
HAL Id: hal-01558029
https://hal.science/hal-01558029

Preprint submitted on 6 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Controlling a Population
Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert

To cite this version:
Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert. Controlling a Population. 2017.
�hal-01558029�

https://hal.science/hal-01558029
https://hal.archives-ouvertes.fr

Controlling a Population
Nathalie Bertrand1, Miheer Dewaskar2, Blaise Genest3, and Hugo
Gimbert4

1 Inria, IRISA, Rennes, France
2 CMI, Chennai, India
3 CNRS, IRISA, Rennes, France
4 CNRS, LaBRI, Bordeaux, France

Abstract
We introduce a new setting where a population of agents, each modelled by a finite-state system,
are controlled uniformly: the controller applies the same action to every agent. The framework
is largely inspired by the control of a biological system, namely a population of yeasts, where the
controller may only change the environment common to all cells. We study a synchronisation
problem for such populations: no matter how individual agents react to the actions of the con-
troller, the controller aims at driving all agents synchronously to a target state. The agents are
naturally represented by a non-deterministic finite state automaton (NFA), the same for every
agent, and the whole system is encoded as a 2-player game. The first player (Controller) chooses
actions, and the second player (Agents) resolves non-determinism for each agent. The game with
m agents is called the m-population game. This gives rise to a parameterized control problem
(where control refers to 2 player games), namely the population control problem: can Controller
control the m-population game for all m ∈ N whatever Agents does?

In this paper, we prove that the population control problem is decidable, and it is a EXPTIME-
complete problem. As far as we know, this is one of the first results on parameterized control.
Our algorithm, not based on cut-off techniques, produces winning strategies which are symbolic,
that is, they do not need to count precisely how the population is spread between states. We also
show that if there is no winning strategy, then there is a population size M such that Controller
wins the m-population game if and only if m ≤ M . Surprisingly, M can be doubly exponential
in the number of states of the NFA, with tight upper and lower bounds.

1 Introduction

Finite-state controllers, implemented by software, find applications in many different domains:
telecommunication, planes, etc. There have been many theoretical studies from the model
checking community to show that finite-state controllers are sufficient to control systems in
idealised settings. Usually, the problem would be modeled as a game: some players model
the controller, and some players model the system [5], the game settings (number of players,
their power, their observation) depending on the context.

Lately, finite-state controllers have been used to control living organisms, such as a
population of yeasts [23]. In this application, microscopy is used to monitor the fluorescence
level of a population of yeasts, reflecting the concentration of some molecule, which differs
from cell to cell. Finite-state systems can model a discretisation of the population of
yeasts [3,23]. The frequency and duration of injections of a sorbitol solution can be controlled,
being injected uniformly into a solution in which the yeast population is immerged. However,
the response of each cell to the osmotic stress induced by sorbitol varies, influencing the
concentration of the fluorescent molecule. The objective is to control the population to drive
it through a sequence of predetermined fluorescence states.

In this paper, we model this system of yeasts in an idealised setting: we require the
(perfectly-informed) controller to surely lead synchronously all agents of a population to a

XX:2 Controlling a Population

state (one of the predetermined fluorescence states). Such a population control problem does
not fit in traditional frameworks from the model checking community. We thus introduce the
m-population game, where a population of m identical agents is controlled uniformly. Each
agent is modeled as a nondeterministic finite-state automaton (NFA), the same for each
agent. The first player, called Controller, applies the same action, a letter from the NFA
alphabet, to every agent. Its opponent, called Agents, chooses the reaction of each individual
agent. These reactions can be different due to non determinism. The objective for Controller
is to gather all agents synchronously in the target state (which can be a sink state w.l.o.g.),
and Agents seeks the opposite objective. While this idealised setting may not be entirely
satisfactory, it constitutes a simple setting, as a first step towards more complex settings.

Dealing with large populations explicitly is in general intractable due to the state-space
explosion problem. We thus consider the associated symbolic parameterized control problem,
asking to reach the goal independently of the population size. We prove that this problem
is decidable. While parameterized verification received recently quite some attention (see
related work), our results are one of the first on parameterized control, as far as we know.

Our results. We first show that considering an infinite population is not equivalent to
the parameterized control problem for all non zero integer m: there are cases where Controller
cannot control an infinite population but can control every finite population. Solving the
∞-population game reduces to checking a reachability property on the support graph [21],
which can be easily done in PSPACE. On the other hand, solving the parameterized control
problem requires new proof techniques, data structures and algorithms.

We easily obtain that when the answer to the population control problem is negative, there
exists a population size M , called the cut-off, such that Controller wins the m-population
game if and only if m ≤ M . Surprisingly, we obtain a lower-bound on the cut-off doubly
exponential in the number of states of the NFA. Following usual cut-off techniques would
thus yield an inefficient algorithm of complexity at least 2EXPTIME.

To obtain better complexity, we developped new proof techniques (not based on cut-off
techniques). Using them, we prove that the population control problem is EXPTIME-complete.
As a byproduct, we obtain a doubly exponential upper-bound for the cut-off, matching the
lower-bound. Our techniques are based on a reduction to a parity game with exponentially
many states and a polynomial number of priorities. The parity game gives some insight on
the winning strategies of Controller in the m-population games. Controller selects actions
based on a set of transfer graphs, giving for each current state the set of states at time i from
which agent came from, for different values of i. We show that it suffices for Controller to
remember at most a quadratic number of such transfer graphs, corresponding to a quadratic
number of indices i. If Controller wins this parity game then he can uniformly apply his
winning strategy to all m-population games, just keeping track of these transfer graphs,
independently of the exact count in each state. If Agents wins the parity game then he also
has a uniform winning strategy in m-population games, for m large enough, which consists
in splitting the agents evenly among all transitions of the transfer graphs.

Related work. Parameterized verification of systems with many identical components
started with the seminal work of German and Sistla in the early nineties [16], and received
recently quite some attention. The decidability and complexity of these problems typically
depend on the communication means, and on whether the system contains a leader (following
a different template) as exposed in the recent survey [13]. This framework has been extended
to timed automata templates [1, 2] and probabilistic systems with Markov decision processes
templates [6, 7]. Another line of work considers population protocols [4, 15]. Close in spirit,
are broadcast protocols [14], in which one action may move an arbitrary number of agents

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:3

from one state to another. Our model can be modeled as a subclass of broadcast protocols,
where broadcasts emissions are self loops at a unique state, and no other synchronisation
allowed. The parameterized reachability question considered for broadcast protocols is
trivial in our framework, while our parameterized control question would be undecidable for
broadcast protocols. In these different works, components interact directly, while in our work,
the interaction is indirect via the common action of the controller. Further, the problems
considered in related work are pure verification questions, and do not tackle the difficult
issue of synthesising a controller for all instances of a parameterized system, which we do.

There are very few contributions pertaining to parameterized games with more than one
player. The most related is [20], which proves decidability of control of mutual exclusion-like
protocols in the presence of an unbounded number of agents. Another contribution in that
domain is the one of broadcast networks of identical parity games [7]. However, the game
is used to solve a verification (reachability) question rather than a parametrized control
problem as in our case. Also the roles of the two players are quite different.

The winning condition we are considering is close to synchronising words. The original
synchronising word problem asks for the existence of a word w and a state q of a deterministic
finite state automaton, such that no matter the initial state s, reading w from s would lead to
state q (see [24] for a survey). Lately, synchronising words have been extended to NFAs [21].
Compared to our settings, the author assumes a possibly infinite population of agents, who
could leak arbitrarily often from a state to another. The setting is thus not parametrized,
and a usual support arena suffices to obtain a PSPACE algorithm. Synchronisation for
probabilistic models [11, 12] have also been considered: the population of agents is not finite
nor discrete, but rather continuous, represented as a distribution. The distribution evolves
deterministically with the choice of the controller (the probability mass is split according to
the probabilities of the transitions), while in our setting, each agent can non deterministically
move. This continuous model makes the parameterized verification question moot. In [11],
the controller needs to apply the same action whatever the state the agents are in (like
our setting), and then the existence of a controller is undecidable. In [12], the controller
can choose the action depending on the state each agent is in (unlike our setting), and the
existence of a controller reaching uniformly a set of states is PSPACE-complete.

