consider for instance the case t = 1, 〈u1 | Xm1
1 · · ·Xmn

n 〉 = 1 for m1 + · · ·+
mn < δ and 〈u1 | Xm1

1 · · ·Xmn
n 〉 = 0 otherwise. The annihilator J = ann(u1)

admits the lexicographic Gröbner basis 〈X1 − Xn, . . . , Xn−1 − Xn, X
δ
n〉, so we

have deg(J) = δ; on the other hand, this sequence takes
(
deg(J)+n−1

n

)
non-zero

values, so taking them all into account leads us to an exponential time algorithm.
In the case t = 1, Mourrain in [19] associates a Hankel operator to a sequence

such that the kernel of the Hankel operator corresponds to the annihilator of the
sequence. Algorithm 2 in this paper computes a border basis for the kernel of such
a Hankel operator, taking as input its values over a finite set of monomials. As in
the FGLM algorithm, this algorithm looks for linear dependencies between the
monomials in the border of already computed linearly independent monomials.
However, for examples as in the previous paragraph, we are not aware of how to
avoid taking into account up to

(
deg(J)+n−1

n

)
values.

Several algorithms were also proposed in [1] for computing an annihilator
ann(u1), and partly extended to arbitrary t in [2]. A first algorithm relies on
the Berlekamp-Massey Algorithm, by means of a change of coordinates, which
may require an exponential number of value of u1. The other algorithms extend
the idea of FGLM, considering maximal rank sub-matrices of a truncated multi-
Hankel matrix to compute a basis for the quotient algebra and a Gröbner basis.
An algorithm with certified outcome (Scalar-FGLM) is presented; it considers the
values of u1 at all monomials up to a given degree ' deg(J), so the issue pointed
out above remains. An “adaptive” version uses fewer values of the sequence, but
may fail in some cases (the conditions that ensure success of this algorithm seem
to be close to the genericity assumptions we introduce in Subsection 3.2). A
comparison of Scalar-FGLM and Sakata’s algorithm is presented in [3].

3.1 A first algorithm

The first solution we discuss requires a strong assumption (written H1 below):
for any i and for any monomial b in X1, . . . , Xn, b · ui is in the K-span of
(u1, . . . ,ut); as a result, the annihilator J of (u1, . . . ,ut) equals the nullspace
ker(u1, . . . ,ut). For this situation, Marinari, Möller and Mora gave in [17] an
algorithm that compute a Gröbner basis of J , for any order (for definiteness, we

refer here to their second algorithm); it is an extension of both the Buchberger-
Möller interpolation algorithm and the FGLM change of order algorithm.

Assumption H1 above implies that deg(J) ≤ t, and the runtime of the algo-
rithm, expressed in terms of n and t, is O(nt3) operations in K, together with
the computation of all values 〈ui | b〉, 1 ≤ i ≤ t, for O(nt) monomials b. These
evaluations are done in incremental order, in the sense that for any monomial b
for which we need all 〈ui | b〉, there exists j ∈ {1, . . . , n} such that b = Xjb

′ and
all 〈ui | b′〉 are known.

We will need the following property of this algorithm. Suppose (u1, . . . ,ut) is
a subsequence of a larger family of sequences (u1, . . . ,ut′) that satisfies H1, but
that (u1, . . . ,ut) itself may or may not, and that (u1, . . . ,ut) and (u1, . . . ,ut′)
have different K-spans. Then, on input (u1, . . . ,ut), the algorithm will still run
its course, and at least one of the elements in the output will be a polynomial g
that does not belong to ann(u1, . . . ,ut′).

3.2 An algorithm under genericity assumptions

We now give a second algorithm for computing J = ann(u1, . . . ,ut), whose
runtime is polynomial in n, t,D = deg(J) and an integer B ≤ deg(J) defined
below. We do not assume that H1 holds, but we will require other assumptions;
if they hold, the output is the lexicographic Gröbner basis G of J for the order
X1 > · · · > Xn. Our first assumption is:

H2. We are given an integer B such that the minimal polynomial of Xj in
K[X1, . . . , Xn]/J has degree at most B for all j.

For j in 1, . . . , n, we will denote by Jj the ideal ann(πj(u1), . . . , πj(ut)) ⊂
K[Xj , . . . , Xn], where for all i, πj(ui) is the sequence Nn−j+1 → K defined
by 〈πj(ui) | (mj , . . . ,mn)〉 = 〈ui | (0, . . . , 0,mj , . . . ,mn)〉 for all (mj , . . . ,mn)
in Nn−j+1; in particular, J1 = J . We write deg(Jj) = Dj ≤ D, we let Gj be the
lexicographic Gröbner basis of Jj , and we let Bj be the corresponding monomial
basis of K[Xj , . . . , Xn]/Jj .

