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Algorithms for zero-dimensional ideals using linear recurrent sequences

Inspired by Faugère and Mou's sparse FGLM algorithm, we show how using linear recurrent multi-dimensional sequences can allow one to perform operations such as the primary decomposition of an ideal, by computing the annihilator of one or several such sequences.

Introduction

In what follows, K is a perfect field. We consider the set S = K N n of ndimensional sequences u = (u m ) m∈N n , and the polynomial ring K[X 1 , . . . , X n ], and we are interested in the following question. Let I ⊂ K[X 1 , . . . , X n ] be a zero-dimensional ideal. Given a monomial basis of Q = K[X 1 , . . . , X n ]/I, together with the corresponding multiplication matrices M 1 , . . . , M n , we want to compute the Gröbner bases, for a target order >, of pairwise coprime ideals J 1 , . . . , J K such that I = ∩ 1≤k≤K J k .

Faugère et al.'s paper [START_REF] Faugère | Efficient computation of zerodimensional Gröbner bases by change of ordering[END_REF] shows how to solve this question with K = 1 (so J 1 is simply I) in time O(nD 3 ), where D = deg(I); here, the degree deg(I) is the K-vector space dimension of Q. More recently, algorithms have been given with the cost bound O˜(nD ω ) [START_REF] Faugère | Polynomial Systems Solving by Fast Linear Algebra[END_REF][START_REF] Faugère | Sub-cubic change of ordering for Gröbner basis: a probabilistic approach[END_REF][START_REF] Neiger | Bases of relations in one or several variables: fast algorithms and applications[END_REF], where the notation O˜hides polylogarithmic factors, still with K = 1. The algorithms in this paper allow splittings (so K > 1 in general) and assume that > is a lexicographic order.

To motivate our approach, assume that the algebraic set V (I) is in shape position, that is, the coordinate X n separates the points of V (I). Then, the Shape Lemma [START_REF] Gianni | Algebraic solution of systems of polynomial equations using Groebner bases[END_REF] implies that the Gröbner basis of the radical √ I for the lexicographic order

X 1 > • • • > X n has the form X 1 -G 1 (X n ), . . . , X n-1 -G n-1 (X n ), P (X n ) ,
for some squarefree polynomial P , and some G 1 , . . . , G n-1 of degrees less than deg(P ). The polynomials P and G 1 , . . . , G n-1 can be deduced from the values ( (X i n )) 0≤i≤2D and ( (X j X i n )) 1≤j<n,0≤i<D , for a randomly chosen linear form : Q → K, in time O˜(D) [START_REF] Bostan | Fast algorithms for zero-dimensional polynomial systems using duality[END_REF]. The algorithms in the latter reference use baby steps / giant steps techniques for the calculation of the values of .

Similar ideas were developed in [START_REF] Faugère | Sparse FGLM algorithms[END_REF]; the algorithms in this reference make no assumption on I but may fail in some cases, then falling back on the FGLM algorithm. For instance, if I itself (rather than √ I) is known to have a lexicographic Gröbner basis of the form X 1 -H 1 (X n ), . . . , X n-1 -H n-1 (X n ), Q(X n ) , the algorithms in [START_REF] Faugère | Sparse FGLM algorithms[END_REF] recover this basis, also by considering values of linear forms i : Q → K. A key remark made in that reference is that the values of the linear forms i that we need can be computed efficiently by exploiting the sparsity of the multiplication matrices M 1 , . . . , M n ; this sparsity is then analyzed, assuming the validity of a conjecture due to Moreno-Socías [START_REF] Moreno-Socías | Autour de la fonction de Hilbert-Samuel (escaliers d'ideaux polynomiaux)[END_REF]. These techniques are related as well to Rouillier's Rational Univariate Representation algorithm [START_REF] Rouillier | Solving zero-dimensional systems through the rational univariate representation[END_REF], which uses values of a specific linear form Q → K called the trace. However, computing the trace (that is, its values on the monomial basis of Q) is non-trivial, and using random choices instead makes it possible to avoid this issue.

In this paper, we work in the continuation of [START_REF] Bostan | Fast algorithms for zero-dimensional polynomial systems using duality[END_REF]. Assuming V (I) is in shape position, the results in that reference allow us to compute the Gröbner basis of √ I, and our goal here is to recover Gröbner bases corresponding to a decomposition of I as stated above. Following [START_REF] Faugère | Sparse FGLM algorithms[END_REF][START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF], we discuss the relation of this question to instances of the following problem: given sequences u 1 , . . . , u s in S , find the Gröbner basis of their annihilator ann(u 1 , . . . , u s ) ⊂ K[X 1 , . . . , X n ], for a target order >. The annihilator, discussed in the next section, is a polynomial ideal corresponding to the linear relations which annihilate all sequences.

A direct approach to solve the FGLM problem using such techniques would be to pick initial conditions at random; knowing multiplication matrices modulo I allows us to compute the values of a sequence u, for which I is contained in ann(u). If I = ann(u) holds, computing sufficiently many values of u and feeding them into an algorithm such as Sakata's [START_REF] Sakata | Extension of the Berlekamp-Massey algorithm to N dimensions[END_REF] would solve our problem. This is often, but not always, possible: there exists a sequence u for which I = ann(u) if and only if Q = K[X 1 , . . . , X n ]/I is a Gorenstein ring, a notion going back to [START_REF] Macaulay | Modern algebra and polynomial ideals[END_REF][START_REF] Gröbner | Über irreduzible Ideale in kommutativen Ringen[END_REF] (see e.g. [START_REF] Brachat | Symmetric tensor decomposition[END_REF]Prop. 5.3] for a proof of the above assertion). This is for instance the case if I is a complete intersection, or if I is radical over a perfect field [START_REF] Eisenbud | Commutative Algebra: with a view toward algebraic geometry[END_REF]; however, an ideal such as

I = X 2 1 , X 1 X 2 , X 2 2 ⊂ K[X 1 , X 2 ]
is not Gorenstein. To remedy this, we may have to use more than one sequence, so as to be able to recover I as I = ann(u 1 , . . . , u s ). However, proceeding directly in this manner, we do not expect the algorithm to be significantly better than applying directly the FGLM algorithm (the techniques we will use for computing annihilators follow essentially the same lines as the FGLM algorithm itself). We will see that starting from the Gröbner basis of √ I, we will be able to decompose I into e.g. primary components (assuming we allow the use of factorization algorithms over K), and that our approach is expected to be competitive in those cases where the multiple components of I have low degrees. Acknowledgements. We thank the reviewers for their remarks and suggestions. The third author is supported by an NSERC Discovery Grant.