Last, our parameterized control problem can be encoded as a 2-player game on VASS [9],
with one counter per state of the NFA: the opponent gets to choose the population size
(encoded as a counter value), and for each action chosen by the controller, the opponent
chooses how to move each agent (decrementing a counter and incrementing another). However,
such a reduction yields a symmetrical game on VASS in which both players are allowed to
modify the counter values, in order to check that the other player did not cheat. Symmetrical
games on VASS are undecidable [9], and their asymmetric variant (in which only one player
is allowed to change the counter values) are decidable in 2EXPTIME [19], thus with higher
complexity than our specific parameterized control problem.

2 The population control problem

2.1 The m-population game
A nondeterministic finite automaton (NFA for short) is a tuple A = (Q,Σ, q0,∆) with Q
a finite set of states, Σ a finite alphabet, q0 ∈ Q an initial state, and ∆ ⊆ Q × Σ × Q
the transition relation. We assume throughout the paper that NFAs are complete, that is,
∀q ∈ Q, a ∈ Σ ,∃p ∈ Q : (q, a, p) ∈ ∆. In the following, incomplete NFAs, especially in
figures, have to be understood as completed with a sink state.

XX:4 Controlling a Population

q0

q1

q2

f
δ

δ

δ

δ

b

a

b
a

a, b a, b, δ

Figure 1 An exemple of NFA: The splitting gadget Asplit.

For every integer m, we consider a system Am with m identical agents A1, . . . ,Am of
the NFA A. The system Am is itself an NFA (Qm,Σ, qm

0 ,∆m) defined as follows. Formally,
states of Am are called configurations, and they are tuples q = (q1, . . . , qm) ∈ Qm describing
the current state of each agent in the population. We use the shorthand q0[m], or simply q0
when m is clear from context, to denote the initial configuration (q0, . . . , q0) of Am. Given a
target state f ∈ Q, the f -synchronizing configuration is fm = (f, . . . , f) in which each agent
is in the target state.

The intuitive semantics of Am is that at each step, the same action from Σ applies to
all agents. The effect of the action however may not be uniform given the nondeterminism
present in A: we have ((q1, . . . , qm), a, (q′1, . . . , q′m)) ∈ ∆m iff (qj , a, q

′
j) ∈ ∆ for all j ≤ m.

A (finite or infinite) play in Am is an alternating sequence of configurations and actions,
starting in the initial configuration: π = q0a0q1a1 · · · such that (qi, ai,qi+1) ∈ ∆m for all i.

This is the m-population game between Controller and Agents, where Controller chooses
the actions and Agents chooses how to resolve non-determinism. The objective for Controller
is to gather all agents synchronously in f while Agents seeks the opposite objective.

Our parameterized control problem asks whether Controller can win the m-population
game for every m ∈ N. A strategy of Controller in the m-population game is a function
mapping finite plays to actions, σ : (Qm × Σ)∗ × Qm → Σ. A play π = q0a0q1a1q2 · · · is
said to respect σ, or is a play under σ, if it satisfies ai = σ(q0a0q1 · · ·qi) for all i ∈ N. A play
π = q0a0q1a1q2 · · · is winning if it hits the f -synchronizing configuration, that is qj = fm

for some j ∈ N. Controller wins the m-population game if he has a strategy such that all
plays under this strategy are winning. One can assume without loss of generality that f is a
sink state. If not, it suffices to add a new action leading tokens from f to the new target
sink state , and tokens from other states to a losing sink state /. The goal of this paper is
to study the following parameterized control problem:

Population control problem
Input: An NFA A = (Q, q0, qu,Σ,∆) and a target state f ∈ Q.
Output: Yes iff for every integer m Controller wins the m-population game.

For a fixed m, the winner of the m-population game can be determined by solving the
underlying reachability game with |Q|m states, which is intractable for large values of m.
On the other hand, the answer to the population control problem gives the winner of the
m-population game for arbitrary large values of m. To obtain a decision procedure for this
parameterised problem, new data structures and algorithmic tools need to be developed,
much more elaborate than the standard algorithm solving reachability games.

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:5

I Example 1. We illustrate the population control problem with the example Asplit on
alphabet {a, b, δ} in Figure 1. Here, to represent configurations we use a counting abstraction,
and identify q with the vector (n0, n1, n2, n3), where n0 is the number of agents in state q0,
and so on. Under these notations, there is a way to gather agents synchronously to f . We can
give a symbolic representation of a memoryless winning strategy σ: ∀k0, k1 > 0, ∀k2, k3 ≥
0, σ(k0, 0, 0, k3) = δ, σ(0, k1, k2, k3) = a, σ(0, 0, k2, k3) = b. Indeed, the number of agents
outside f decreases by at least one at every other step. The properties of this example will
be detailed later and play a part in proving a lower bound (see Proposition 19).

2.2 Parameterized control and cut-off
A first observation for the population control problem is that q0[m], fm and Qm are stable
under a permutation of coordinates. A consequence is that the m-population game is also
symmetric under permutation, and thus the set of winning configurations is symmetric
and the winning strategy can be chosen uniformly from symmetric winning configurations.
Therefore, if Controller wins the m-population game then he has a positional winning strategy
which only counts the number of agents in each state of A (the counting abstraction used in
Example 1).

I Proposition 2. Let m ∈ N. If Controller wins the m-population game, then he wins the
m′-population game for every m′ ≤ m.

Proof. Let m ∈ N, and assume σ is a winning strategy for Controller in Am. For m′ ≤ m we
define σ′ as a strategy on Am′ , inductively on the length of finite plays. Initially, σ′ chooses
the same first action as σ: σ′(qm′

0) = σ(qm
0). We then arbitrarily choose that the missing

m−m′ agents would behave similarly as the first agent. This is indeed a possible move for the
adversary in Am. Then, for any finite play under σ′ in Am′ , say π′ = qm′

0 a0qm′

1 a1qm′

2 · · ·qm′

n ,
there must exist an extension π of π′ obtained by adding m−m′ agents, all behaving as the
first agent in Am′ , that is consistent with σ. Then, we let σ′(π′) = σ(π). Obviously, since σ
is winning in Am, σ′ is also winning in Am′ . J

The idea to define σm′ is to simulate the missing m−m′ agents arbitrarily and apply σm.

Hence, when the answer to the population control problem is negative, there exists a
cut-off, that is a value M ∈ N such that for every m < M , Controller has a winning strategy
in Am, and for every m ≥M , he has no winning strategy.

I Example 3. To illustrate the notion of cut-off, consider the NFA on alphabet A∪{b} from
Figure 2. Unspecified transitions lead to a sink state /.

The cut-off is M = |Q| − 2 in this case. Indeed, we have the following two directions:

On the one hand, for m < M , there is a winning strategy σm in Am to reach fm, in just
two steps. It first plays b, and because m < M , in the next configuration, there is at least
one state qi such that no agent is in qi. It then suffices to play ai to win.

Now, if m ≥ M , there is no winning strategy to synchronize in f , since after the first
b, agents can be spread so that there is at least one agent in each state qi. From there,
Controller can either play action b and restart the whole game, or play any action ai, leading
at least one agent to the sink state /.

XX:6 Controlling a Population

2.3 Main results
Our main result is the decidability of the population control problem:

I Theorem 4. The population control problem is EXPTIME-complete.

When the answer to the population control problem is positive, there exists a symbolic
strategy σ, applicable to all instances Am, that does not need to count the number of agents
in each state. This symbolic strategy requires exponential memory. Otherwise, the cut-off is
at most doubly exponential, which is asymptotically tight.

I Theorem 5. In case the answer to the population control problem is negative, the cut-off
is at most ≤ 22O(|Q|4) . There is a family of NFA (An) of size O(n) and whose cut-off is 22n .