We can then introduce our genericity property; by contrast with H2, we will
not necessarily assume that it holds, and discuss the outcome of the algorithm
when it does not. We denote this property by H3(j), for j = 1, . . . , n− 1.

H3(j). We have the equality Jj ∩K[Xj+1, . . . , Xn] = Jj+1.

Remark that the inclusion Jj ∩K[Xj+1, . . . , Xn] ⊂ Jj+1 always holds.

Suppose that for some j in 1, . . . , n, we have computed a sequence of mono-
mials B′j+1 in K[Xj+1, . . . , Xn] (if j = n, we let B′j+1 = (1)). Since we will
use them repeatedly, we define properties P and P′ as follows, the latter being
stronger than the former.

P(j + 1). The cardinality D′j+1 of B′j+1 is at most Dj+1.

P′(j + 1). The equality B′j+1 = Bj+1 holds.

We describe in the following paragraphs a procedure that computes a new family
of monomials B′j , and we give conditions under which they satisfy P(j) and P′(j).

We call a family of monomials B in K[Xj , . . . , Xn] independent if their images
are K-linearly independent modulo Jj (we call it dependent otherwise). We de-
note by MB the matrix with entries 〈ui | bb′〉, with rows indexed by i = 1, . . . , t
and b′ in Cj+1 = B′j+1× (1, Xj , . . . , X

B−1
j), and columns indexed by b in B (for

any monomial b in K[Xj , . . . , Xn], Mb is the column vector defined similarly).

Lemma 4 If B is dependent, the right nullspace of MB is non-trivial. If both
P′(j + 1) and H3(j) hold, the converse is true.

Proof. Any K-linear relation between the elements of B induces the same rela-
tion between the columns of MB, and the first point follows.

By definition, a polynomial f in K[Xj , . . . , Xn] belongs to Jj if and only if
it annihilates πj(u1), . . . , πj(ut), that is, if 〈πj(ui) | X

mj
j . . . Xmn

n f〉 = 0 for all

(mj , . . . ,mn) in Nn−j+1 and all i = 1, . . . , t. Now, assumptions P′(j+1), H2 and
H3(j) imply that Cj+1 generates K[Xj , . . . , Xn]/Jj , so that f is in Jj if and only
if 〈ui | bf〉 = 0, for all b in Cj+1 and all i = 1, . . . , t. ut

The following lemma, that essentially follows the argument used in the proof
of the FGLM algorithm [11], will be useful to justify our algorithm as well.

Lemma 5 Suppose that b1 < · · · < bu < bu+1 are the first u + 1 standard
monomials of K[Xj , . . . , Xn]/Jj, for the lexicographic order induced by Xj >
· · · > Xn, with b1 = 1. Then for any monomial b such that bu < b < bu+1,
{b1, . . . , bu, b} is a dependent family.

Proof. We prove the result by induction on u ≥ 0, the case u = 0 being vacuously
true. Assuming the claim is true for some index u ≥ 0, we prove it for u + 1.
We proceed by contradiction, and we let b be the smallest monomial such that
bu < b < bu+1 and {b1, . . . , bu, b} is an independent family (b exists by the
well-ordering property of monomial orders).

We will use the fact that any monomial c less than b can be rewritten as a
linear combination of b1, . . . , bi, with bi < c, for some i ≤ u: if c < bu, this is by
the induction assumption; if c = bu, this is obvious; if bu < c < b, this is by the
definition of b.

Now, either b is the leading term of an element in the Gröbner basis of Jj , or
it must be of the form b = Xeb

′, for some monomial b′ not in {b1, . . . , bu}. We
prove that in both cases, b can be rewritten as a linear combination of b1, . . . , bu,
which is a contradiction. In the first case, b rewrites as a linear combination
of smaller monomials, say c1, . . . , cv, and by the previous remark, all of them
can be rewritten as linear combinations of b1, . . . , bu. Altogether, b itself can be
rewritten as a linear combination of b1, . . . , bu, a contradiction.

In the second case, b = Xeb
′, for some monomial b′ not in {b1, . . . , bu}. As

above, b′ can be rewritten modulo Jj as a linear combination of monomials
b1, . . . , bi, for some i ≤ u, with bi < b′. Then, b = Xeb

′ is a linear combination
of Xeb1, . . . , Xebi. Since bi < b′, we get Xeb1 < · · · < Xebi < Xeb

′ = b, so all of

Xeb1, . . . , Xebi can be rewritten as linear combinations of b1, . . . , bu. As a result,
this is also the case for b itself, so we get a contradiction again. ut

Suppose that P(j + 1) holds. Then, the algorithm at step j proceeds as follows.
We compute the reduced row echelon form of MCj+1

. Using assumption P(j+1),
this matrix has at most tBDj+1 rows and at most BDj+1 columns, and it has
rank at most Dj (by the first item of Lemma 4). This computation can be done
in time O(tB2D2

j+1Dj) ∈ O(tB2D3). The column indices of the pivots allow us
to define the monomials B′j = (b′1 < · · · < b′D′j

), for some D′j ≤ Dj .