Generalities on sequences and their annihilators

Define the shift operators s 1 , . . . , s n on S in the obvious manner, by setting s i (u) = (u m+ei ) m∈N n , where e 1 , . . . , e n are the unit vectors. This makes S a K[X 1 , . . . , X n ]-module, by setting f

• u = f (s 1 , . . . , s n )(u). For f = m f m X m , the entries of f •u are thus ( u | X m f ) m∈N n , where we write X m = X m1 1 • • • X mn n and u | f = m f m u m .
To a sequence u = (u m ) m∈N n in S , we can then associate its annihilator ann(u), defined as the ideal of all polynomials f in K[X 1 , . . . , X n ] such that f • u = 0. If we consider several sequences u 1 , . . . , u s in S , we then define ann(u 1 , . . . , u s ) = ann(u 1 ) ∩ • • • ∩ ann(u s ). We will also occasionally discuss kernels of sequences. For u ∈ S , the kernel ker(u) is the K-vector space formed by all polynomials f in K[X 1 , . . . , X n ] such that u | f = 0; this is not an ideal in general. If we consider several sequences u 1 , . . . , u s , we will write ker(u 1 , . . . , u s ) = ker(u 1 ) ∩ • • • ∩ ker(u s ).

Let

I be a zero-dimensional ideal in K[X 1 , . . . , X n ]. Define the residue class ring Q = K[X 1 , . . . , X n ]/I and let D = deg(I) = dim K (Q). Consider also the dual Q * = hom K (Q, K).
To a linear form in Q * , we associate the sequence u defined by u = ( (X m mod I)) m∈N n .

For any linear form on Q, and any g in Q, define the linear form g• ∈ Q * by (g • )(h) = (gh). This induces a Q-module structure on Q * , and we remark that we have the equality g•u = u (g mod I)• for any g in K[X 1 , . . . , X n ]. Following [START_REF] Shoup | A new polynomial factorization algorithm and its implementation[END_REF] (where it is described with n = 1), we call this operation transposed product.

For in Q * , we can then define ann Q ( ) as the set of all g in Q such that g • = 0; this is an ideal of Q. The following lemma clarifies the relation between ann(u ) ⊂ K[X 1 , . . . , X n ] and ann Q ( ) ⊂ Q; it implies that ann(u ) is generated by I and any element of ann

Q ( ) lifted to K[X 1 , . . . , X n ]. Lemma 1 With notation as above, for f in K[X 1 , . . . , X n ], f is in ann(u ) if and only if f mod I is in ann Q ( ). Proof. Take f in K[X 1 , . . . , X n ]. Then f is in ann(u ) if and only if f • u = 0, that is, if and only if u (f mod I)• = 0, if and only if (f mod I) • itself is zero.
When Q * is a free Q-module of rank one, we say that Q is a Gorenstein ring, and that I is Gorenstein. In this case, there exists a linear form λ such that Q * = Q • λ; by the previous lemma, ann(u λ ) = I. Conversely, if ann(u λ ) = I, ann Q (λ) = {0}, so that Q * = Q • λ (and Q * is free of rank one). For instance, it is known that if I is radical, or I a complete intersection, then I is Gorenstein. On the other hand, if I = X 2 1 , X 1 X 2 , X 2 2 , the inclusion I ⊂ ann(u ) is strict for any linear form . Using several sequences, we can however always recover I.

Lemma 2 Let 1 , . . . , D be linearly independent in Q * , and let u 1 , . . . , u D be the corresponding sequences. Then ann(u 1 , . . . , u D ) = ker(u 1 , . . . , u D ) = I.

Proof. Note first that the inclusion Lemma 1, and that ann(u 1 , . . . , u D ) is contained in ker(u 1 , . . . , u D ). For the converse, let ω 1 , . . . , ω D be the basis of Q dual to 1 , . . . , D . Suppose that f is in ker(u 1 , . . . , u D ), and assume without loss of generality that f has been reduced by I, so that f is a linear combination of the form

I ⊂ ann(u 1 , . . . , u D ) = ann(u 1 ) ∩ • • • ∩ ann(u D ) is a direct consequence of
f 1 ω 1 + • • • + f D ω D . Fix i in 1, .
. . , D and apply i to f ; we obtain f i . On the other hand, because f is in ker(u i ), i (f ) must vanish. So we are done.

We may however need less than D linear forms, as explained in the following discussion, which generalizes the comments we made in the Gorenstein case.