3 The capacity game

The objective of this section is to show that the population control problem is equivalent to
solving a game called the capacity game. To introduce useful notations, we first recall the
population game with infinitely many agents, as studied in [21] (see also [22] p.81).

3.1 The ∞-population game
To study the ∞-population game, the behaviour of infinitely many agents is abstracted into
supports which keep track of the set of states in which at least one agent is. We thus introduce
the support game, which relies on the notion of transfer graphs. Formally, a transfer graph is
a subset of Q×Q describing how agents are moved during one step. The domain of a transfer
graph G is Dom(G) = {q ∈ Q | ∃(q, r) ∈ G} and its image is Im(G) = {r ∈ Q | ∃(q, r) ∈ G}.
Given an NFA A = (Q,Σ, q0,∆) and a ∈ Σ, the transfer graph G is compatible with a if for
every edge (q, r) of G, (q, a, r) ∈ ∆. We write G for the set of transfer graphs.

The support game of an NFA A is a two-player reachability game played by Controller
and Agents on the support arena as follows. States are supports, i.e., non-empty subsets of
Q and the play starts in {q0}. The goal support is {f}. From a support S, first Controller
chooses a letter a ∈ Σ, then Agents chooses a transfer graph G compatible with a and such
that Dom(G) = S, and the next support is Im(G). A play in the support arena is described
by the sequence ρ = S0

a1,G1−→ S1
a2,G2−→ . . . of supports and actions (letters and transfer graphs)

of the players. Here, Agents best strategy is to play the maximal graph possible (this is not
the case with discrete populations), and we obtain a PSPACE-complete algorithm [21]:

I Proposition 6. Controller wins the ∞-population game iff he wins the support game.

As a consequence, the winner of the ∞-population game can be computed in EXPTIME.
However, this is of no use for deciding the population control problem, because Controller

q0

q1

...

qM

f

b

b

b
A \ a1

A \ aM

b

A ∪ {b}

Figure 2 Illustration of the cut-off.

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:7

q0

q1

a a

a

a

•q0

•q1

•q0

•q1
G

•q0

•q1

•q0

•q1
H G

•

•

•

•

•

•
H

•

•

•

•
G G

•

•
H

· · ·

Figure 3 An NFA, two transfer graphs, and a play with finite yet unbounded capacity.

might win every m-population game (with m < ∞) and at the same time lose the ∞-
population game. This is demonstrated by the example from Figure 1. As already shown,
Controller wins any m-population game with m < ∞. However, Agents can win the ∞-
population game by splitting agents from q0 to both q1 and q2 each time Controller plays δ.
This way, the sequence of supports is {q0}{q1, q2}({q0, f}{q1, q2, f})∗, which never hits {f}.

3.2 Realisable plays
Plays of the m-population game (for m < ∞) can be abstracted as plays in the support
game, by forgetting the identity of agents and keeping only track of edges that are used by
at least one agent. Formally, given a play π = q0a0q1a1q2 · · · of the m-population game,
define for every integer n, Sn = {q ∈ Q | ∃1 ≤ i ≤ m,qm[i] = q} and Gn+1 = {(s, t) | ∃1 ≤
i ≤ m,qn[i] = s ∧ qn+1[i] = t}. Then S0

a1,G1−→ S1
a2,G2−→ . . . is a play in the support arena,

denoted Φm(π) and called the projection of π.
Not every play in the support arena can be obtained by projection, as in the example

from Figure 1 where some plays of the support game use infinitely often the edge from q1
to f , however in any m-population game each of the m agents might use this edge at most
once. We distinguish between these two types of plays using the notion of realisable plays.

I Definition 7 (Realisable plays). A play of the support game is realisable if there exists
m <∞ such that it is the projection by Φm of a play in the m-population game.

A key observation is that realisability can be characterized in terms of capacity.

I Definition 8 (Plays with finite and bounded capacity). Let ρ = S0
a1,G1−→ S1

a2,G2−→ . . . be a
play in the support arena.

An accumulator of ρ is a sequence T = (Tj)j∈N such that for every integer j, Tj ⊆ Sj ,
and which is successor-closed i.e., for every j ∈ N, (s ∈ Tj ∧ (s, t) ∈ Gj+1) =⇒ t ∈ Tj+1 .

For every j ∈ N, an edge (s, t) ∈ Gj+1 is an entry to T if s 6∈ Tj and t ∈ Tj+1.
A play has finite capacity if all its accumulators have finitely many entries, infinite capacity

otherwise, and bounded capacity if the number of entries of its accumulators is bounded.

Bounded capacity is actually equivalent to realisability.

I Lemma 9. A play is realisable iff it has bounded capacity.

An example is given on Figure 3 which represents an NFA, two transfer graphs G and H,
and a play GHG2HG3 · · · . Obviously, this play is not realisable because at least n agents
are needed to realise n transfer graphs G in a row: at each G step, at least one agent moves

XX:8 Controlling a Population

from q0 to q1, and no new agent enters q0. A simple analysis shows that there are only two
kinds of non-trivial accumulators (Tj)j∈N depending on whether their first non-empty Tj is
{q0} or {q1}. We call these top and bottom accumulators, respectively. All accumulators
have finitely many entries, thus the play has finite capacity. However, for every n ∈ N there
is a bottom accumulator with 2n entries. As an example, a bottom accumulator with 4
entries (in red) is depicted on the figure. Therefore, the capacity of this play is not bounded.

Proof of Lemma 9. Let ρ = S0
a1,G1−→ S1

a2,G2−→ · · · be a realisable play in the support arena
and π = q0q1q2 · · · a play in the m-population game for some m, such that Φm(π) = ρ. For
any accumulator T = (Tj)j∈N accumulator of ρ, let us show that T has less than m entries.
For every j ∈ N, we define nj =| {1 ≤ k ≤ m | qj(k) ∈ Tj} | as the number of agents in the
accumulator at index j. By definition of the projection, every edge (s, t) in Gj corresponds
to the move of at least one agent from state s in qj to state t in qj+1. Thus, since the
accumulator is successor-closed, the sequence (nj)j∈N is non-decreasing and it increases at
each index j where the accumulator has an entry. The number of entries is thus bounded by
m the number of agents.

Conversely, assume that a play ρ = S0
a1,G1−→ S1

a2,G2−→ · · · has bounded capacity, and let
m be an upper bound on the number of entries of its accumulators. Let us show that ρ is
the projection of a play π = q0q1q2 · · · in the (|S0||Q|m+1)-population game. In the initial
configuration q0, every state in S0 contains |Q|m+1 agents. Then, configuration qn+1 is
obtained from qn by splitting evenly the agents among all edges of Gn+1. As a consequence,
for every edge (s, t) ∈ Gn+1 at least a fraction 1

|Q| of the agents in state s in qn moves to state

t in qn+1. By induction, π = q0q1q2 · · · projects to some play ρ′ = S′0
a1,G′

1−→ S′1
a2,G′

2−→ · · ·
such that for every n ∈ N, S′n ⊆ Sn and G′n ⊆ Gn. To prove that ρ′ = ρ, we show that for
every n ∈ N and state t ∈ Sn, at least |Q| agents are in state t in qn. For that let (Uj)j∈0...n

be the sequence of subsets of Q defined by Un = {t}, and for 0 < j < n,

Uj−1 = {s ∈ Q | ∃t′ ∈ Uj , (s, t′) ∈ Gj} .