Lemma 6 Property P(j) holds, and if P′(j+1) and H3(j) hold, then P′(j) holds.

Proof. The first item is a restatement of the inequality D′j ≤ Dj . To prove the
second item, assuming that P′(j + 1) and H3(j) hold, we deduce from Lemma 4
that the columns indexed by the genuine Bj form a column basis of MCj+1 , and
we claim that it is actually the lexicographically smallest column basis (this will
prove that Bj = B′j). Indeed, write Bj = (b1, . . . , bDj), and let (f1, . . . , fDj)
be another subsequence of Cj+1 whose corresponding columns form a column
basis of MCj+1 . Let m be the smallest index such that bm 6= fm. Then, applying
Lemma 5 to (b1, . . . , bm−1) and fm, we deduce that bm < fm (otherwise, since
they are different, we must have bm−1 < fm < bm, which implies that fm is a
linear combination of (b1, . . . , bm−1) = (f1, . . . , fm−1), a contradiction). ut

Thus, running this procedure for j = n, . . . , 1, we maintain P(j); this implies
that the running time is O(ntB2D3), computing the values 〈ui | b〉, for 1 ≤ i ≤ t,
forO(nB2D2) monomials b (with the same monotonic property as in the previous
subsection). If H3(j) holds for all j, the second item in the last lemma proves
that B′1 = B1, the monomial basis of K[X1, . . . , Xn]/J .

Once B′1 is known, we compute and return a family of polynomials G′ defined
as follows. We determine the sequence ∆ of elements in X1B′1∪· · ·∪XnB′1−B′1,
all of whose factors are in B′1 (finding them does not require any operation
in K; this can be done by using e.g. a balanced binary search tree with the
elements of B′1, using a number of comparisons that is quasi-linear time in nD).
Then, we rewrite each column Mb, for b in ∆, as a linear combination of the
form

∑
1≤i≤D′1

ciMb′i
and we put b−

∑
1≤i≤D′1

cib
′
i in G′. If the reduction is not

possible, the algorithm halts and returns fail. Using the reduced row echelon
form of MC2

, each reduction takes time O(D2
1) ∈ O(D2) operations in K, for a

total of O(nD3).
If H3(j) holds for all j, since B1 = B′1, the fact that G′ = G follows from

Lemma 4. Assume now that G′ differs from G; we prove that there exists an
element in G not in J (we will use this in our main algorithm to detect failure
cases). Indeed, in this case, B′1 must be different from B1, and since B′1 has
cardinality at most equal to that of B1, there exists a monomial b in B1 not
in B′1. This in turn implies that there exists an element g in G′ that divides b,
and thus with leading term in B1. Reducing g modulo G, we must then obtain
a non-zero remainder, so that g does not belong to J .

4 Main algorithm

4.1 Representing primary zero-dimensional ideals

Let I be a zero-dimensional ideal in K[X1, . . . , Xn]; we assume that I is m-
primary, for some maximal ideal m, and we write D = deg(I). In this paragraph,
we briefly mention some possible representations for I (our main algorithm will
compute either one of these representations).

The first, and main, option we will consider is simply the Gröbner basis G
of I, for the lexicographic order induced by X1 > · · · > Xn. As an alterna-
tive, consider the following construction. Our assumption on I implies that the
minimal polynomial R of Xn in K[X1, . . . , Xn]/I takes the form R = P e, for
some irreducible polynomial P in K[Z], of degree say f (remark that R(Xn) is
also the last polynomial in G). Let L = K[Z]/〈P 〉; this is a field extension of
degree f of K, and the residue class ζ of Z in L is a root of P . We then let I ′

be the ideal I + 〈(Xn − ζ)e〉 in L[X1, . . . , Xn], and let D′ be its degree. Then,
a second option is to compute the lexicographic Gröbner basis G′ of I ′, for the
order X1 > · · · > Xn. The following lemma relates D and D′.

Lemma 7 The ideal I ′ has degree D′ = D/f .