Let B = (b 1 , . . . , b D ) be a monomial basis of Q. Given a linear form in Q * , we define K as the D × D matrix whose (i, j)th entry is (b i b j ); this is the matrix of the mapping f ∈ Q → f • ∈ Q * , so that its nullspace is ann Q ( ). More generally, given a positive integer s and linear forms 1 , . . . , s , we define K 1,..., s as the D × sD matrix obtained as the concatenation of K 1 , . . . , K s ; this is the matrix of the mapping (f 1 , . . . , f s )

∈ Q s → f 1 • 1 + • • • + f s • s ∈ Q * .
Lemma 3 For any linear forms 1 , . . . , s all in Q * , ann(u 1 , . . . ,

u s ) = I if and only if ( 1 , . . . , s ) are Q-module generators of Q * . Proof. ( 1 , . . . , s ) are Q-module generators of Q * if and only if K 1,..., s has rank D, if and only if K ⊥ 1 ,..
., s has a trivial nullspace. The nullspace of this matrix is the intersection of those of the matrices K ⊥ 1 , . . . , K ⊥ s . All these matrices are symmetric, and we saw that for all i, the nullspace of

K ⊥ i = K i is ann Q ( i ); thus, the condition above is equivalent to ann Q ( 1 ) ∩ • • • ∩ ann Q ( s ) = {0}. Lemma 1 shows that this is the case if and only if ann(u 1 ) ∩ • • • ∩ ann(u s ) = I.
Proposition 1 There exists a unique integer τ ≤ D such that for a generic choice of linear forms ( 1 , . . . , τ ), with all i in Q * , the sequence of ideals (ann(u 1 , . . . , u t )) 1≤t≤τ is strictly decreasing, with ann(u 1 , . . . , u τ ) = I.

Proof. Remark first that if τ exists with the properties above, it is necessarily unique. Let (L 1,1 , . . . , L 1,D ), . . . , (L D,1 , . . . , L D,D ) be new indeterminates, let L = K(L 1,1 , . . . , L D,D ) and define the matrices K L1 , . . . , K L D as follows. Let Q L = Q ⊗ K L; this allows us to define the linear forms L 1 , . . . , L D in Q * L by L t (b j ) = L t,j , for 1 ≤ t ≤ D; then K Lt is the matrix with entries L t (b i b j ). The entries of K Lt are linear forms in L t,1 , . . . , L t,D .

Define K L1,...,Lt as we did for K 1,..., t . Then, for any linear forms 1 , . . . , t in Q * , the matrix K 1,..., t is obtained by evaluating K L1,...,Lt at L t,j = t (b j ), for all t, j. The rank of K 1,..., t (over K) is at most that of K L1,...,Lt (over L).

We can then let τ be the smallest integer such that the matrix K L1,...,Lτ has full rank D. Such an index exists, and is at most D, since by Lemma 2 (and by the remarks of the above paragraph) K L1,...,L D has rank D.

Let 1 , . . . , τ be such that K 1,..., τ has rank D (this is our genericity condition); in this case, by the previous lemma, ann(u 1 , . . . , u τ ) = I. To conclude, it suffices to prove that the sequence of ideals (ann(u 1 , • • • , u t )) 1≤t≤τ is strictly decreasing. Suppose it is not the case, so that ann(u 1 , . . . , u t ) = ann(u 1 , . . . , u t+1 ) for some t < τ . Then, ann(u 1 , . . . , u t , u t+2 , . . . ,

u τ ) = I. Let us define 1 = 1 , . . . , t = t , t+1 = t+2 , . . . , τ -1 = τ . Then, we have ann(u 1 , . . . , u τ -1 ) = I, so that K 1 ,..., τ -1 has rank D.
This in turn implies (by the discussion above) that K L1,...,Lτ-1 has rank D, a contradiction.

If Q is a local algebra with maximal ideal m, we can define the socle of Q as the K-vector space of all elements f in Q such that mf = 0. For instance, if Q is local, the integer τ in the previous lemma is the dimension of the socle of Q. (we omit the proof, since we will not use this result in the rest of the paper).

Consider sequences (u 1 , . . . , u t ) with u i ∈ S for all i, let J be the annihilator ann(u 1 , . . . , u t ) ⊂ K[X 1 , . . . , X n ], and suppose that it has dimension zero; our goal is to compute a Gröbner basis of it. We first review an algorithm due to Marinari, Möller and Mora [START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF], then introduce a modification of it that relaxes some of its assumptions. As a result, the algorithms in this section work under slightly different assumptions, and feature slightly different runtimes.

An algorithm with cost (nt deg(J)) O(1) would be highly desirable, but we are not aware of any such result. Most approaches (ours as well) involve reading a number of values of u 1 , . . . , u t and looking for dependencies between the columns of what is often called a generalized Hankel matrix, built using these values; the delicate question is how to control the size of the matrix.

Consider for instance the case t = 1,

u 1 | X m1 1 • • • X mn n = 1 for m 1 + • • • + m n < δ and u 1 | X m1 1 • • • X mn n
= 0 otherwise. The annihilator J = ann(u 1 ) admits the lexicographic Gröbner basis X 1 -X n , . . . , X n-1 -X n , X δ n , so we have deg(J) = δ; on the other hand, this sequence takes deg(J)+n-1 n non-zero values, so taking them all into account leads us to an exponential time algorithm.

In the case t = 1, Mourrain in [START_REF] Mourrain | Fast algorithm for border bases of Artinian Gorenstein algebras[END_REF] associates a Hankel operator to a sequence such that the kernel of the Hankel operator corresponds to the annihilator of the sequence. Algorithm 2 in this paper computes a border basis for the kernel of such a Hankel operator, taking as input its values over a finite set of monomials. As in the FGLM algorithm, this algorithm looks for linear dependencies between the monomials in the border of already computed linearly independent monomials. However, for examples as in the previous paragraph, we are not aware of how to avoid taking into account up to deg(J)+n-1 n values. Several algorithms were also proposed in [START_REF] Berthomieu | Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences[END_REF] for computing an annihilator ann(u 1 ), and partly extended to arbitrary t in [START_REF] Berthomieu | Guessing Linear Recurrence Relations of Sequence Tuples and P-recursive Sequences with Linear Algebra[END_REF]. A first algorithm relies on the Berlekamp-Massey Algorithm, by means of a change of coordinates, which may require an exponential number of value of u 1 . The other algorithms extend the idea of FGLM, considering maximal rank sub-matrices of a truncated multi-Hankel matrix to compute a basis for the quotient algebra and a Gröbner basis. An algorithm with certified outcome (Scalar-FGLM) is presented; it considers the values of u 1 at all monomials up to a given degree deg(J), so the issue pointed out above remains. An "adaptive" version uses fewer values of the sequence, but may fail in some cases (the conditions that ensure success of this algorithm seem to be close to the genericity assumptions we introduce in Subsection 3.2). A comparison of Scalar-FGLM and Sakata's algorithm is presented in [START_REF] Berthomieu | In-depth comparison of the Berlekamp-Massey-Sakata and the Scalar-FGLM algorithms: the non adaptive variants[END_REF].