Let (Tj)j∈N be the sequence of subsets of states defined by Tj = Q \ Uj if j ≤ n and Tj = Q

otherwise. Then (Tj)j∈N is an accumulator: if s 6∈ Uj and (s, s′) ∈ Gj then s′ 6∈ Uj+1. As a
consequence, (Tj)j∈N has at most m entries, thus there are at most m indices j ∈ {0 . . . n−1}
such that some agents in the states of Uj in configuration qj may move to states outside
of Uj+1 in configuration qj+1. In other words, if we denote Mj the number of agents in
the states of Uj in configuration qj then there are at most m indices where the sequence
(Mj)j∈0...n decreases. By definition of π, even when Mj > Mj+1 at least a fraction 1

|Q|

of the agents moves from Uj to Uj+1 along the edges of Gj+1, thus Mj+1 ≥ Mj

|Q| . Finally,
the number of agents Mn in state t in qn satisfies Mn ≥ |S0||Q|m+1

|Q|m ≥ |Q|. Hence ρ and ρ′
coincide, so that ρ is realisable. J

3.3 The capacity game
An obvious hint to obtain a game on the support arena equivalent with the population control
problem is to make the winning condition tougher for Agents, letting him lose whenever the
play is not realisable, i.e. whenever the play has unbounded capacity. However, bounded
capacity is not a regular property for runs, so that it is not convenient to use it as a winning
condition. On the contrary, finite capacity is a regular property, and the corresponding

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:9

abstraction of the population game, called the capacity game, can be used to decide the
population control problem.

I Definition 10 (Capacity game). The capacity game is the game played on the support
arena, where Controller wins a play iff either the play reaches {f} or the play has infinite
capacity. A player wins the capacity game if he has a winning strategy in this game.

I Theorem 11. The answer to the population control problem is positive iff Controller wins
the capacity game, which is decidable.

This theorem is a direct corollary of the following proposition:

I Proposition 12. Either Controller or Agents wins the capacity game. The winner has a
winning strategy with finite memory M of size O

(
22|Q|

)
. In case Controller is the winner

of the capacity game, he wins all m-population games, for every integer m. In case Agents is
the winner of the capacity game, he wins the |Q|1+|M|·4|Q|

-population game.

Proof. We start with the first assertion. Whether a play has infinite capacity can be verified
by a non-deterministic Büchi automaton of size 2|Q| on the alphabet of transfer graphs, which
guesses an accumulator on the fly and checks that it has infinitely many entries. This Büchi
automaton can be determinised into a parity automaton (e.g. using Safra’s construction)
with state space M of size O

(
22|Q|

)
. The synchronized product of this deterministic parity

automaton with the support game produces a parity game which is equivalent with the
capacity game, in the sense that, up to unambigous synchronization with the deterministic
automaton, plays and strategies in both games are the same and the synchronization preserves
winning plays and strategies. Since parity games are determined and positional [25], either
Controller or Agents has a positional winning strategy in the parity game, thus either
Controller or Agents has a winning strategy with finite memory M in the capacity game.
Let us prove the second assertion. Assuming that Controller wins the capacity game with a
strategy σ, he can win any m-population game, m <∞, with the strategy σm = σ ◦Φm. By
definition, the projection of every infinite play of the m-population game is realisable thus
has bounded capacity (Lemma 9). This holds in particular for every play consistent with σm.
Since the projection of such a play is consistent with σ, and since σ wins the capacity game
then any play under σm reaches {f}.

We now prove the third and last assertion: if Agents has a winning strategy with finite
memory M in the capacity game, he has a winning strategy in the |Q|1+|M|·4|Q|

-population
game. Let τ be a winning strategy for Agents in the capacity game with finite-memory M.
We define m = |Q|1+|M|·4|Q|

and consider the m-population game.
A winning strategy τm for Agents in the m-population game can be designed using τ

as follows. When it is Agents’s turn to play in the m-population game, the play so far
π = q0

a1−→ q1 · · ·qn
an+1−→ is projected via Φm to a play ρ = S0

a1,G1−→ S1 · · ·Sn
an+1−→ in the

capacity game. Let Gn+1 = τ(ρ) be the decision of Agents at this point in the capacity game.
Then, to determine qn+1, τm splits evenly the agents in qn along every edge of Gn+1. This
guarantees that for every edge (q, r) ∈ Gn+1, at least a fraction 1

|Q| of the agents in state q
in qn moves to state r in qn+1. Assuming that τm is properly defined, then it is winning
for Agents. Indeed, τ guarantees that {f} is never reached in the capacity game, thus τm

guarantees that not all agents are simultaneously in the target state f .
Now, strategy τm is properly defined as long as the projection ρ is consistent with τ ,

which in turns holds as long as at least one agent actually moves along every edge of Gn+1.
To establish that τm is well-defined, it is enough to show that:

XX:10 Controlling a Population

(†) for every n ∈ N and every state r ∈ Sn, at least |Q| agents are in state r in qn .

To show (†), we consider ρ = S0
a1,G1−→ S1

a2,G2−→ . . . Sn the projection in the support arena of a
play π = q0

a1−→ q1
a2−→ . . .qn consistent with τm. Let (Uj)j∈0...n be the sequence of subsets

of Q defined by Un = {r}, and for 0 < j < n,

Uj−1 = {s ∈ Q | ∃t ∈ Uj , (s, t) ∈ Gj} .

Let T = (Tj)j∈N be the sequence of complement subsets: Tj = Q \ Uj if j ≤ n and Tj = Q

otherwise. Then, T is an accumulator: if s 6∈ Uj and (s, s′) ∈ Gj then s′ 6∈ Uj+1.
Assume that there are two integers 0 ≤ i < j ≤ n such that at step i and j

the memory state of τ coincide: mi = mj ;
the supports coincide: Si = Sj ; and
the supports in the accumulator T coincide: Ti = Tj .

Then we show that there is no entry in the accumulator between indices i and j. The play
π∗ identical to π up to date i and which repeats ad infinitum the subplay of π between
dates i and j, is consistent with τ , because mi = mj and Si = Sj . The corresponding
sequence of transfer graphs is G0, . . . , Gi−1(Gi, . . . , Gj−1)ω and T0, . . . , Ti−1(Ti . . . Tj−1)ω is
a "periodic" accumulator of π∗. By periodicity, this accumulator has either no entry, or
infinitely many entries after date i− 1. Since τ is winning, π∗ has finite capacity, thus the
periodic accumulator has no entry after date i− 1, and there is no entry in the accumulator
(Tj)j∈N between indices i and j.

Let I be the set of indices where there is an entry in the accumulator (Tj)j∈N. According
to the above, for all pairs of distinct indices (i, j) in I, we have mi 6= mj ∨ Si 6= Sj ∨ Vi 6= Vj .
As a consequence,

|I| ≤ |M| · 4|Q| .

Denote ai the number of agents in Ui at date i. If i 6∈ I, i.e. if there is no entry to Ti at
date i then all agents in Ui at date i are in Ui+1 at date i+ 1 hence ai+1 = ai. In the other
case, when i ∈ I, strategy τm sends at least a fraction 1

|Q| of the agents from Ui to Ui+1 thus
ai+1 ≥ ai

|Q| . Finally

an ≥
m

|Q||I|
≥ m · |Q|−|M|·4

|Q|
= |Q|1+|M|·4|Q|

· |Q|−|M|·4
|Q|

= |Q| .

Since Un = {r} then property (†) holds. As a consequence τm is well-defined and, as already
discussed, τm is a winning strategy for Agents in the m-population game. J

As consequence of Proposition 12, the population control problem can be decided by
explicitely computing the parity game and solving it, thus in 2EXPTIME. This complexity
bound can actually be improved to EXPTIME, as shown in the next section.

We conclude with an example showing that, in general, positional strategies are not
sufficient to win the capacity game. Consider the example of Figure 4, where the only way for
Controller to win is to reach a support without q2 and play c. With a memoryless strategy,
Controller cannot win the capacity game. There are only two memoryless strategies from
support S = {q1, q2, q3, q4}. If Controller only plays a from S, the support remains S and
the play has bounded capacity. If he only plays b’s from S, then Agents can split tokens
from q3 to both q2, q4 and the play remains in support S, with bounded capacity. In both
cases, the play has finite capacity and Controller loses.

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:11

q0 f

q1

q2

q3

q4

a a

a ab b

b b

b

c

c

c

c

c

c

c

Figure 4 Population game where Controller needs memory to win the associated capacity game.