Proof. Let M be the splitting field of P and let ζ1, . . . , ζf be the roots of P in
M. The ideals Ji = I+ 〈(Xn− ζi)e〉 ⊂ [X1, . . . , Xn] are such that deg(J1) + · · ·+
deg(Jf) = deg(I). On the other hand, there exist f embeddings σ1, . . . , σf of L
into M, with σi given by ζ 7→ ζi; as a result, deg(I ′) = deg(Ji) holds for all i,
and the claim follows. ut

The point behind this construction is to lower the degree of the ideal we
consider, at the cost of working in a field extension of K. This may be beneficial,
as the cost of the main algorithm (which essentially relies on the one in the
previous section) will be a polynomial of rather large degree with respect to the
degree of the ideal, whereas computation in a field extension such as K → L is
a well-understood task of cost ranging from quasi-linear to quadratic.

Our last option aims at producing a “simpler” Gröbner basis, by means of a
change of coordinates. For this, we will assume that Xn separates the points of
V (m) (over an algebraic closure of K). As a result, the ideal m being maximal,
it admits a lexicographic Gröbner basis of the form 〈X1 −G1(Xn), . . . , Xn−1 −
Gn−1(Xn), P (Xn)〉. Define ξ1 = G1(ζ), . . . , ξn−1 = Gn−1(ζ), ξn = ζ, for ζ ∈ L as
above; then, (ξ1, . . . , ξn) is the unique zero of I ′ (in fact, I ′ is m′-primary, with
m′ = 〈X1− ξ1, . . . , Xn− ξn〉). We can then apply the change of coordinates that
replaces Xi by Xi+ ξi in I ′, for all i, and call I ′′ the ideal thus obtained (so that
I ′′ is generated by the polynomials f(X1 + ξ1, . . . , Xn+ ξn), for f in I, and Xe

n).
Now, I ′′ is m′′-primary, with m′′ = 〈X1, . . . , Xn〉; one of our options will be to
compute the Gröbner basis G′′ of I ′′.

Example 1 Consider the polynomials in Q[X1, X2]

X2
1 − 2X1X2 − 2X1 +X2

2 + 2X2 + 1,

X1X
2
2 +X1X2 + 2X1 −X3

2 − 2X2
2 − 3X2 − 2,

X4
2 + 2X3

2 + 5X2
2 + 4X2 + 4,

the last of them being P (X2)2 = (X2
2 + X2 + 2)2, and let I be the ideal they

define. The polynomials above are the lexicographic Gröbner basis G of I for the
order X1 > X2. Let L = Q[Z]/〈Z2 + Z + 2〉, and let ζ be the image of Z in L;
then, the ideal I ′ = I + 〈(X2 − ζ)2〉 in L[X1, X2] admits the Gröbner basis G′

X2
1 − 2X1ζ − 2X1 + ζ − 1,

X1X2 −X1ζ −X2ζ −X2 − 2,

X2
2 − 2X2ζ − ζ − 2.

Here, we have e = 2, f = 2, D = 6 and D′ = 3. The ideal I is m-primary,
where m admits the Gröbner basis 〈X1 −X2 − 1, X2

2 +X2 + 2〉, so that we have
(ξ1, ξ2) = (ζ+1, ζ), and I ′ is m′-primary, with m′ = 〈X1−ξ1, X2−ξ2〉. Applying
the change of coordinates (X1, X2) ← (X1 + ξ1, X2 + ξ2), the resulting ideal
I ′′ admits the Gröbner basis G′′ = 〈X2

1 , X1X2, X
2
2 〉, from which we can readily

confirm that it is 〈X1, X2〉-primary.

4.2 The algorithm

We consider a zero-dimensional ideal I in K[X1, . . . , Xn]. We assume that we
know a monomial basis B = (b1, . . . , bD) of Q = K[X1, . . . , Xn]/I, so that
we let D = dimK(Q), together with the corresponding multiplication matri-
ces M1, . . . ,Mn of respectively X1, . . . , Xn. We assume that the last variable Xn

has been chosen generically; in particular, Xn separates the points of V = V (I).
The algorithm in this section computes a decomposition of I into primary

components J1, . . . , JK . Each such component Jk will be given by means of one
of the representations described in the previous subsection; we will emphasize the
first of them, the lexicographic Gröbner basis of Jk, and mention how to modify
the algorithm in order to obtain the other representations. In order to find the
primary components of I, we cannot avoid the use of factorization algorithms
over K; if desired, one may avoid this by relying on dynamic evaluation tech-
niques [7], replacing for instance the factorization into irreducibles used below
by a squarefree factorization (thus producing a decomposition of I into ideals
that are not necessarily primary). In that case, if one wishes to compute de-
scriptions such as the second or third ones introduced above, involving algebraic
numbers as coefficients, one should take into account the possibility of splittings
the defining polynomials, as is usual with this kind of approach (a complete
description of the resulting algorithm, along the lines of [6], is beyond the scope
of this paper).