A first algorithm

The first solution we discuss requires a strong assumption (written H 1 below): for any i and for any monomial b in X 1 , . . . , X n , b • u i is in the K-span of (u 1 , . . . , u t ); as a result, the annihilator J of (u 1 , . . . , u t ) equals the nullspace ker(u 1 , . . . , u t ). For this situation, Marinari, Möller and Mora gave in [START_REF] Marinari | Gröbner bases of ideals defined by functionals with an application to ideals of projective points[END_REF] an algorithm that compute a Gröbner basis of J, for any order (for definiteness, we refer here to their second algorithm); it is an extension of both the Buchberger-Möller interpolation algorithm and the FGLM change of order algorithm.

Assumption H 1 above implies that deg(J) ≤ t, and the runtime of the algorithm, expressed in terms of n and t, is O(nt 3 ) operations in K, together with the computation of all values u i | b , 1 ≤ i ≤ t, for O(nt) monomials b. These evaluations are done in incremental order, in the sense that for any monomial b for which we need all u i | b , there exists j ∈ {1, . . . , n} such that b = X j b and all u i | b are known.

We will need the following property of this algorithm. Suppose (u 1 , . . . , u t ) is a subsequence of a larger family of sequences (u 1 , . . . , u t ) that satisfies H 1 , but that (u 1 , . . . , u t ) itself may or may not, and that (u 1 , . . . , u t ) and (u 1 , . . . , u t ) have different K-spans. Then, on input (u 1 , . . . , u t ), the algorithm will still run its course, and at least one of the elements in the output will be a polynomial g that does not belong to ann(u 1 , . . . , u t ).

An algorithm under genericity assumptions

We now give a second algorithm for computing J = ann(u 1 , . . . , u t ), whose runtime is polynomial in n, t, D = deg(J) and an integer B ≤ deg(J) defined below. We do not assume that H 1 holds, but we will require other assumptions; if they hold, the output is the lexicographic Gröbner basis G of J for the order

X 1 > • • • > X n .
Our first assumption is:

H 2 .
We are given an integer B such that the minimal polynomial of X j in K[X 1 , . . . , X n ]/J has degree at most B for all j.

For j in 1, . . . , n, we will denote by J j the ideal ann(π j (u 1 ), . . . , π j (u t )) ⊂ K[X j , . . . , X n ], where for all i, π j (u i ) is the sequence N n-j+1 → K defined by π j (u i ) | (m j , . . . , m n ) = u i | (0, . . . , 0, m j , . . . , m n ) for all (m j , . . . , m n ) in N n-j+1 ; in particular, J 1 = J. We write deg(J j ) = D j ≤ D, we let G j be the lexicographic Gröbner basis of J j , and we let B j be the corresponding monomial basis of K[X j , . . . , X n ]/J j . We can then introduce our genericity property; by contrast with H 2 , we will not necessarily assume that it holds, and discuss the outcome of the algorithm when it does not. We denote this property by H 3 (j), for j = 1, . . . , n -1.

H 3 (j). We have the equality

J j ∩ K[X j+1 , . . . , X n ] = J j+1 .
Remark that the inclusion J j ∩ K[X j+1 , . . . , X n ] ⊂ J j+1 always holds.

Suppose that for some j in 1, . . . , n, we have computed a sequence of monomials B j+1 in K[X j+1 , . . . , X n ] (if j = n, we let B j+1 = (1)). Since we will use them repeatedly, we define properties P and P as follows, the latter being stronger than the former. P(j + 1). The cardinality D j+1 of B j+1 is at most D j+1 . P (j + 1). The equality B j+1 = B j+1 holds.

Representing primary zero-dimensional ideals

Let I be a zero-dimensional ideal in K[X 1 , . . . , X n ]; we assume that I is mprimary, for some maximal ideal m, and we write D = deg(I). In this paragraph, we briefly mention some possible representations for I (our main algorithm will compute either one of these representations).

The first, and main, option we will consider is simply the Gröbner basis G of I, for the lexicographic order induced by X 1 > • • • > X n . As an alternative, consider the following construction. Our assumption on I implies that the minimal polynomial R of X n in K[X 1 , . . . , X n ]/I takes the form R = P e , for some irreducible polynomial P in K[Z], of degree say f (remark that R(X n ) is also the last polynomial in G). Let L = K[Z]/ P ; this is a field extension of degree f of K, and the residue class ζ of Z in L is a root of P . We then let I be the ideal I + (X n -ζ) e in L[X 1 , . . . , X n ], and let D be its degree. Then, a second option is to compute the lexicographic Gröbner basis G of I , for the order The point behind this construction is to lower the degree of the ideal we consider, at the cost of working in a field extension of K. This may be beneficial, as the cost of the main algorithm (which essentially relies on the one in the previous section) will be a polynomial of rather large degree with respect to the degree of the ideal, whereas computation in a field extension such as K → L is a well-understood task of cost ranging from quasi-linear to quadratic.