However, Controller can win the capacity game. His (finite-memory) winning strategy
σ consists in first playing c, and then playing alternatively a and b, until the support does
not contain {q2}, in which case he plays c to win. Two consecutive steps ab send q2 to q1,
q1 to q3, q3 to q3, and q4 to either q4 or q2. To prevent Controller from playing c and win,
Agents needs to spread from q4 to both q4 and q2 every time ab is played. Consider the
accumulator T defined by T2i = {q1, q2, q3} and T2i−1 = {q1, q2, q4} for every i > 0. It has
an infinite number of entries (from q4 to T2i). Hence Controller wins if this play is executed.
Else, Agents eventually keeps all agents from q4 in q4 when ab is played, implying the next
support does not contain q2. Strategy σ is thus a winning strategy for Controller.

4 Solving the capacity game in EXPTIME

To solve efficiently the capacity game, we build an equivalent exponential size parity game
with a polynomial number of parities. To do so, we enrich the support arena with a tracking
list responsible of checking whether the play has finite capacity. The tracking list is a list of
transfer graphs, which are used to detect certain patterns called leaks.

4.1 Leaking graphs

In order to detect whether a play ρ = S0
a1,G1−→ S1

a2,G2−→ . . . has finite capacity, it is enough
to detect leaking graphs (characterising entries of accumulators). Further, leaking graphs
have special separation properties which will allow us to track a small number of graphs. For
G,H two graphs, we denote (a, b) ∈ G ·H iff there exists z with (a, z) ∈ G, and (z, b) ∈ H.

I Definition 13 (Leaks and separations). Let G,H be two transfer graphs. We say that G
leaks at H if there exist states q, x, y with (q, y) ∈ G ·H, (x, y) ∈ H and (q, x) /∈ G. We say
that G separates a pair of states (r, t) if there exists q ∈ Q with (q, r) ∈ G and (q, t) 6∈ G.

•q
•x

•
•y

G H

•q
•t

•r

G

Figure 5 Left: G leaks at H; Right: G separates (r, t).

XX:12 Controlling a Population

The tracking list will be composed of concatenated graphs tracking i of the form G[i, j] =
Gi+1 · · ·Gj relating Si with Sj : (si, sj) ∈ G[i, j] if there exists (sk)i<k<j with (sk, sk+1) ∈
Gk+1 for all i ≤ k ≤ j. Infinite capacity relates to leaks in the following way:

I Lemma 14. A play has infinite capacity iff there exists an index i such that G[i, j] leaks
at Gj+1 for infinitely many indices j.

Proof. To prove the right-to-left implication, assume that there exists an index i such that
G[i, j] leaks at Gj+1 for an infinite number of indices j. As the number of states is finite, there
exist a state q with an infinite number of indices j such that we have some (xj , yj+1) ∈ Gj+1
with (q, yj+1) ∈ G[i, j+1], (q, xj) /∈ G[i, j]. The accumulator generated by Ti = {q} has an
infinite number of entries, and we are done with this direction.

i j j+1

•q •
•x •y

Gj+1G[i, j]

For the left-to-right implication, assume that there is an accumulator (Tj)j≥0 with an
infinite number of entries.
For X a subset of vertices of the DAG, |X|n denotes the number of vertices of X of rank
n, and we define the width of X as width(X) = lim supn |X|n. We use several times the
following property of the width.

(†) If X0 6= ∅ and X1 are two disjoint successor-closed sets, and if X0 ∪X1 ⊆ X, then
then width(X1) < width(X).

Let us prove property (†). Let r be the minimal rank of vertices in X0. Since X0 is
successor-closed and there is no dead-end in the DAG, for every n ≥ r, X0 contains at least
one vertex of rank n. Because X0 and X1 are disjoint, we derive |X1|n + 1 ≤ |X|n. Taking
the limsup of this inequality we obtain (†).

We pick X a successor-closed set of nodes with infinitely many incoming edges, of minimal
width with this property. Let v be a vertex of X of minimal rank and denote S(v) for the
set of successors of v. Let us show that S(v) has infinitely many incoming edges. Define
T (v) as the set of predecessors of vertices in S(v) and Y = X \ T (v). Then Y is successor-
closed because T (v) is predecessor-closed and X is successor-closed. Applying property
(†) to X0 = S(v) ⊆ X and X1 = Y ⊆ X, we obtain width(Y) < width(X). By width
minimality of X among successor-closed sets with infinitely many incoming edges, Y must
have finitely many incoming edges only. Since Y = X \ T (v) and X has infinitely many
incoming edges, then T (v) has infinitely many incoming edges. Thus there are infinitely
many edges connecting a vertex outside S(v) to a vertex of S(v), so that S(v) has infinitely
many incoming edges. J

In this case, we say that index i leaks infinitely often. Note that if G separates (r, t),
and r, t have a common successor by H, then G leaks at H. To link leaks with separations,
we consider for each index k, the pairs of states that have a common successor, in possibly
several steps, as expressed by the symmetric relation Rk: (r, t) ∈ Rk iff there exists j ≥ k

and y ∈ Q such that (r, y) ∈ G[k, j] ∧ (t, y) ∈ G[k, j].

I Lemma 15. For i < n two indices, the following three properties hold:

1. If G[i, n] separates (r, t) ∈ Rn, then there exists m ≥ n such that G[i,m] leaks at Gm+1.

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:13

2. If index i does not leak infinitely often, then the number of indices j such that G[i, j]
separates some (r, t) ∈ Rj is finite.

3. If index i leaks infinitely often, then for all j > i, G[i, j] separates some (r, t) ∈ Rj.

Proof. We start with the proof of the first item. Assume that G[i, n] separates a pair
(r, t) ∈ Rn. Hence there exists q such that (q, r) ∈ G[i, n], (q, t) /∈ G[i, n]. Now, from
(r, t) ∈ Rn, we derive the existence of an index k > n and a state y such that (r, y) ∈ G[n, k]
and (t, y) ∈ G[n, k]. Hence, there exists a path (tj)n≤j≤k with tn = t, tk = y, and
(tj , tj+1) ∈ Gj+1 for all n ≤ j < k. Moreover, there is a path from q to y because there are
paths from q to r and from r to y. Let ` ≤ k be the minimum index such that there is a
path from q to t`. As there is no path from q to tn = t, necessarily ` ≥ n + 1. Obviously,
(t`−1, t`) ∈ G`, and by definition and minimality of `, (q, t`−1) /∈ G[i, `−1] and (q, t`) ∈ G[i, `].
That is, G[i, `− 1] leaks at G`.

Let us now prove the second item, using the first one. Assume that i does not leak
infinitely often, and towards a contradiction suppose that there are infinitely many j’s such
that G[i, j] separates some (r, t) ∈ Rj . To each of these separations, we can apply item 1. to
obtain infinitely many indices m such that G[i,m] leaks at Gm+1, a contradiction.