The ideal I and its primary decomposition. Let Pmin ∈ K[Xn] be the min-
imal polynomial of Xn in Q, let P be its squarefree part, and let polynomials

G1, . . . , Gn−1 in K[Xn], with deg(Gi) < deg(P) for all i, be such that
√
I admits

the lexicographic Gröbner basis 〈X1 −G1(Xn), . . . , Xn−1 −Gn−1(Xn), P (Xn)〉.
We write Pmin = P e11 · · ·P

eK
K , with the Pk’s pairwise distinct irreducible poly-

nomials in K[Xn] and ek ≥ 1 for all k. In particular, the factorization of P is
P1 · · ·PK ; we write fk = deg(Pk) for all k.

Correspondingly, let V1, . . . , VK be the K-irreducible components of V and
for k = 1, . . . ,K, let mk be the maximal ideal defining Vk; hence, the reduced
lexicographic Gröbner basis of mk is 〈X1−(G1 mod Pk), . . . , Xn−1−(Gn−1 mod
Pk), Pk〉. We can then write I = J1∩· · ·∩JK , with Jk mk-primary for all k; note
that the ideal Jk is defined by Jk = I + 〈P ekk 〉. In what follows, we explain how
to compute a Gröbner basis of this ideal by means of the results of the previous
section. Without loss of generality, assume that L is such that ek = 1 for k > L
and ek ≥ 2 for k = 1, . . . , L. The fact that Xn is a generic coordinate implies
that for k > L, Jk = mk, so there is nothing left to do for such indices; hence,
we are left with showing how to use the algorithms of the previous section to
compute Gröbner bases of J1, . . . , JL.

Data representation. An element f ofQ is represented by the column vector vf
of its coordinates on the basis B, whereas a linear form ` : Q→ K is represented
by the row vector w` = [`(b1), . . . , `(bD)]. Computing `(f) is then done by means
of the dot product w` · vf . Multiplying f by Xi amounts to computing Mivf ,
and the linear form Xi · ` : g 7→ `(Xig) is obtained by computing the vector
wXi·` = w`Mi.

In terms of complexity, we assume that multiplying any matrix Mi by a vector
(either on the left or on the right) can be done in m operations in K. The naive
bound on m is O(D2), but the sparsity properties of these matrices often result
in much better estimates; see [12] for an in-depth discussion of this question. On
the other hand, we assume D ≤ m.

Computing Pmin and G1, . . . , Gn−1. First, we compute generators of
√
I.

We choose a random linear form `1 : Q → K, and we compute the values
(`1(Xi

n))0≤i<2D and `1(X1X
i
n), . . . , `1(Xn−1X

i
n), for 0 ≤ i < D. This is done by

computing 1, Xn, . . . , X
2D−1
n by repeated applications of Mn, which amounts

to O(Dm) operations, and doing the corresponding dot products with `,X1 ·
`, . . . ,Xn−1 · `. For the latter, we have to compute the linear forms Xi · ` in
O(nm) operations, then do a D×D by D× (n+ 1) matrix product, which costs
O(nD2) operations (without using fast linear algebra).

Using the algorithm given in [4], given these values, we can compute the
minimal polynomial Pmin, as well as the polynomials G1, . . . , Gn−1 describing
V (I) in O (̃D) operations in K. Then, as per the discussion in the preamble,
we assume that we have an algorithm for factoring polynomials over K, so that
(P1, e1), . . . , (PK , eK) and P can be deduced from Pmin.

Constructing the orthogonal of Jk. For k = 1, . . . ,K, we will write Qk =
K[X1, . . . , Xn]/Jk. Any linear form ` : Q → K induces a linear form ϕk(`) :
Qk → K, defined as follows.

Let Tk be the polynomial Pmin /P
ek
k . For f in Qk, let f̂ be any lift of f to

K[X1, . . . , Xn], and define ϕk(`)(f) = `(Tkf̂ mod I). Notice that this expression

is well-defined: indeed, any two lifts of f differ by an element δ of Jk = I+〈P ekk 〉,
so that Tkδ is in I, since TkP

ek
k = Pmin is.

Lemma 1. The mapping ϕk : Q∗ → Q∗k is K-linear and onto.

Proof. Linearity is clear by construction; we now prove that ϕk is onto. Let
indeed Ak, Bk in K[Xn] be such that AkTk+BkP

ek
k = 1 (they exist by definition

of Tk). Consider λ in Q∗k, and define ` in Q∗ by `(f) = λ(Akf mod Jk). Since
P ekk vanishes modulo Jk, we have AkTk = 1 mod Jk, so `(f) = λ(f mod Jk)
holds for all f in Q; this in turn readily implies that ϕk(`) = λ. ut

We saw in Subsection 2 how to associate to an element ` ∈ Q∗ a sequence u` ∈
S , by letting 〈u` | m〉 = `(m mod I). The following tautological observation will
then be useful below: for ` in Q∗, the sequences uTk·` and uϕk(`) coincide, where
uϕk(`) is defined starting from the linear form ϕk(`) ∈ Q∗k. Indeed, take any
monomial m in X1, . . . , Xn; then, ϕk(`)(m mod Jk) is defined as `(Tkm mod I),
which is equal to (Tk · `)(m mod I). We will use this remark to compute values
of ϕk(`), through the computation of values of Tk · ` instead.