X 1 > • • • > X n .
Our last option aims at producing a "simpler" Gröbner basis, by means of a change of coordinates. For this, we will assume that X n separates the points of V (m) (over an algebraic closure of K). As a result, the ideal m being maximal, it admits a lexicographic Gröbner basis of the form

X 1 -G 1 (X n ), . . . , X n-1 - G n-1 (X n ), P (X n ) . Define ξ 1 = G 1 (ζ), . . . , ξ n-1 = G n-1 (ζ), ξ n = ζ, for ζ ∈ L
as above; then, (ξ 1 , . . . , ξ n ) is the unique zero of I (in fact, I is m -primary, with m = X 1 -ξ 1 , . . . , X n -ξ n ). We can then apply the change of coordinates that replaces X i by X i + ξ i in I , for all i, and call I the ideal thus obtained (so that I is generated by the polynomials f (X 1 + ξ 1 , . . . , X n + ξ n ), for f in I, and X e n ). Now, I is m -primary, with m = X 1 , . . . , X n ; one of our options will be to compute the Gröbner basis G of I .

Example 1 Consider the polynomials in

Q[X 1 , X 2 ] X 2 1 -2X 1 X 2 -2X 1 + X 2 2 + 2X 2 + 1, X 1 X 2 2 + X 1 X 2 + 2X 1 -X 3 2 -2X 2 2 -3X 2 -2, X 4 2 + 2X 3 2 + 5X 2 2 + 4X 2 + 4,
the last of them being P (X 2 ) 2 = (X 2 2 + X 2 + 2) 2 , and let I be the ideal they define. The polynomials above are the lexicographic Gröbner basis G of I for the order

X 1 > X 2 . Let L = Q[Z]/ Z 2 + Z + 2
, and let ζ be the image of Z in L; then, the ideal

I = I + (X 2 -ζ) 2 in L[X 1 , X 2 ] admits the Gröbner basis G X 2 1 -2X 1 ζ -2X 1 + ζ -1, X 1 X 2 -X 1 ζ -X 2 ζ -X 2 -2, X 2 2 -2X 2 ζ -ζ -2.
Here, we have e = 2, f = 2, D = 6 and D = 3. The ideal I is m-primary, where m admits the Gröbner basis

X 1 -X 2 -1, X 2 2 + X 2 + 2 , so that we have (ξ 1 , ξ 2 ) = (ζ + 1, ζ), and I is m -primary, with m = X 1 -ξ 1 , X 2 -ξ 2 . Applying the change of coordinates (X 1 , X 2 ) ← (X 1 + ξ 1 , X 2 + ξ 2 ), the resulting ideal I admits the Gröbner basis G = X 2 1 , X 1 X 2 , X 2 
2 , from which we can readily confirm that it is X 1 , X 2 -primary.

The algorithm

We consider a zero-dimensional ideal I in K[X 1 , . . . , X n ]. We assume that we know a monomial basis B = (b 1 , . . . , b D ) of Q = K[X 1 , . . . , X n ]/I, so that we let D = dim K (Q), together with the corresponding multiplication matrices M 1 , . . . , M n of respectively X 1 , . . . , X n . We assume that the last variable X n has been chosen generically; in particular, X n separates the points of V = V (I).

The algorithm in this section computes a decomposition of I into primary components J 1 , . . . , J K . Each such component J k will be given by means of one of the representations described in the previous subsection; we will emphasize the first of them, the lexicographic Gröbner basis of J k , and mention how to modify the algorithm in order to obtain the other representations. In order to find the primary components of I, we cannot avoid the use of factorization algorithms over K; if desired, one may avoid this by relying on dynamic evaluation techniques [START_REF] Della Dora | About a new method for computing in algebraic number fields[END_REF], replacing for instance the factorization into irreducibles used below by a squarefree factorization (thus producing a decomposition of I into ideals that are not necessarily primary). In that case, if one wishes to compute descriptions such as the second or third ones introduced above, involving algebraic numbers as coefficients, one should take into account the possibility of splittings the defining polynomials, as is usual with this kind of approach (a complete description of the resulting algorithm, along the lines of [START_REF] Dahan | On the complexity of the D5 principle[END_REF], is beyond the scope of this paper). The ideal I and its primary decomposition. Let P min ∈ K[X n ] be the minimal polynomial of X n in Q, let P be its squarefree part, and let polynomials

G 1 , . . . , G n-1 in K[X n ], with deg(G i ) < deg(P ) for all i, be such that √ I admits the lexicographic Gröbner basis X 1 -G 1 (X n ), . . . , X n-1 -G n-1 (X n ), P (X n ) .
We write P min = P e1 1 • • • P e K K , with the P k 's pairwise distinct irreducible polynomials in K[X n ] and e k ≥ 1 for all k. In particular, the factorization of P is

P 1 • • • P K ; we write f k = deg(P k ) for all k.
Correspondingly, let V 1 , . . . , V K be the K-irreducible components of V and for k = 1, . . . , K, let m k be the maximal ideal defining V k ; hence, the reduced lexicographic Gröbner basis of

m k is X 1 -(G 1 mod P k ), . . . , X n-1 -(G n-1 mod P k ), P k . We can then write I = J 1 ∩ • • • ∩ J K , with J k m k -primary for all k; note that the ideal J k is defined by J k = I + P e k k .
In what follows, we explain how to compute a Gröbner basis of this ideal by means of the results of the previous section. Without loss of generality, assume that L is such that e k = 1 for k > L and e k ≥ 2 for k = 1, . . . , L. The fact that X n is a generic coordinate implies that for k > L, J k = m k , so there is nothing left to do for such indices; hence, we are left with showing how to use the algorithms of the previous section to compute Gröbner bases of J 1 , . . . , J L . Data representation. An element f of Q is represented by the column vector v f of its coordinates on the basis B, whereas a linear form : Q → K is represented by the row vector w = [ (b 1 ), . . . , (b D )]. Computing (f ) is then done by means of the dot product w • v f . Multiplying f by X i amounts to computing M i v f , and the linear form X i • : g → (X i g) is obtained by computing the vector

w Xi• = w M i .
In terms of complexity, we assume that multiplying any matrix M i by a vector (either on the left or on the right) can be done in m operations in K. The naive bound on m is O(D 2 ), but the sparsity properties of these matrices often result in much better estimates; see [START_REF] Faugère | Sparse FGLM algorithms[END_REF] for an in-depth discussion of this question. On the other hand, we assume D ≤ m.