We now prove the last item. Since there are finitely many states in Q, there exists q ∈ Q
and an infinite set J of indices such that for every j ∈ J , (q, yj+1) ∈ G[i, j+1], (q, xj) /∈ G[i, j],
and (xj , yj+1) ∈ Gj+1 for some xj , yj+1. The path from q to yj+1 implies the existence of
yj with (q, yj) ∈ G[i, j], and (yj , yj+1) ∈ Gj+1. We thus found separated pairs (xj , yj) for
every j ∈ J . To exhibit separations at other indices k > j with k /∈ J , the natural idea is to
consider predecessors of the xj ’s and yj ’s.

i k j j+1

•q •rk

•tk •xj

•
yj

• yj+1

G[i, k] G[k, j] Gj+1

We define sequences (rk, tk)k≥i inductively as follows. To define rk, we take a j ≥ k + 1
such that j ∈ J ; this is always possible as J is infinite. There exists a state rk such that
(q, rk) ∈ G[i, k] and (rk, yj) ∈ G[k, j].
Also, as xj belongs to Im(G[1, j]), there must exist a state tk such that (tk, xj) ∈ G[k, j].
Clearly, (q, tk) /∈ G[i, k], else (q, xj) ∈ G[i, j], which is not true. Last, yj+1 is a common
successor of tk and rk, that is (tk, yj+1) ∈ G[k, j + 1] and (rk, yj+1) ∈ G[k, j + 1]. Hence
G[i, k] separates (rk, tk) ∈ Rk. J

4.2 The tracking list
The tracking list exploits the relationship between leaks and separations. It is a list of transfer
graphs which altogether separate all possible pairs, and are sufficient to detect when leaks
occur. Notice that telling at step j whether the pair (r, t) belongs to Rj cannot be performed
by a deterministic automaton. We thus a priori have to consider every pair (r, t) ∈ Q2 for
separation. The tracking list Ln at step n is defined inductively as follows. L0 is the empty
list, and for n > 0, the list Ln is computed in three stages:

1. first, every graph H in the list Ln−1 is concatenated with Gn, yielding H ·Gn;
2. second, Gn is added at the end of the obtained list;

XX:14 Controlling a Population

3. last, the list is filtered: a graph H is kept if and only if it separates a pair of states
(p, q) ∈ Q2 which is not separated by any graph that appears earlier in the list.

Because of the third item, there are at most |Q|2 graphs in the tracking list. The list may
become empty if no pair of states is separated by any graph, for example if all the graphs are
complete. Let Ln = {H1, · · · , H`} be the tracking list at step n. Then each transfer graph
Hr ∈ Ln is of the form Hr = G[tr, n]. We say that r is the level of Hr, and tr the index
tracked by Hr. Observe that the lower the level of a graph in the list, the smaller the index it
tracks. When we consider the sequence of tracking lists (Ln)n∈N, for every index i, either it
eventually stops to be tracked or it is tracked forever from step i, i.e. for every n ≥ i, G[i, n]
belongs to Ln. In the latter case, i is said to be remanent (because it will never disappear).

Using Lemma 14 and the second and third statements of Lemma 15, we obtain:

I Lemma 16. A play has infinite capacity iff there exists an index i such that i is remanent
and leaks infinitely often.

Proof. The direction from right-to-left is trivial. Assume the play has finite capacity, and
let i be a remanent index. By Lemma 14, i does not leak infinitely oten.

For the other direction, assume that the play has infinite capacity. By Lemma 14, there
exists an index i that leaks infinitely often. We choose i minimal with this property.

We first show that for all k ≥ i, k leaks infinitely often as well. There are infinitely
many indices j > i such that G[i, j] leaks at Gj+1. For each such index j, there are states
q, x, y such that (q, y) ∈ G[i, j+1], (q, x) /∈ G[i, j] and (x, y) ∈ Gj+1. Consider any index
i ≤ k ≤ j. There exists a state q′ such that (q, q′) ∈ G[i, k] and (q′, y) ∈ G[k, j+1]. We thus
have (q′, y) ∈ G[k, j+1], (q′, x) /∈ G[k, j] and (x, y) ∈ Gj+1. Thus G[k, j] leaks at Gj+1. This
holds for all j > i and i ≤ k ≤ j, so that for all k ≥ i, G[k, j] leaks at Gj+1 for infinitely
many indices j.

i k j j+1

•q •q′
•x

•
•y

G[i, k] G[k, j] Gj+1

We prove now that some k ≥ i is remanent, which will finish the proof. Towards a
contradiction, assume that it is not the case.

Let ` < i. By minimality of i, ` leaks only finitely often. Applying the second statement
of Lemma 15, there are only finitely many indices j ≥ ` such that G[`, j] separates some pair
of Rj . We let j` the maximum of these indices, and N = max`<i j`. By definition of N , for
all ` < i and all j > N , G[`, j] separates no pair of Rj .

Fix now n > N , the minimal index such that there exists j with G[n, j] ∈ Lj and for all
i ≤ k ≤ N , G[k, j] /∈ Lj . The existence of n is guaranteed since we assumed for contradiction
that no k ≥ i is remanent. Let J be the step at which index n is no longer tracked in
the list. Just before the list is filtered to obtain LJ , it starts with a prefix of the form:
G[i1, J], · · · , G[i`, J], G[n, J]. By definition of n, the indices i1, · · · , i` are smaller than i.
That is, i1 < · · · < i` < i < N < n ≤ J .

Now, the choice of N guarantees that for all 1 ≤ k ≤ `, G[ik, J] separates no pair in
RJ . Moreover, n ≥ i thus n leaks infinitely often, and by the third statement of Lemma 15,
G[n, J] separates some pair of RJ , which cannot be separated by any G[ik, J]. Therefore,

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:15

during the third stage, G[n, J] is not filtered. This contradicts the definition of J as the step
after which index n is no longer tracked.

Thus some index larger than i is remanent, and leaks infinitely often. J

4.3 The parity game
We now describe a parity game PG, which extends the support arena with on-the-fly
computation of the tracking list.

Priorities. By convention, lowest priorities are the most important and the odd parity is
good for Controller, so Controller wins iff the lim inf of the priorities is odd. With each level
1 ≤ r ≤ |Q|2 of the tracking list are associated two priorities 2r and 2r + 1, and on top of
that are added priorities 1 and 2|Q|2 + 2, hence the set of all priorities is {1, . . . , 2|Q|2 + 2}.

When Agents chooses a transition labelled by a transfer graph G, the tracking list is
updated with G and the priority of the transition is determined as the smallest among:
priority 1 if the support {f} has ever been visited, priority 2r+ 1 for the smallest r such that
Hr (from level r) leaks at G, priority 2r for the smallest level r where a graph was removed,
and in all other cases priority 2|Q|2 + 2.

States and transitions. G≤|Q|2 denotes the set of list of at most |Q|2 transfer graphs.

States of PG form a subset of {0, 1} × 2Q × G≤|Q|2 , each state being of the form
(b, S,H1, . . . ,H`) with b ∈ {0, 1} a bit indicating whether a support in {f} has been seen,
S the current support and (H1, . . . ,H`) the tracking list. The initial state is (0, {q0}, ∅).
Transitions in PG are all (b, S,H1, . . . ,H`)

p,a,G−→ (b′, S′, H ′1, . . . ,H ′`′) where p is the
priority, and such that S a,G−→ S′ is a transition of the support arena, and
1. (H ′1, . . . ,H ′`′) is the tracking list obtained by updating the tracking list (H1, . . . ,H`)

with G, as explained in subsection 4.2;
2. if b = 1 or if S′ ⊆ F , then p = 1 and b′ = 1;
3. otherwise b′ = 0. In order to compute the priority p, we let p′ be the smallest level

1 ≤ r ≤ ` such that Hr leaks at G and p′ = `+ 1 if there is no such level, and we also
let p′′ as the minimal level 1 ≤ r ≤ ` such that H ′r 6= Hr ·G and p′′ = `+ 1 if there is
no such level. Then p = min(2p′ + 1, 2p′′).

We are ready to state the main result of this paper, which yields an EXPTIME complexity
for the population control problem. This entails the first statement of Theorem 4, and
together with Proposition 12, also the first statement of Theorem 5.

I Theorem 17. Controller wins the game PG if and only if Controller wins the capacity
game. Solving these games can be done in time O(2(1+|Q|+|Q|4)(2|Q|2+2)). Strategies with
2|Q|4 memory states are sufficient to both Controller and Agents.

Proof. The state space of parity game PG is the product of the set of supports with a
deterministic automaton computing the tracking list. As the state space of the capacity game
is also the set of supports, there is a natural correspondence between plays and strategies in
the parity game PG and in the capacity game.

Controller can win the parity game PG in two ways: either the play visits the support
{f}, or the priority of the play is 2r + 1 for some level 1 ≤ r ≤ |Q|2. By design of PG, this
second possibility occurs iff r is remanent and leaks infinitely often. According to Lemma 16,
this occurs if and only if the corresponding play of the capacity game has infinite capacity.
Thus Controller wins PG iff he wins the capacity game.