In algorithmic terms, computing a single transposed product by a polynomial
T (Xn), that is, T ·`, can be done using Horner’s rule, using d right-multiplications
by Mn, with d = deg(T); this takes O(dm) operations in K. If several transposed
products are needed, such as for instance computing T1 · `, . . . , TL · ` as below,
the cost becomes O(LDm), using D as an upper bound on deg(T1), . . . ,deg(TL).
One can actually do better, by computing inductively and storing the products
Xi
n · `, for i = 0, . . . , D − 1. Then, the coefficients of T1 · `, . . . , TL · ` can be

computed as the product of the D× d′ matrix of coefficients of (Xi
n · `)0≤i<D by

the matrix of coefficients of T1, . . . , TL; the cost is O(Dm + LD2).
One can improve this idea further using subproduct tree techniques, since

the polynomials T1, . . . , TL have a very specific structure. Recall that we de-
fined Tk = Pmin /P

ek
k . Hence, all of T1, . . . , TL share a common factor R =

P
eL+1

L+1 · · ·P
eK
K . We can then treat the common factor R separately, by writing

Tk = RUk for all these indices k, and computing U1 · `′, . . . , UL · `′ instead, with
`′ = R · `. The cost to compute `′ is O(Dm).

The polynomials U1, . . . , UL have no common factor anymore, but they are
all of the form P e11 · · ·P

ek−1

k−1 P
ek+1

k+1 P
eL
L . We can then define a subproduct tree as

in [13, Chapter 10], that is, a binary tree T having the polynomials (P ekk)1≤k≤L
at its leaves, and where each node is labeled by the product of the polynomials
at its two children. We proceed in a top-down manner: we associate `′ to the
root of the tree, and recursively, if a linear form λ has been assigned to an inner
node of T , we associate to each of its children the transposed product of λ by the
polynomial labelling the other child. At the leaves, this gives us UL ·`′, . . . , UK ·`′,
as claimed. The total cost at each level is O(Dm), for a total of O(D log(L)m).

The main procedure, using the algorithm of Subsection 3.1. The first
version of the main procedure determines the Gröbner bases of JL, . . . , JK by
applying the algorithm of Subsection 3.1 to successive families of linear forms.

We maintain a list of “active” indices S, initially set to S = (1, . . . , L);
these are the indices for which we are not done yet. The algorithm proceeds

iteratively; at step i ≥ 1, we pick a random linear form `i ∈ Q∗, and compute
all `k,i = Tk · `i, for k in S. We then apply the algorithm of Subsection 3.1
to (u`k,1 , . . . ,u`k,i), for all k independently, and obtain families of polynomials
Gk,i as output. For verification purposes, we also choose a random `0 ∈ Q∗, and
compute the corresponding `k,0.

Write Dk = deg(Jk), for k ≤ K. Combining Lemma 2 and the equality
u`k,i = u(ϕk(`i)) seen above, we deduce that for a generic choice of `1, . . . , `Dk ,
(`k,1, . . . , `k,Dk) satisfies assumption H1 needed for our algorithm, and thatGk,Dk
is a Gröbner basis of Jk. In view of the discussion in Subsection 3.1, for any
i < Dk, Gk,i contains a polynomial g not in Jk. Since `0 was chosen at random,
`k,0 will in general not vanish at g; hence, at every step i, we evaluate `k,0 at
all elements of Gk,i, and continue the algorithm for this index k if we obtain a
non-zero value; else, we remove k from our list S, and append Gk,i to the output.

In terms of complexity, we will have to apply the process in the previous
paragraph to µ linear forms `D1

, . . . , `µ, with µ = maxk≤L(Dk), for a cost
O(µDm log(L)). Then, we will exploit a feature of Marinari-Möller-Mora’s sec-
ond algorithm: it is incremental in the number of linear forms given as input, so
that the overall runtime of our Dk successive invocations is the same as if we
called it once with `1, . . . , `Dk . For a given k, it adds up to O(nD2

km + nD3
k) =

O(nD2
km), where the first term describes the cost of the evaluations of the linear

forms we need (since each new value requires the product by one of the Mi).
Overall, the runtime is O(µD log(L)m + n

∑
k≤LD

2
km). This supports the com-

ment made in the introduction: if the degrees of the multiple components are
small, say Dk = O(1) for all k, this is O(nD log(D)m).