Computing P min and G 1 , . . . , G n-1 . First, we compute generators of √ I. We choose a random linear form 1 : Q → K, and we compute the values

( 1 (X i n )) 0≤i<2D and 1 (X 1 X i n ), . . . , 1 (X n-1 X i n ), for 0 ≤ i < D.
This is done by computing 1, X n , . . . , X 2D-1 n by repeated applications of M n , which amounts to O(Dm) operations, and doing the corresponding dot products with , X 1 • , . . . , X n-1 • . For the latter, we have to compute the linear forms X i • in O(nm) operations, then do a D × D by D × (n + 1) matrix product, which costs O(nD 2 ) operations (without using fast linear algebra).

Using the algorithm given in [START_REF] Bostan | Fast algorithms for zero-dimensional polynomial systems using duality[END_REF], given these values, we can compute the minimal polynomial P min , as well as the polynomials G 1 , . . . , G n-1 describing V (I) in O˜(D) operations in K. Then, as per the discussion in the preamble, we assume that we have an algorithm for factoring polynomials over K, so that (P 1 , e 1 ), . . . , (P K , e K ) and P can be deduced from P min .

Constructing the orthogonal of J k . For k = 1, . . . , K, we will write

Q k = K[X 1 , . . . , X n ]/J k . Any linear form : Q → K induces a linear form ϕ k ( ) : Q k → K, defined as follows.
Let T k be the polynomial P min /P e k k . For f in Q k , let f be any lift of f to K[X 1 , . . . , X n ], and define ϕ k ( )(f ) = (T k f mod I). Notice that this expression is well-defined: indeed, any two lifts of f differ by an element δ of

J k = I + P e k k , so that T k δ is in I, since T k P e k k = P min is. Lemma 1. The mapping ϕ k : Q * → Q * k is K-linear and onto. Proof. Linearity is clear by construction; we now prove that ϕ k is onto. Let indeed A k , B k in K[X n ] be such that A k T k + B k P e k k = 1 (they exist by definition of T k ). Consider λ in Q * k , and define in Q * by (f ) = λ(A k f mod J k ). Since P e k k vanishes modulo J k , we have A k T k = 1 mod J k , so (f ) = λ(f mod J k ) holds for all f in Q; this in turn readily implies that ϕ k ( ) = λ.
We saw in Subsection 2 how to associate to an element ∈ Q * a sequence u ∈ S , by letting u | m = (m mod I). The following tautological observation will then be useful below: for in Q * , the sequences u T k • and u ϕ k ( ) coincide, where u ϕ k ( ) is defined starting from the linear form ϕ k ( ) ∈ Q * k . Indeed, take any monomial m in X 1 , . . . , X n ; then, ϕ k ( )(m mod J k ) is defined as (T k m mod I), which is equal to (T k • )(m mod I). We will use this remark to compute values of ϕ k ( ), through the computation of values of T k • instead.

In algorithmic terms, computing a single transposed product by a polynomial T (X n ), that is, T • , can be done using Horner's rule, using d right-multiplications by M n , with d = deg(T ); this takes O(dm) operations in K. If several transposed products are needed, such as for instance computing T 1 • , . . . , T L • as below, the cost becomes O(LDm), using D as an upper bound on deg(T 1 ), . . . , deg(T L ). One can actually do better, by computing inductively and storing the products X i n • , for i = 0, . . . , D -1. Then, the coefficients of T 1 • , . . . , T L • can be computed as the product of the D × d matrix of coefficients of (X i n • ) 0≤i<D by the matrix of coefficients of T 1 , . . . , T L ; the cost is O(Dm + LD 2 ).

One can improve this idea further using subproduct tree techniques, since the polynomials T 1 , . . . , T L have a very specific structure. Recall that we defined T k = P min /P e k k . Hence, all of T 1 , . . . , T L share a common factor R = P k+1 P e L L . We can then define a subproduct tree as in [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Chapter 10], that is, a binary tree T having the polynomials (P e k k ) 1≤k≤L at its leaves, and where each node is labeled by the product of the polynomials at its two children. We proceed in a top-down manner: we associate to the root of the tree, and recursively, if a linear form λ has been assigned to an inner node of T , we associate to each of its children the transposed product of λ by the polynomial labelling the other child. At the leaves, this gives us U L • , . . . , U K • , as claimed. The total cost at each level is O(Dm), for a total of O(D log(L)m). The main procedure, using the algorithm of Subsection 3.1. The first version of the main procedure determines the Gröbner bases of J L , . . . , J K by applying the algorithm of Subsection 3.1 to successive families of linear forms.

We maintain a list of "active" indices S, initially set to S = (1, . . . , L); these are the indices for which we are not done yet. The algorithm proceeds iteratively; at step i ≥ 1, we pick a random linear form i ∈ Q * , and compute all k,i = T k • i , for k in S. We then apply the algorithm of Subsection 3.1 to (u k,1 , . . . , u k,i ), for all k independently, and obtain families of polynomials G k,i as output. For verification purposes, we also choose a random 0 ∈ Q * , and compute the corresponding k,0 .

Write D k = deg(J k ), for k ≤ K. Combining Lemma 2 and the equality u k,i = u(ϕ k ( i )) seen above, we deduce that for a generic choice of 1 , . . . , D k , ( k,1 , . . . , k,D k ) satisfies assumption H 1 needed for our algorithm, and that G k,D k is a Gröbner basis of J k . In view of the discussion in Subsection 3.1, for any i < D k , G k,i contains a polynomial g not in J k . Since 0 was chosen at random, k,0 will in general not vanish at g; hence, at every step i, we evaluate k,0 at all elements of G k,i , and continue the algorithm for this index k if we obtain a non-zero value; else, we remove k from our list S, and append G k,i to the output.