XX:16 Controlling a Population

In the parity game PG, there are at most 21+|Q|
(

2|Q|2
)|Q|2

= 21+|Q|+|Q|4 states and
2|Q|2 + 2 priorities, implying the complexity bound using state-of-the-art algorithms [18].
Actually the complexity is even quasi-polynomial according to the algorithms in [10]. Notice
however that this has little impact on the complexity of the population control problem, as
the number of priorities is logarithmic in the number of states of our parity game.

Further, it is well known that the winner of a parity game has a positional winning
strategy [18]. A positional winning strategy σ in the game PG corresponds to a finite-memory
winning strategy σ′ in the capacity game, whose memory states are the states of PG. Actually
in order to play σ′, it is enough to remember the tracking list, i.e. the third component of the
state space of PG. Indeed, the second component, in 2Q, is redundant with the actual state
of the capacity game and the bit in the first component is set to 1 when the play visits {f}
but in this case the capacity game is won by Controller whatever is played afterwards. Since
there at most 2|Q|4 different tracking lists, we get the upper bound on the memory. J

5 Lower bounds

The proofs of Theorems 4 and 5 are concluded by the proofs of lower bounds.

I Theorem 18. The population control problem is EXPTIME-hard.

Proof. We first prove PSPACE-hardness of the population control problem, reducing from
the halting problem for polynomial space Turing machines. We then extend the result
to obtain the EXPTIME-hardness, by reducing from the halting problem for polynomial
space alternating Turing machines. Let M = (S,Γ, T, s0, sf) be a Turing machine with
Γ = {0, 1} as tape alphabet. By assumption, there exists a polynomial P such that, on initial
configuration x ∈ {0, 1}n,M uses at most P (n) tape cells. A transition t ∈ T is of the form
t = (s, s′, b, b′, d), where s and s′ are, respectively, the source and the target control states, b
and b′ are, respectively, the symbols read from and written on the tape, and d ∈ {←,→,−}
indicates the move of the tape head. FromM and x, we build an NFA A = (Q,Σ, q0,∆)
with a distinguished state , such that,M terminates in sf on input x if and only if (A,,)
is a positive instance of the population control problem.

The high-level description of A is as follows. States in Q are of several types: contents
of the P (n) cells (one state (b, p) per content and per position), position of the tape head
(one state p per possible position), control state of the Turing machine (one state s per
control state), and three special states, namely an initial state q0, a sink winning state ,,
and a sink losing state /. With each transition t = (s, s′, b, b′, d) in the Turing machine and
each position p of the tape, we associate an action at,p in A, which simulates the effect of
transition t when the head position is p. Thus, on action at,p there is a transition from the
source state s to the target state s′, another from the tape head position p to its update
according to d, and also from (b, p) to (b′, p). Moreover, from head position q 6= p, at,p leads
to /, so that in any population game, Controller only plays actions associated with the
current head position. Similarly from states (b′′, p) with b′′ 6= b, states s′′ 6= s, action at,p

leads to /. Initially, an init action is available from q0 and leads to s0, to position 0 for the
tape head, and to cells (b, p) that encode the initial tape contents on input x. The NFA also
has winning actions, that allow one to check that there are no agents in a subset of states,
and send the remaining ones to the target ,. One such action should be played when agents
encoding the state of the Turing machine lie in sf , indicating thatM accepted. Another
winning action winact is played whenever there are not enough agents to encode the initial
configuration: Agents needs m to be at least P (n) + 2 to fill states corresponding to the

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:17

initial tape contents (P (n) tokens), the initial control state s0 and the initial head position.
The sink losing state / is used to pinpoint an error in the simulation ofM.

Now, in order to encode an alternating Turing machine, we assume that the control
states of M alternate between states of Controller and states of Agents. The NFA A is
extended with a state C, for Controller, and an additional transition labelled init from q0 to
C. Assume first, that C contains at most an agent; we will later explain how to impose this.
Beyond C, the NFA also contains on state t per transition ofM, which will represent that
Agents chooses transition t. To do so, from state C, for any action at,p, there are transitions
to all states t′. From state t, actions of the form at,p are allowed, leading back to C. That is,
actions at′,p with t′ 6= t lead from t to the sink losing state /. This encodes that Controller
must follow the transition t chosen by Agents. To punish Agents in case the current tape
contents is not the one expected by the transition t = (s, s′, b, b′, d) he chooses, there are
trashing actions trashs and trashp,b enabled from state t. Action trashs leads from t to ,,
and also from s to /. In this way, the agents in t cannot be used by Agents, and Controller
wins more easily. Similarly, trashp,b leads from t to , and from any position state q 6= p to
/, and from (b, p) to /.

Last, there are transitions on action end from state ,, C and any of the t’s to the target
state ,. Moreover, action end from any other state (in particular the ones encoding the
Turing machine configuration) to /. This whole construction encodes, assuming that there
is a single agent in C after the first transition, that Controller can choose the transition from
a Controller state ofM, and Agents can choose the transition from an Agents state.

Let us now explain the gadget, represented below, to deal with the case where Agents
places several agents in state C on the initial action init, enabling the possibility to later
send agents to several t’s simultaneously. We use an extra state s, actions storet for each
transition t, and action restart. Action storet is a left loop on every state except from
t, which goes to s. From all states except , and / action restart leads to q0. Last, the
effects of winact and end are modified as follow: winact leads from C and from any t to
,, it loops on sf and moves from all other s’s to /; end goes from all s’s and , to ,, and
transitions from q0, C, the t’s and s to /.

qt qt q0 qu

store 



init
ax,p

win

restart

restart

win, ax,p
storex

at,p

Storex≠t

qt

ax≠t,p

Assume that input x is not accepted by the alternating Turing machineM, and let m be
at least P (n) + 3. In the m-population game, Agents has a winning strategy placing initially
a single agent in state C. If Controller plays storet (for some t), either no agents are stored,
or the unique agent in C is moved to s. Thus Controller cannot play end and has no way
to lead the agents encoding the Turing machine configuration to ,, until he plays restart,

XX:18 Controlling a Population

which moves all the agents back to q0. This shows that storet is useless to Controller and
thus Agents wins.

Conversely, if Controller has a strategy inM witnessing the acceptance of x, in order to
win the m-population game, Agents would need to cheat in the simulation ofM and place
at least two agents in C to eventually split them to t1, . . . , tn. Then, Controller can play the
corresponding actions storet2 , . . . , storetn moving all agents (but the ones in t1) in s, after
which he plays his winning strategy from t1 resulting in sending some agents to ,. Then,
Controller plays restart and proceeds inductively with strictly less agents from q0, and
eventually plays end to win. J

Surprisingly, the cut-off can be as high as doubly exponential in the size of the NFA.

I Proposition 19. There exists a family of NFA (An)n∈N such that |An| = 2n+ 7, and for
M = 22n+1 + n, there is no winning strategy in AM

n and there is one in AM−1
n .

Proof. Let n ∈ N. The NFA An we build is the disjoin union of two NFAs with different
properties, namely Asplit,Acount,n. On the one hand, for Asplit, winning the game with m

agents requires Θ(logm) steps. On the other hand, Acount,n implements a usual counter over
n bits (as used in many different publications), such that Controller can avoid to lose during
O(2n) steps. The combination of these two gadgets ensures a cut-off for An of 22n .

Recall Figure 1, which presents the splitting gadget that has the following properties. In
Am

split with m ∈ N agents, (s1) there is a winning strategy ensuring to win in 2 blog2 mc+ 2
steps; (s2) no strategy can ensure to win in less than 2 blog2 mc+ 1 steps.