Using the algorithm of Subsection 3.2. We can adapt our main procedure
in order to use the algorithm of Subsection 3.2 instead; the main difference is
that we expect to use fewer linear forms.

For k ≤ K, let indeed tk ≤ Dk be the maximum of τ(Qk,≥1), . . . , τ(Qk,≥n),
with Qk,≥j = K[Xj , . . . , Xn]/Jk∩K[Xj , . . . , Xn], and with τ defined as in Propo-
sition 1 (for instance, if I is a complete intersection ideal, tk = 1 for all k). The
main algorithm proceeds as in the previous variant: we choose random linear
forms `1, . . . and deduce `k,i = Tk · `i; we will compute the Gröbner basis Gk of
Jk as ann(u`k,1 ,u`k,2 , . . .). We claim that we only need tk linear forms `1, . . . , `tk
in order to recover Gk.

To confirm this, we consider again assumptions H2 and H3 made in Subsec-
tion 3.2. The appendix of [4] implies that the minimal polynomial of any variable
Xi in Qk has degree at most ek, except for Xn. We already know the minimal
polynomial P ekk of Xn in Qk, so we skip the first pass in the loop of the algorithm
of Subsection 3.2, and use the value B = ek.

Regarding H3, we prove that if `1, . . . , `tk are chosen generically, assumption
H3(j) holds for j = 1, . . . , n. For i ≥ 1 and j = 1, . . . , n, define `k,i,j as the linear
form in Q∗k,≥j induced by restriction of ϕk(`i) ∈ Q∗k. Applying Proposition 1

to Qk,≥j shows that there exists a Zariski open Ωk,j ⊂ Q∗k,≥j
tk such that if

`k,1,j , . . . , `k,tk,j are in Ωk,j , they generate Q∗k,≥j as a Qk,≥j-module, and thus
(Lemma 3) Jk ∩ K[Xj , . . . , Xn] = ann(u`k,1,j , . . . ,u`k,tk,j). If this is true for

some index k and all j, H3(j) follows as well for these indices. Now, the mapping
∆k,j : (`1, . . . , `tk) 7→ (`k,1,j , . . . , `k,tk,j) is K-linear and onto (we proved above
that (`1, . . . , `tk) 7→ (ϕk(`1), . . . , ϕk(`tk)) is onto, and the surjectivity of the
projection is straightforward), so that the preimage ∆−1k,j(Ωk,j) is Zariski open

in Q∗tk for all k, j. In other words, for generic `1, . . . , `tk , H3(j) holds for all j
and all k, so the algorithm of Subsection 3.2 computes Gk for all k.

We still need to discuss what happens when applying this algorithm to
`k,1, . . . , `k,i for some i < tk. In this case, as per the discussion in Subsec-
tion 3.2, either we get generators of ann(u`k,1 , . . . ,u`k,i), which is a strict super-
set of Jk, or at least one of the polynomials in the output does not belong to
ann(u`k,1 , . . . ,u`k,i). In any case, the output contains at least one polynomial g
not in Jk, so we can use the same stopping criterion as in the previous paragraph,
using a linear form `0 to test termination.

To control the complexity, at the ith step, we now use linear forms `1, . . . , `2i ;
as a result, we need to go up to i = t, with t = maxk(tk), and the overall runtime
is proportional to that at i = t. The cost of preparing the linear forms `k,i is
O(tDm log(L)), and the cost of computing annihilators is O(nt

∑
k≤L e

2
kD

2
km).

The first term is better than the equivalent term for our first algorithm, but the
second one is obviously worse. On the other hand, the analysis in Subsection 3.2
can be refined significantly, and possibly lead to improved estimates.

Using a scalar extension. To conclude, we discuss (without giving proofs) how
to put to practice the idea introduced in Subsection 4.1 of computing Gröbner
bases of ideals of smaller degree over larger base fields, in the context (for defi-
niteness) of the algorithm of the previous paragraph.

Let `k,1, . . . , `k,tk be defined as before, let u`k,1 , . . . ,u`k,tk be the correspond-
ing sequences, and assume that these linear forms are such that the annihilator of
u`k,1 , . . . ,u`k,tk is Jk. Let further Lk be the field extension K[Z]/Pn(Z), and let
ζk be the residue class of Z in Lk Then, the annihilator of J ′k = Jk+ 〈Xn− ζk〉ek
in L[X1, . . . , Xn] has degree Dk/fk by Lemma 7, so we might want to compute it
instead of Jk. To accomplish this, we need sequences whose annihilator would be
J ′k; we do this following the same strategy as above. Define Sk = Pk/(Xn−ζk) ∈
Lk[Xn], as well as the linear form `′k,i = Sekk · `k,i : L[X1, . . . , Xn]/I → L, for
i ≥ 1. Then, one verifies that ann(u`′k,1 , . . . ,u`′k,tk

) is indeed J ′k.