In terms of complexity, we will have to apply the process in the previous paragraph to µ linear forms D1 , . . . , µ , with µ = max k≤L (D k ), for a cost O(µDm log(L)). Then, we will exploit a feature of Marinari-Möller-Mora's second algorithm: it is incremental in the number of linear forms given as input, so that the overall runtime of our D k successive invocations is the same as if we called it once with 1 , . . . , D k . For a given k, it adds up to O(nD

2 k m + nD 3 k ) = O(nD 2 k m)
, where the first term describes the cost of the evaluations of the linear forms we need (since each new value requires the product by one of the M i ). Overall, the runtime is O(µD log(L)m + n k≤L D 2 k m). This supports the comment made in the introduction: if the degrees of the multiple components are small, say

D k = O(1) for all k, this is O(nD log(D)m).
Using the algorithm of Subsection 3.2. We can adapt our main procedure in order to use the algorithm of Subsection 3.2 instead; the main difference is that we expect to use fewer linear forms.

For k ≤ K, let indeed t k ≤ D k be the maximum of τ (Q k,≥1 ), . . . , τ (Q k,≥n ), with Q k,≥j = K[X j , . . . , X n ]/J k ∩K[X j , . . . , X n ], and with τ defined as in Proposition 1 (for instance, if I is a complete intersection ideal, t k = 1 for all k). The main algorithm proceeds as in the previous variant: we choose random linear forms 1 , . . . and deduce k,i = T k • i ; we will compute the Gröbner basis G k of J k as ann(u k,1 , u k,2 , . . . ). We claim that we only need t k linear forms 1 , . . . , t k in order to recover G k .

To confirm this, we consider again assumptions H 2 and H 3 made in Subsection 3.2. The appendix of [START_REF] Bostan | Fast algorithms for zero-dimensional polynomial systems using duality[END_REF] implies that the minimal polynomial of any variable X i in Q k has degree at most e k , except for X n . We already know the minimal polynomial P e k k of X n in Q k , so we skip the first pass in the loop of the algorithm of Subsection 3.2, and use the value B = e k .

Regarding H 3 , we prove that if 1 , . . . , t k are chosen generically, assumption H 3 (j) holds for j = 1, . . . , n. For i ≥ 1 and j = 1, . . . , n, define k,i,j as the linear form in

Q * k,≥j induced by restriction of ϕ k ( i ) ∈ Q * k . Applying Proposition 1 to Q k,≥j shows that there exists a Zariski open Ω k,j ⊂ Q * k,≥j t k such that if k,1,j , . . . , k,t k ,j are in Ω k,j , they generate Q * k,≥j as a Q k,≥j - 
module, and thus (Lemma 3) J k ∩ K[X j , . . . , X n ] = ann(u k,1,j , . . . , u k,t k ,j ). If this is true for some index k and all j, H 3 (j) follows as well for these indices. Now, the mapping ∆ k,j : ( 1 , . . . , t k ) → ( k,1,j , . . . , k,t k ,j ) is K-linear and onto (we proved above that ( 1 , . . . , t k ) → (ϕ k ( 1 ), . . . , ϕ k ( t k )) is onto, and the surjectivity of the projection is straightforward), so that the preimage ∆ -1 k,j (Ω k,j ) is Zariski open in Q * tk for all k, j. In other words, for generic 1 , . . . , t k , H 3 (j) holds for all j and all k, so the algorithm of Subsection 3.2 computes G k for all k.

We still need to discuss what happens when applying this algorithm to k,1 , . . . , k,i for some i < t k . In this case, as per the discussion in Subsection 3.2, either we get generators of ann(u k,1 , . . . , u k,i ), which is a strict superset of J k , or at least one of the polynomials in the output does not belong to ann(u k,1 , . . . , u k,i ). In any case, the output contains at least one polynomial g not in J k , so we can use the same stopping criterion as in the previous paragraph, using a linear form 0 to test termination.

To control the complexity, at the ith step, we now use linear forms 1 , . . . , 2 i ; as a result, we need to go up to i = t, with t = max k (t k ), and the overall runtime is proportional to that at i = t. The cost of preparing the linear forms k,i is O(tDm log(L)), and the cost of computing annihilators is O(nt k≤L e 2 k D 2 k m). The first term is better than the equivalent term for our first algorithm, but the second one is obviously worse. On the other hand, the analysis in Subsection 3.2 can be refined significantly, and possibly lead to improved estimates. Using a scalar extension. To conclude, we discuss (without giving proofs) how to put to practice the idea introduced in Subsection 4.1 of computing Gröbner bases of ideals of smaller degree over larger base fields, in the context (for definiteness) of the algorithm of the previous paragraph.

Let k,1 , . . . , k,t k be defined as before, let u k,1 , . . . , u k,t k be the corresponding sequences, and assume that these linear forms are such that the annihilator of u k,1 , . . . , u k,t k is J k . Let further L k be the field extension K[Z]/P n (Z), and let ζ k be the residue class of Z in L k Then, the annihilator of

J k = J k + X n -ζ k e k
in L[X 1 , . . . , X n ] has degree D k /f k by Lemma 7, so we might want to compute it instead of J k . To accomplish this, we need sequences whose annihilator would be J k ; we do this following the same strategy as above. Define S k = P k /(X n -ζ k ) ∈ L k [X n ], as well as the linear form k,i = S e k k • k,i : L[X 1 , . . . , X n ]/I → L, for i ≥ 1. Then, one verifies that ann(u k,1 , . . . , u k,t k

) is indeed J k . Our last comment discusses the translation mentioned in Subsection 4.1. The ideal J k is m -primary, with m = X 1 -ξ 1 , . . . , X n -ξ n , as in Subsection 4.1. To replace J k by a X 1 , . . . , X n -primary ideal, we need to modify the sequences u k,1 , . . . , u k,t k

. For i ≥ 1, let U k,i ∈ L[[X 1 , . . . , X n ]] be the generating series of u k,i , and let Ũk,i = 1 (1+ξ1X1)•••(1+ξnXn) U k,i ( X1 1+ξ1X1 , . . . , Xn 1+ξnXn ). Letting ũk,i be the sequence whose generating series is Ũk,i , ann( ũk,1 , . . . , ũk,t k ) is indeed the X 1 , . . . , X n -primary ideal J k obtained by translation by (ξ 1 , . . . , ξ n ) in J k .