The counting gadget that implements a counter with states li (meaning bit i is 0) and hi

(for bit i is 1) enjoys the following properties: (c1) there is a strategy in Acount,n to ensure
avoiding / during 2n steps, by playing αi whenever the counter suffix from bit i is 01 · · · 1;
(c2) for m ≥ n, no strategy of Am

count,n avoid / for 2n steps.
The two gadgets (splitting and counting) are combined by a new initial state leading by

two transitions labeled init to the initial states of both NFAs. Actions consist of pairs of
actions, one for each gadget: Σ = {a, b, δ} × {αi | 1 ≤ i ≤ n}. We add an action ∗ which can
be played from any state of Acount,n but /, and only from f in Asplit, leading to the global
target state ,.

Let M = 22n+1 + n. We deduce that the cut-off is M − 1 as follows:

For M agents, a winning strategy for Agents is to first split n tokens from the initial
state to the q0 of Acount,n, in order to fill each li with 1 token, and 22n+1 tokens to the q0
of Asplit. Then Agents splits evenly tokens between q1, q2 in Asplit. In this way, Controller
needs at least 2n + 1 steps to reach the final state of Asplit (s2), but Controller reachs /
after these 2n + 1 steps in Acount,n (c2).
For M − 1 agents, Agents needs to use at least n tokens from the initial state to the q0 of
Acount,n, else Controller can win easily. But then there are less than 22n+1 tokens in the
q0 of Asplit. And thus by (s1), Controller can reach f within 2n steps, after which he still
avoids / in Acount,n (c1). And then Controller sends all agents to , using ∗.

Thus, the family (An) of NFA exhibits a doubly exponential cut-off. J

6 Discussion

Obtaining an EXPTIME algorithm for the control problem of a population of agents was
challenging. We have a matching EXPTIME-hard lower-bound. Further, the surprising doubly
exponential matching upper and lower bounds on the cut-off imply that the alternative

N. Bertrand, M. Dewaskar, B. Genest and H. Gimbert XX:19

technique, checking that Controller wins all m-population game for m up to the cut-off,
is far from being efficient. This compares favourably with the exponential gap for the
parameterized verification of almost-sure reachability for a population communicating via a
shared register [8] (the latter problem is in EXPSPACE and PSPACE-hard).

The idealised formalism we describe in this paper is not entirely satisfactory: for instance,
while each agent can move in a non-deterministic way, unrealistic behaviours can happen,
e.g. all agents synchronously taking infinitely often the same choice. An almost-sure control
problem in a probabilistic formalism should be studied, ruling out such extreme behaviours.
As the population is discrete, we may avoid the undecidability that holds for distributions [11]
and is inherited from the equivalence with probabilistic automata [17]. Abstracting continuous
distributions by a discrete population of arbitrary size could thus be seen as an approximation
technique for undecidable formalisms such as probabilistic automata.

Acknowledgement: We are grateful to Gregory Batt for fruitful discussions concerning
the biological setting. Thanks to Mahsa Shirmohammadi for interesting discussions. This
work was partially supported by ANR projet STOCH-MC (ANR-13-BS02-0011-01).

References
1 Parosh Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Riccardo Tra-

verso. On the verification of timed ad hoc networks. In Proceedings of Formats’11, volume
6919 of Lecture Notes in Computer Science, pages 256–270. Springer, 2011.

2 Parosh Abdulla and Bengt Jonsson. Model checking of systems with many identical timed
processes. Theoretical Computer Science, 290(1):241–263, 2003.

3 S. Akshay, Blaise Genest, Bruno Karelovic, and Nikhil Vyas. On regularity of unary prob-
abilistic automata. In Proceedings of STACS’16, volume 47 of Leibniz International Pro-
ceedings in Informatics, pages 8:1–8:14. Leibniz-Zentrum für Informatik, 2016.

4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Com-
putation in networks of passively mobile finite-state sensors. In Proceedings of PODC’04,
pages 290–299. ACM, 2004.

5 André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of controllers
with partial observation. Theoretical Computer Science, 1(303):7–34, 2003.

6 Nathalie Bertrand and Paulin Fournier. Parameterized verification of many identical prob-
abilistic timed processes. In Proceedings of FSTTCS’13, volume 24 of Leibniz International
Proceedings in Informatics, pages 501–513. Leibniz-Zentrum für Informatik, 2013.

7 Nathalie Bertrand, Paulin Fournier, and Arnaud Sangnier. Playing with probabilities in
reconfigurable broadcast networks. In Proceedings of FoSSaCS’14, volume 8412 of Lecture
Notes in Computer Science, pages 134–148. Springer, 2014.

8 Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier, and Daniel Stan.
Reachability in networks of register protocols under stochastic schedulers. In Proceedings
of ICALP’16, volume 55 of Leibniz International Proceedings in Informatics, pages 106:1–
106:14. Leibniz-Zentrum für Informatik, 2016.

9 Tomás Brázdil, Petr Jančar, and Antonín Kučera. Reachability games on extended vector
addition systems with states. In Proceedings of ICALP’10, volume 6199 of Lecture Notes
in Computer Science, pages 478–489. Springer, 2010.

10 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. De-
ciding parity games in quasipolynomial time. In Proceedings of STOCS’17, pages 252–263.
ACM, 2017.

11 Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite synchronizing words
for probabilistic automata (erratum). Technical report, CoRR abs/1206.0995, 2012.

XX:20 Controlling a Population

12 Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Limit synchronization in
Markov decision processes. In Proceedings of FoSSaCS’14, volume 8412 of Lecture Notes
in Computer Science, pages 58–72. Springer, 2014.

13 Javier Esparza. Keeping a crowd safe: On the complexity of parameterized verification
(invited talk). In Proceedings of STACS’14, volume 25 of Leibniz International Proceedings
in Informatics, pages 1–10. Leibniz-Zentrum für Informatik, 2014.

14 Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols.
In Proceedings of LICS’99, pages 352–359. IEEE Computer Society, 1999.

15 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of pop-
ulation protocols. In Proceedings of CONCUR’15, volume 42 of Leibniz International Pro-
ceedings in Informatics, pages 470–482. Leibniz-Zentrum für Informatik, 2015.

16 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes.
J. ACM, 39(3):675–735, 1992.

17 Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words: Decidable
and undecidable problems. In Proceedings of ICALP’10, volume 6199 of Lecture Notes in
Computer Science, pages 527–538. Springer, 2010.

18 Marcin Jurdzinski. Small progress measures for solving parity games. In Proceedings of
STACS’00, volume 1770 of Lecture Notes in Computer Science, pages 290–301. Springer,
2000.

19 Marcin Jurdziński, Ranko Lazić, and Sylvain Schmitz. Fixed-dimensional energy games
are in pseudo polynomial time. In Proceedings of ICALP’15, volume 9135 of Lecture Notes
in Computer Science, pages 260–272. Springer, 2015.

20 Panagiotis Kouvaros and Alessio Lomuscio. Parameterised Model Checking for Alternating-
Time Temporal Logic. In Proceedings of ECAI’16, volume 285 of Frontiers in Artificial
Intelligence and Applications, pages 1230–1238. IOS Press, 2016.

21 Pavel Martyugin. Computational complexity of certain problems related to carefully syn-
chronizing words for partial automata and directing words for nondeterministic automata.
Theory of Computing Systems, 54(2):293–304, 2014.

22 Mahsa Shirmohammadi. Qualitative analysis of synchronizing probabilistic systems. PhD
thesis, ULB, 2014.

23 Jannis Uhlendorf, Agnès Miermont, Thierry Delaveau, Gilles Charvin, François Fages,
Samuel Bottani, Pascal Hersen, and Gregory Batt. In silico control of biomolecular pro-
cesses. In Computational Methods in Synthetic Biology, chapter 13, pages 277–285. Humana
Press, Springer, 2015.

24 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Proceedings of
LATA’08, volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

25 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. URL: https://doi.org/
10.1016/S0304-3975(98)00009-7, doi:10.1016/S0304-3975(98)00009-7.

https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

	Introduction
	The population control problem
	The m-population game
	Parameterized control and cut-off
	Main results

	The capacity game
	The -population game
	Realisable plays
	The capacity game

	Solving the capacity game in EXPTIME
	Leaking graphs
	The tracking list
	The parity game

	Lower bounds
	Discussion