Our last comment discusses the translation mentioned in Subsection 4.1. The
ideal J ′k is m′-primary, with m′ = 〈X1 − ξ1, . . . , Xn − ξn〉, as in Subsection 4.1.
To replace J ′k by a 〈X1, . . . , Xn〉-primary ideal, we need to modify the sequences
u`′k,1 , . . . ,u`′k,tk

. For i ≥ 1, let Uk,i ∈ L[[X1, . . . , Xn]] be the generating series

of u`′k,i , and let Ũk,i = 1
(1+ξ1X1)···(1+ξnXn)Uk,i(

X1

1+ξ1X1
, . . . , Xn

1+ξnXn
). Letting ũk,i

be the sequence whose generating series is Ũk,i, ann(ũk,1, . . . , ũk,tk) is indeed
the 〈X1, . . . , Xn〉-primary ideal J ′′k obtained by translation by (ξ1, . . . , ξn) in J ′k.

References

1. J. Berthomieu, B. Boyer, and J.-C. Faugère. Linear Algebra for Computing
Gröbner Bases of Linear Recursive Multidimensional Sequences. Journal of Sym-

bolic Computation, In press, 2016.
2. J. Berthomieu and J.-C Faugère. Guessing Linear Recurrence Relations of Sequence

Tuples and P-recursive Sequences with Linear Algebra. In ISSAC’16, pages 95–102.
ACM, 2016.

3. J. Berthomieu and J.-C Faugère. In-depth comparison of the Berlekamp-Massey-
Sakata and the Scalar-FGLM algorithms: the non adaptive variants. hal-01516708,
May 2017.

4. A. Bostan, B. Salvy, and É. Schost. Fast algorithms for zero-dimensional polyno-
mial systems using duality. AAECC, 14:239–272, 2003.

5. J. Brachat, P. Comon, B. Mourrain, and E. Tsigaridas. Symmetric tensor decom-
position. Linear Algebra and its Applications, 433(11):1851–1872, 2010.

6. X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the D5
principle. In Transgressive Computing, pages 149–168, 2006.

7. J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in
algebraic number fields. In EUROCAL’85, pages 289–290. Springer-Verlag, 1985.

8. D. Eisenbud. Commutative Algebra: with a view toward algebraic geometry, volume
150. Springer Science & Business Media, 2013.

9. J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Polynomial Systems Solving
by Fast Linear Algebra. https://hal.archives-ouvertes.fr/hal-00816724, 2013.

10. J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-cubic change of ordering
for Gröbner basis: a probabilistic approach. In ISSAC’14, pages 170–177. ACM,
2014.

11. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-
dimensional Gröbner bases by change of ordering. Journal of Symbolic Computa-
tion, 16(4):329–344, 1993.

12. J.-C. Faugère and C. Mou. Sparse FGLM algorithms. Journal of Symbolic Com-
putation, 80(3):538–569, 2017.

13. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, Cambridge, third edition, 2013.

14. P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations
using Groebner bases. In AAECC’87, volume 356 of Lecture Notes in Comput.
Sci., pages 247–257. Springer, Berlin, 1989.

15. W. Gröbner. Über irreduzible Ideale in kommutativen Ringen. Mathematische
Annalen, 110(1):197–222, 1935.

16. F. S. Macaulay. Modern algebra and polynomial ideals. Mathematical Proceedings
of the Cambridge Philosophical Society, 30(1):27–46, 1934.

17. M. G. Marinari, T. Mora, and H. M. Möller. Gröbner bases of ideals defined by
functionals with an application to ideals of projective points. AAECC, 4:103–145,
1993.

18. G. Moreno-Soćıas. Autour de la fonction de Hilbert-Samuel (escaliers d’ideaux
polynomiaux). PhD thesis, École polytechnique, 1991.

19. B. Mourrain. Fast algorithm for border bases of Artinian Gorenstein algebras.
ArXiv e-prints, May 2017.

20. V. Neiger. Bases of relations in one or several variables: fast algorithms and ap-
plications. PhD thesis, École Normale Supérieure de Lyon, November 2016.

21. F. Rouillier. Solving zero-dimensional systems through the rational univariate
representation. AAECC, 9(5):433–461, 1999.

22. S. Sakata. Extension of the Berlekamp-Massey algorithm to N dimensions. Infor-
mation and Computation, 84(2):207–239, 1990.

23. V. Shoup. A new polynomial factorization algorithm and its implementation.
Journal of Symbolic Computation, 20(4):363–397, 1995.