Lemma 7

 7 The following lemma relates D and D . The ideal I has degree D = D/f . Proof. Let M be the splitting field of P and let ζ 1 , . . . , ζ f be the roots of P in M. The ideals J i = I + (X n -ζ i ) e ⊂ [X 1 , . . . , X n ] are such that deg(J 1 ) + • • • + deg(J f ) = deg(I). On the other hand, there exist f embeddings σ 1 , . . . , σ f of L into M, with σ i given by ζ → ζ i ; as a result, deg(I ) = deg(J i ) holds for all i, and the claim follows.

  e L+1 L+1 • • • P e K K . We can then treat the common factor R separately, by writing T k = RU k for all these indices k, and computing U 1 • , . . . , U L • instead, with = R • . The cost to compute is O(Dm). The polynomials U 1 , . . . , U L have no common factor anymore, but they are all of the form P e1 1 • • • P e k-1 k-1 P e k+1

We describe in the following paragraphs a procedure that computes a new family of monomials B j , and we give conditions under which they satisfy P(j) and P (j).

We call a family of monomials B in K[X j , . . . , X n ] independent if their images are K-linearly independent modulo J j (we call it dependent otherwise). We denote by M B the matrix with entries u i | bb , with rows indexed by i = 1, . . . , t and b in C j+1 = B j+1 × (1, X j , . . . , X B-1

j

), and columns indexed by b in B (for any monomial b in K[X j , . . . , X n ], M b is the column vector defined similarly).

Lemma 4 If B is dependent, the right nullspace of M B is non-trivial. If both P (j + 1) and H 3 (j) hold, the converse is true.

Proof. Any K-linear relation between the elements of B induces the same relation between the columns of M B , and the first point follows.

By definition, a polynomial f in K[X j , . . . , X n ] belongs to J j if and only if it annihilates π j (u 1 ), . . . , π j (u t ), that is, if π j (u i ) | X mj j . . . X mn n f = 0 for all (m j , . . . , m n ) in N n-j+1 and all i = 1, . . . , t. Now, assumptions P (j + 1), H 2 and H 3 (j) imply that C j+1 generates K[X j , . . . , X n ]/J j , so that f is in J j if and only if u i | bf = 0, for all b in C j+1 and all i = 1, . . . , t.

The following lemma, that essentially follows the argument used in the proof of the FGLM algorithm [START_REF] Faugère | Efficient computation of zerodimensional Gröbner bases by change of ordering[END_REF], will be useful to justify our algorithm as well. Proof. We prove the result by induction on u ≥ 0, the case u = 0 being vacuously true. Assuming the claim is true for some index u ≥ 0, we prove it for u + 1. We proceed by contradiction, and we let b be the smallest monomial such that b u < b < b u+1 and {b 1 , . . . , b u , b} is an independent family (b exists by the well-ordering property of monomial orders).

We will use the fact that any monomial c less than b can be rewritten as a linear combination of b Suppose that P(j + 1) holds. Then, the algorithm at step j proceeds as follows. We compute the reduced row echelon form of M Cj+1 . Using assumption P(j + 1), this matrix has at most tBD j+1 rows and at most BD j+1 columns, and it has rank at most D j (by the first item of Lemma 4). This computation can be done in time O(tB 2 D 2 j+1 D j ) ∈ O(tB 2 D 3 ). The column indices of the pivots allow us to define the monomials

), for some D j ≤ D j .

Lemma 6 Property P(j) holds, and if P (j +1) and H 3 (j) hold, then P (j) holds.

Proof. The first item is a restatement of the inequality D j ≤ D j . To prove the second item, assuming that P (j + 1) and H 3 (j) hold, we deduce from Lemma 4 that the columns indexed by the genuine B j form a column basis of M Cj+1 , and we claim that it is actually the lexicographically smallest column basis (this will prove that B j = B j ). Indeed, write 

Thus, running this procedure for j = n, . . . , 1, we maintain P(j); this implies that the running time is O(ntB 2 D 3 ), computing the values u i | b , for 1 ≤ i ≤ t, for O(nB 2 D 2 ) monomials b (with the same monotonic property as in the previous subsection). If H 3 (j) holds for all j, the second item in the last lemma proves that B 1 = B 1 , the monomial basis of K[X 1 , . . . , X n ]/J.

Once B 1 is known, we compute and return a family of polynomials G defined as follows. We determine the sequence ∆ of elements in

all of whose factors are in B 1 (finding them does not require any operation in K; this can be done by using e.g. a balanced binary search tree with the elements of B 1 , using a number of comparisons that is quasi-linear time in nD). Then, we rewrite each column M b , for b in ∆, as a linear combination of the form If H 3 (j) holds for all j, since B 1 = B 1 , the fact that G = G follows from Lemma 4. Assume now that G differs from G; we prove that there exists an element in G not in J (we will use this in our main algorithm to detect failure cases). Indeed, in this case, B 1 must be different from B 1 , and since B 1 has cardinality at most equal to that of B 1 , there exists a monomial b in B 1 not in B 1 . This in turn implies that there exists an element g in G that divides b, and thus with leading term in B 1 . Reducing g modulo G, we must then obtain a non-zero remainder, so that g does not belong to J.